frustrated Lewis pair(FLP)是一个最近出现的新名词,指分子内或混合体系中同时具有路易斯酸和路易斯碱两个位点,由于空间位阻较大而使得这两个位点不能结合形成路易斯酸碱加合物,从而具有独特的反应活性。建议译为"受阻路易斯酸碱...frustrated Lewis pair(FLP)是一个最近出现的新名词,指分子内或混合体系中同时具有路易斯酸和路易斯碱两个位点,由于空间位阻较大而使得这两个位点不能结合形成路易斯酸碱加合物,从而具有独特的反应活性。建议译为"受阻路易斯酸碱对"。展开更多
Carboxylation of aromatics by CO2 to generate corresponding carboxylic acids is recently providing a novel approach to utilize the green gas CO2, in which the activation of CO2 is the key procedure. Among the many cat...Carboxylation of aromatics by CO2 to generate corresponding carboxylic acids is recently providing a novel approach to utilize the green gas CO2, in which the activation of CO2 is the key procedure. Among the many catalytic systems employed in the carboxylation, the concept of “Frustrated Lewis Pairs” (FLPs) was scarcely mentioned, which perform excellently in activating small molecules like CO2. The FLPs are combinations of Lewis acids and Lewis bases which failed to form adducts due to their bulky steric congestion. In this paper, we first attempted various Si/Al Based FLPs to catalyze the carboxylation of aromatics through the activation of CO2, and a good yield of 62% - 97% was obtained. The reaction mechanism was proposed, involving the activation of CO2 mainly contributed by AlCl3 in cooperation with organosilane, forming an intermediate consisting of CO2, AlCl3, and R4Si, as well as the subsequent electrophilic attack to aromatics, thus to promote the carboxylation reaction.展开更多
Boron-nitrogen-hydrogen compounds have been investigated and developed very fast in last decades caused by its excellent hydrogen-storage performances. The bottleneck problem hindering its application is the irreversi...Boron-nitrogen-hydrogen compounds have been investigated and developed very fast in last decades caused by its excellent hydrogen-storage performances. The bottleneck problem hindering its application is the irreversibility after its dehydrogenation. However, the traditional B-N(or B-P) bond can be hindered by connecting with large steric hindrances, which results in the possible reversible hydrogenationdehydrogenation properties. In this research, we analyse the structural characters based on the experiments to obtain the required electronic structure properties for realizing the reversibility of FLPs in the hydrogenation(or dehydrogenation).展开更多
Direct syngas conversion to light olefins on bifunctional oxide-zeolite(OX-ZEO)catalysts is of great interest to both academia and industry,but the role of oxygen vacancy(Vo)in metal oxides and whether the key interme...Direct syngas conversion to light olefins on bifunctional oxide-zeolite(OX-ZEO)catalysts is of great interest to both academia and industry,but the role of oxygen vacancy(Vo)in metal oxides and whether the key intermediate in the reaction mechanism is ketene or methanol are still not well-understood.To address these two issues,we carry out a theoretical study of the syngas conversion on the typical reducible metal oxide,CeO2,using density functional theory calculations.Our results demonstrate that by forming frustrated Lewis pairs(FLPs),the VOs in CeO2 play a key role in the activation of H2 and CO.The activation of H2 on FLPs undergoes a heterolytic dissociative pathway with a tiny barrier of 0.01 eV,while CO is activated on FLPs by combining with the basic site(O atom)of FLPs to form CO2^2-.Four pathways for the conversion of syngas were explored on FLPs,two of which are prone to form ketene and the other two are inclined to produce methanol suggesting a compromise to resolve the debate about the key intermediates(ketene or methanol)in the experiments.Rate constant calculations showed that the route initiating with the coupling of two CO*into OCCO*and ending with the formation of ketene is the dominant pathway,with the neighboring FLPs playing an important role in this pathway.Overall,our study reveals the function of the surface FLPs in the activation of H2 and CO and the reaction mechanism for the production of ketene and methanol for the first time,providing novel insights into syngas conversion over OX-ZEO catalysts.展开更多
Typically, a Lewis acid and a Lewis base can react with each other and form a classical Lewis adduct. The neutralization reaction can however be prevented by ligating the acid and base with bulky substituents and the ...Typically, a Lewis acid and a Lewis base can react with each other and form a classical Lewis adduct. The neutralization reaction can however be prevented by ligating the acid and base with bulky substituents and the resulting complex is known as a "frustrated Lewis pair"(FLP). Since the Lewis acid and base reactivity remains in the formed complex, FLPs can display interesting chemical activities, with promising applications in catalysis. For example, FLPs were shown to function as the first metal-free catalyst for molecular hydrogen activation. This, and other recent applications of FLPs, have opened a new thriving research field. In this short-review, we recapitulate the computational and experimental studies of the H_2 activation by FLPs. We discuss the thus-far uncovered mechanistic aspects, including pre-organization of FLPs,the reaction paths for the activation, the polarization of He H bond and other factors affecting the reactivity. We aim to provide a rather complete mechanistic picture of the H_2 activation by FLPs, which has been under debate for decades since the first discovery of FLPs. This review is meant as a starting point for future studies and a guideline for industrial applications.展开更多
The modulational instability, quantum breathers and two-breathers in a frustrated easy-axis ferromagnetic zig-zag chain under an external magnetic field are investigated within the Hartree approximation. By means of a...The modulational instability, quantum breathers and two-breathers in a frustrated easy-axis ferromagnetic zig-zag chain under an external magnetic field are investigated within the Hartree approximation. By means of a linear stability analysis, we analytically study the discrete modulational instability and analyze the effect of the frustration strength on the discrete modulational instability region. Using the results from the discrete modulational instability analysis, the presence conditions of those stationary bright type localized solutions are presented. On the other hand, we obtain the analytical expressions for the stationary bright localized solutions and analyze the effect of the frustration on their emergence conditions. By taking advantage of these bright type single-magnon bound wave functions obtained, quantum breather states in the present frustrated ferromagnetic zig-zag lattice are constructed. What is more, the analytical forms for quantum two-breather states are also obtained. In particular, the energy level formulas of quantum breathers and two-breathers are derived.展开更多
A new frustrated triangular lattice antiferromagnet Na_(2)BaNi(PO_(4))_(2) was synthesized by high temperature flux method.The two-dimensional triangular lattice is formed by the Ni^(2+)ions with S=1.Its magnetism is ...A new frustrated triangular lattice antiferromagnet Na_(2)BaNi(PO_(4))_(2) was synthesized by high temperature flux method.The two-dimensional triangular lattice is formed by the Ni^(2+)ions with S=1.Its magnetism is highly anisotropic with the Weiss constants θCW=6.615 K(H||c)and43.979 K(H⊥c).However,no magnetic ordering is present down to 0.3 K,reflecting strong geometric spin frustration.Our heat capacity measurements show substantial residual magnetic entropy existing below 0.3 K at zero field,implying the presence of low energy spin excitations.These results indicate that Na_(2)BaNi(PO_(4))_(2) is a potential spin liquid candidate with spin-1.展开更多
Restricted Boltzmann machine(RBM)has been proposed as a powerful variational ansatz to represent the ground state of a given quantum many-body system.On the other hand,as a shallow neural network,it is found that the ...Restricted Boltzmann machine(RBM)has been proposed as a powerful variational ansatz to represent the ground state of a given quantum many-body system.On the other hand,as a shallow neural network,it is found that the RBM is still hardly able to capture the characteristics of systems with large sizes or complicated interactions.In order to find a way out of the dilemma,here,we propose to adopt the Green's function Monte Carlo(GFMC)method for which the RBM is used as a guiding wave function.To demonstrate the implementation and effectiveness of the proposal,we have applied the proposal to study the frustrated J_(1)-J_(2)Heisenberg model on a square lattice,which is considered as a typical model with sign problem for quantum Monte Carlo simulations.The calculation results demonstrate that the GFMC method can significantly further reduce the relative error of the ground-state energy on the basis of the RBM variational results.This encourages to combine the GFMC method with other neural networks like convolutional neural networks for dealing with more models with sign problem in the future.展开更多
The effect of an external magnetic field on the structural and magnetic properties of bond frustrated ZnCr2 Se4 at low temperatures is investigated using magnetization, dielectric constants and thermal conductivity ex...The effect of an external magnetic field on the structural and magnetic properties of bond frustrated ZnCr2 Se4 at low temperatures is investigated using magnetization, dielectric constants and thermal conductivity experiments. With an increase in the magnetic field H, the antiferromagnetic transition temperature TN is observed to shift progressively toward lower temperatures. The corresponding high temperature cubic (Fd3m) to low temperature tetragonal (I41amd) structural transition is tuned simultaneously due to the inherent strong spin-lattice coupling. In the antiferromagnetic phase, an anomaly at Hc2 defined as a steep downward peak in the derivative of the M-H curve is dearly drawn. It is found that TN versus H and Hc2 versus T exhibit a consistent tendency, indicative of a field-induced tetragonal (I41amd) to cubic (Fd3m) structural transition. The transition is further substantiated by the field-dependent dielectric constant and thermal conductivity measurements. We modify the T-H phase diagram, highlighting the coexistence of the paramagnetic state and ferromagnetic clusters between 100K and TN.展开更多
In this paper, we study the phase diagram of a frustrated spin ladder model by applying the bosonization technique and the density-matrix renormalization-group (DMRG) algorithm. Effect of the intra-ehain next-neares...In this paper, we study the phase diagram of a frustrated spin ladder model by applying the bosonization technique and the density-matrix renormalization-group (DMRG) algorithm. Effect of the intra-ehain next-nearest- neighbor (NNN) super-exchange interaction is investigated in detail and the order parameters are calculated to detect the emergence of the dimerized phases. We find that the intra-chain NNN interaction plays a key role in inducing dimerized phases.展开更多
Mid-infrared absorption and Raman spectra of the geometrically frustrated material series, hydroxyl cobalt halides β-CO2(OH)3Cl and β-CO2(OH)3Br, are first, to the best of our knowledge, measured at room tempera...Mid-infrared absorption and Raman spectra of the geometrically frustrated material series, hydroxyl cobalt halides β-CO2(OH)3Cl and β-CO2(OH)3Br, are first, to the best of our knowledge, measured at room temperature, to study the corresponding relationship between their vibrational spectral properties and crystal microstructures. Through the comparative analysis of the four spectra we have categorically assigned the OH-related vibration modes of hydroxyl groups in the trimeric hydrogen bond environment (Co3 =OH)3 … Cl/Br, and tentatively suggested vibration modes of O-Co-O, Co O and Cl/Br-Co-Cl/Br units. These results can also become the basis for analysing their low-temperature spectral properties, which can help to understand the underlying physics of their exotic geometric frustration phenomena around phase transition temperatures.展开更多
Network has not only become a habit and lifestyle for university student, but also brought all sorts of ethical misconducts and ethical issues in society. Based on the analysis of college students' frustrations, this...Network has not only become a habit and lifestyle for university student, but also brought all sorts of ethical misconducts and ethical issues in society. Based on the analysis of college students' frustrations, this paper explores the causes of network behavior anomie for college students, which mainly include: dissatisfaction in real communication, game addiction to the network, craving online pornography, and hooking on online shopping. In addition, it also investigates the ways to wipe out mental frustration in such a cyber era. These ways mainly are to strenzthen online education and management, to make psychological counseling, and to carry on frustration education.展开更多
Frustrated Lewis Pairs(FLPs)represent a unique class of interactions in Lewis acid-base chemistry,driven by spatial hindrance or incongruent orbital energy levels that hinder the formation of effective coordination bo...Frustrated Lewis Pairs(FLPs)represent a unique class of interactions in Lewis acid-base chemistry,driven by spatial hindrance or incongruent orbital energy levels that hinder the formation of effective coordination bonds.FLPs have received significant attention for their application in activating small molecules and facilitating organic synthesis reactions.Recent developments have led to the emergence of Frustrated Radical Pairs(FRPs)as an extension of the radical family.FRPs are formed from FLPs through Single Electron Transfer(SET)and exhibit the ability to activate a variety of chemical bonds.While research on FLPs is well-established,investigations into FRPs in organic reactions remain limited.This review highlights the current state of FRPs in organic synthesis,delves into mechanistic insights,explores their potential,and underscores the challenges in this emerging field.展开更多
Comprehensive Summary,The asymmetric partial reduction of 1,3-diketones stands as a straightforward pathway to access optically active β-hydroxyketones. In this paper, an asymmetric Piers-type hydrosilylation of 2,2-...Comprehensive Summary,The asymmetric partial reduction of 1,3-diketones stands as a straightforward pathway to access optically active β-hydroxyketones. In this paper, an asymmetric Piers-type hydrosilylation of 2,2-difluoro-1,3-diketones was successfully realized by using a frustrated Lewis pair of chiral borane and tricyclohexylphosphine as a catalyst, delivering a variety of α,α-difluoro-β-hydroxyketones in high yields with up to 99% ee. Significantly, no over-reduced diol products were observed even with an excess amount of silanes. The product can be conveniently converted to α,α-difluoro-β-hydroxyester or 1,3-anti-diol via an oxidation with m-CPBA or a reduction with DIBAL-H without obvious loss of ee.展开更多
In this study,a novel non-metallic carbon-based catalyst co-doped with boron and nitrogen(B,N)was successfully synthesized.By precisely controlling the carbonization temperature of a binary mixed ionic liquid,we selec...In this study,a novel non-metallic carbon-based catalyst co-doped with boron and nitrogen(B,N)was successfully synthesized.By precisely controlling the carbonization temperature of a binary mixed ionic liquid,we selectively modified the doping site structure,ultimately constructing a B,N co-doped frustrated Lewis acid-base pair catalyst.This catalyst exhibited remarkable catalytic activity,selectivity,and stability in the dehydrochlorination reaction of 1,1,2-trichloroethane(TCE).Detailed characterization and theoretical calculations revealed that the primary active center of this catalyst was the BN_(3)configuration.Compared to conventional graphitic N structures,the BN_(3)structure had a higher p-band center,ensuring superior adsorption and activation capabilities for TCE during the reaction.Within the BN_(3)site,three negatively charged nitrogen atoms acted as Lewis bases,while positively charged boron atoms acted as Lewis acids.This synergistic interaction facilitated the specific dissociation of chlorine and hydrogen atoms from TCE,significantly enhancing the 1,1-dichloroethene selectivity.Through this research,we not only explored the active site structure and catalytic mechanism of B,N co-doped catalysts in depth but also provided an efficient,selective,and stable catalyst for the dehydrochlorination of TCE,contributing significantly to the development of non-metallic catalysts.展开更多
Density order is usually a consequence of the competition between long-range and short-range interactions.Here we report a density ordered superfluid emergent from a homogeneous Mott insulator due to the competition b...Density order is usually a consequence of the competition between long-range and short-range interactions.Here we report a density ordered superfluid emergent from a homogeneous Mott insulator due to the competition between frustrations and local interactions.This transition is found in a Bose–Hubbard model on a frustrated triangle lattice with an extra pairing term.Furthermore,we find a quantum phase transition between two different density ordered superfluids,which is beyond the Landau–Ginzburg(LG)paradigm.A U(1)symmetry is emergent at the critical point,while the symmetry in each density ordered superfluid is Z_(2)×Z_(3).We call the transition a‘shamrock transition’,due to its degenerate ground state in the parameter space being a shamrock-like curve rather than a circle in an LG-type transition.Effective low energy theories are established for the two transitions mentioned above and we find their resemblance and differences with clock models.展开更多
Electrochemical NO_(2)~--to-NH_(3) conversion(NO_(2)RR) offers a green route to NH_(3) electrosynthesis, while developing efficient NO_(2)RR catalysis systems at high current densities remains a grand challenge. Herei...Electrochemical NO_(2)~--to-NH_(3) conversion(NO_(2)RR) offers a green route to NH_(3) electrosynthesis, while developing efficient NO_(2)RR catalysis systems at high current densities remains a grand challenge. Herein, we report an efficient Zr-NiO catalyst with atomically dispersed Zr-dopants incorporated in NiO lattice, delivering the exceptional NO_(2)RR performance with industriallevel current density(>0.2 A cm^(-2)). In situ spectroscopic measurements and theoretical simulations reveal the construction of ZrNi frustrated Lewis acid-base pairs(FLPs) on Zr-Ni O, which can substantially increase the number of absorbed nitrite(NO_(2)~-),promote the activation and protonation of NO_(2)~- and concurrently hamper the H coverage, boosting the activity and selectivity of Zr-NiO towards the NO_(2)RR. Remarkably, Zr-NiO exhibits the exceptional performance in a flow cell with high Faradaic efficiency for NH_(3) of 94.0% and NH_(3)yield rate of 1,394.1 μmol h^(-1)cm^(-2) at an industrial-level current density of 228.2 m A cm^(-2),placing it among the best NO_(2)RR electrocatalysts for NH_(3) production.展开更多
The superconducting state typically favors a uniform spatial distribution akin to ferromagnetism.Nevertheless,the pair-densitywave state exhibits sign changes in the pairing order,leading to potential frustrations in ...The superconducting state typically favors a uniform spatial distribution akin to ferromagnetism.Nevertheless,the pair-densitywave state exhibits sign changes in the pairing order,leading to potential frustrations in phase coherence.We propose a mechanism to the sextetting order stemming from the frustrations in the phase coherence of a pair-density-wave state,whose spatial modulation manifests a vortex-antivortex honeycomb lattice.The classical ground state configurations are mapped to Baxter's three-coloring model,revealing a macroscopic degeneracy accompanied by extensive entropy.The phase coherence problem intertwines the U(1)phases and the vorticity variables.While the resultant color and phase fluctuations suppress the pair-densitywave order,they maintain the sextetting order above the superconducting transition temperature(T_(c)).The 1/3-fractional vortex emerges as the fundamental topological defect in the sextetting order.This novel mechanism of frustrated superconductivity provides an alternative explanation for the experimental observed fractional oscillations in CsV_(3)Sb_(5).展开更多
文摘Carboxylation of aromatics by CO2 to generate corresponding carboxylic acids is recently providing a novel approach to utilize the green gas CO2, in which the activation of CO2 is the key procedure. Among the many catalytic systems employed in the carboxylation, the concept of “Frustrated Lewis Pairs” (FLPs) was scarcely mentioned, which perform excellently in activating small molecules like CO2. The FLPs are combinations of Lewis acids and Lewis bases which failed to form adducts due to their bulky steric congestion. In this paper, we first attempted various Si/Al Based FLPs to catalyze the carboxylation of aromatics through the activation of CO2, and a good yield of 62% - 97% was obtained. The reaction mechanism was proposed, involving the activation of CO2 mainly contributed by AlCl3 in cooperation with organosilane, forming an intermediate consisting of CO2, AlCl3, and R4Si, as well as the subsequent electrophilic attack to aromatics, thus to promote the carboxylation reaction.
基金supported by the National Key Research and Development Program of China(2017YFA0204600)National Natural Science Foundation of China(NSFC 21701001,51625102)+1 种基金Anhui Provincial Natural Science Foundation(1708085QB42)China Postdoctoral Science Foundation(2018M632013)
文摘Boron-nitrogen-hydrogen compounds have been investigated and developed very fast in last decades caused by its excellent hydrogen-storage performances. The bottleneck problem hindering its application is the irreversibility after its dehydrogenation. However, the traditional B-N(or B-P) bond can be hindered by connecting with large steric hindrances, which results in the possible reversible hydrogenationdehydrogenation properties. In this research, we analyse the structural characters based on the experiments to obtain the required electronic structure properties for realizing the reversibility of FLPs in the hydrogenation(or dehydrogenation).
文摘Direct syngas conversion to light olefins on bifunctional oxide-zeolite(OX-ZEO)catalysts is of great interest to both academia and industry,but the role of oxygen vacancy(Vo)in metal oxides and whether the key intermediate in the reaction mechanism is ketene or methanol are still not well-understood.To address these two issues,we carry out a theoretical study of the syngas conversion on the typical reducible metal oxide,CeO2,using density functional theory calculations.Our results demonstrate that by forming frustrated Lewis pairs(FLPs),the VOs in CeO2 play a key role in the activation of H2 and CO.The activation of H2 on FLPs undergoes a heterolytic dissociative pathway with a tiny barrier of 0.01 eV,while CO is activated on FLPs by combining with the basic site(O atom)of FLPs to form CO2^2-.Four pathways for the conversion of syngas were explored on FLPs,two of which are prone to form ketene and the other two are inclined to produce methanol suggesting a compromise to resolve the debate about the key intermediates(ketene or methanol)in the experiments.Rate constant calculations showed that the route initiating with the coupling of two CO*into OCCO*and ending with the formation of ketene is the dominant pathway,with the neighboring FLPs playing an important role in this pathway.Overall,our study reveals the function of the surface FLPs in the activation of H2 and CO and the reaction mechanism for the production of ketene and methanol for the first time,providing novel insights into syngas conversion over OX-ZEO catalysts.
文摘Typically, a Lewis acid and a Lewis base can react with each other and form a classical Lewis adduct. The neutralization reaction can however be prevented by ligating the acid and base with bulky substituents and the resulting complex is known as a "frustrated Lewis pair"(FLP). Since the Lewis acid and base reactivity remains in the formed complex, FLPs can display interesting chemical activities, with promising applications in catalysis. For example, FLPs were shown to function as the first metal-free catalyst for molecular hydrogen activation. This, and other recent applications of FLPs, have opened a new thriving research field. In this short-review, we recapitulate the computational and experimental studies of the H_2 activation by FLPs. We discuss the thus-far uncovered mechanistic aspects, including pre-organization of FLPs,the reaction paths for the activation, the polarization of He H bond and other factors affecting the reactivity. We aim to provide a rather complete mechanistic picture of the H_2 activation by FLPs, which has been under debate for decades since the first discovery of FLPs. This review is meant as a starting point for future studies and a guideline for industrial applications.
基金Project supported by the National Natural Science Foundation of China(Grant No.11604121)the Scientific Research Fund of Hunan Provincial Education Department,China(Grant Nos.16B210 and 16A170)the Natural Science Fund Project of Jishou University,China(Grant No.jdx17036)
文摘The modulational instability, quantum breathers and two-breathers in a frustrated easy-axis ferromagnetic zig-zag chain under an external magnetic field are investigated within the Hartree approximation. By means of a linear stability analysis, we analytically study the discrete modulational instability and analyze the effect of the frustration strength on the discrete modulational instability region. Using the results from the discrete modulational instability analysis, the presence conditions of those stationary bright type localized solutions are presented. On the other hand, we obtain the analytical expressions for the stationary bright localized solutions and analyze the effect of the frustration on their emergence conditions. By taking advantage of these bright type single-magnon bound wave functions obtained, quantum breather states in the present frustrated ferromagnetic zig-zag lattice are constructed. What is more, the analytical forms for quantum two-breather states are also obtained. In particular, the energy level formulas of quantum breathers and two-breathers are derived.
基金Project supported by the National Natural Science Foundation of China(Grant No.11804137)the Natural Science Foundation of Shandong Province,China(Grant Nos.ZR2020YQ03 and ZR2018BA026).
文摘A new frustrated triangular lattice antiferromagnet Na_(2)BaNi(PO_(4))_(2) was synthesized by high temperature flux method.The two-dimensional triangular lattice is formed by the Ni^(2+)ions with S=1.Its magnetism is highly anisotropic with the Weiss constants θCW=6.615 K(H||c)and43.979 K(H⊥c).However,no magnetic ordering is present down to 0.3 K,reflecting strong geometric spin frustration.Our heat capacity measurements show substantial residual magnetic entropy existing below 0.3 K at zero field,implying the presence of low energy spin excitations.These results indicate that Na_(2)BaNi(PO_(4))_(2) is a potential spin liquid candidate with spin-1.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11934020 and 11874421)the Natural Science Foundation of Beijing(Grant No.Z180013)。
文摘Restricted Boltzmann machine(RBM)has been proposed as a powerful variational ansatz to represent the ground state of a given quantum many-body system.On the other hand,as a shallow neural network,it is found that the RBM is still hardly able to capture the characteristics of systems with large sizes or complicated interactions.In order to find a way out of the dilemma,here,we propose to adopt the Green's function Monte Carlo(GFMC)method for which the RBM is used as a guiding wave function.To demonstrate the implementation and effectiveness of the proposal,we have applied the proposal to study the frustrated J_(1)-J_(2)Heisenberg model on a square lattice,which is considered as a typical model with sign problem for quantum Monte Carlo simulations.The calculation results demonstrate that the GFMC method can significantly further reduce the relative error of the ground-state energy on the basis of the RBM variational results.This encourages to combine the GFMC method with other neural networks like convolutional neural networks for dealing with more models with sign problem in the future.
基金Supported by the National Basic Research Program of China under Grant No 2011CBA00111the National Natural Science Foundation of China under Grant No U1332143
文摘The effect of an external magnetic field on the structural and magnetic properties of bond frustrated ZnCr2 Se4 at low temperatures is investigated using magnetization, dielectric constants and thermal conductivity experiments. With an increase in the magnetic field H, the antiferromagnetic transition temperature TN is observed to shift progressively toward lower temperatures. The corresponding high temperature cubic (Fd3m) to low temperature tetragonal (I41amd) structural transition is tuned simultaneously due to the inherent strong spin-lattice coupling. In the antiferromagnetic phase, an anomaly at Hc2 defined as a steep downward peak in the derivative of the M-H curve is dearly drawn. It is found that TN versus H and Hc2 versus T exhibit a consistent tendency, indicative of a field-induced tetragonal (I41amd) to cubic (Fd3m) structural transition. The transition is further substantiated by the field-dependent dielectric constant and thermal conductivity measurements. We modify the T-H phase diagram, highlighting the coexistence of the paramagnetic state and ferromagnetic clusters between 100K and TN.
基金Supported by the Chinese National Science Foundation of China under Grant Nos.10874003,11074004,and 11047160Numerical Computation of This Work was Carried out on the Parallel Computer Cluster of Institute for Condensed Matter Physics(ICMP) at School of Physics,Peking University
文摘In this paper, we study the phase diagram of a frustrated spin ladder model by applying the bosonization technique and the density-matrix renormalization-group (DMRG) algorithm. Effect of the intra-ehain next-nearest- neighbor (NNN) super-exchange interaction is investigated in detail and the order parameters are calculated to detect the emergence of the dimerized phases. We find that the intra-chain NNN interaction plays a key role in inducing dimerized phases.
基金Project supported by the Grant-in-Aid for Scientific Research from the Japanese Society for the Promotion of Science (Grant No.Kiban-B 19340100)the Grant-in-Aid for Scientific Research on Priority Areas from the Ministry of Education,Culture,Sports,Science and Technology,Japan (Grant No.Tokutei 22014008)
文摘Mid-infrared absorption and Raman spectra of the geometrically frustrated material series, hydroxyl cobalt halides β-CO2(OH)3Cl and β-CO2(OH)3Br, are first, to the best of our knowledge, measured at room temperature, to study the corresponding relationship between their vibrational spectral properties and crystal microstructures. Through the comparative analysis of the four spectra we have categorically assigned the OH-related vibration modes of hydroxyl groups in the trimeric hydrogen bond environment (Co3 =OH)3 … Cl/Br, and tentatively suggested vibration modes of O-Co-O, Co O and Cl/Br-Co-Cl/Br units. These results can also become the basis for analysing their low-temperature spectral properties, which can help to understand the underlying physics of their exotic geometric frustration phenomena around phase transition temperatures.
文摘Network has not only become a habit and lifestyle for university student, but also brought all sorts of ethical misconducts and ethical issues in society. Based on the analysis of college students' frustrations, this paper explores the causes of network behavior anomie for college students, which mainly include: dissatisfaction in real communication, game addiction to the network, craving online pornography, and hooking on online shopping. In addition, it also investigates the ways to wipe out mental frustration in such a cyber era. These ways mainly are to strenzthen online education and management, to make psychological counseling, and to carry on frustration education.
基金the National Key R&D Program of China(No.2021YFA1501700)the NSFC(Nos.22293014,22131002,22161142019,81821004)the New Cornerstone Science Foundation through the New Cornerstone Investigator Program and the XPLORERPRIZE for financial support.
文摘Frustrated Lewis Pairs(FLPs)represent a unique class of interactions in Lewis acid-base chemistry,driven by spatial hindrance or incongruent orbital energy levels that hinder the formation of effective coordination bonds.FLPs have received significant attention for their application in activating small molecules and facilitating organic synthesis reactions.Recent developments have led to the emergence of Frustrated Radical Pairs(FRPs)as an extension of the radical family.FRPs are formed from FLPs through Single Electron Transfer(SET)and exhibit the ability to activate a variety of chemical bonds.While research on FLPs is well-established,investigations into FRPs in organic reactions remain limited.This review highlights the current state of FRPs in organic synthesis,delves into mechanistic insights,explores their potential,and underscores the challenges in this emerging field.
基金the financial support from the National Natural Science Foundation of China(21825108 and 22331011).
文摘Comprehensive Summary,The asymmetric partial reduction of 1,3-diketones stands as a straightforward pathway to access optically active β-hydroxyketones. In this paper, an asymmetric Piers-type hydrosilylation of 2,2-difluoro-1,3-diketones was successfully realized by using a frustrated Lewis pair of chiral borane and tricyclohexylphosphine as a catalyst, delivering a variety of α,α-difluoro-β-hydroxyketones in high yields with up to 99% ee. Significantly, no over-reduced diol products were observed even with an excess amount of silanes. The product can be conveniently converted to α,α-difluoro-β-hydroxyester or 1,3-anti-diol via an oxidation with m-CPBA or a reduction with DIBAL-H without obvious loss of ee.
基金the funding support from the National Natural Science Foundation of China(Nos.22202036 and 22302001)the Jilin Province Scientific,the Technological Planning Project of China(No.20230101292JC).
文摘In this study,a novel non-metallic carbon-based catalyst co-doped with boron and nitrogen(B,N)was successfully synthesized.By precisely controlling the carbonization temperature of a binary mixed ionic liquid,we selectively modified the doping site structure,ultimately constructing a B,N co-doped frustrated Lewis acid-base pair catalyst.This catalyst exhibited remarkable catalytic activity,selectivity,and stability in the dehydrochlorination reaction of 1,1,2-trichloroethane(TCE).Detailed characterization and theoretical calculations revealed that the primary active center of this catalyst was the BN_(3)configuration.Compared to conventional graphitic N structures,the BN_(3)structure had a higher p-band center,ensuring superior adsorption and activation capabilities for TCE during the reaction.Within the BN_(3)site,three negatively charged nitrogen atoms acted as Lewis bases,while positively charged boron atoms acted as Lewis acids.This synergistic interaction facilitated the specific dissociation of chlorine and hydrogen atoms from TCE,significantly enhancing the 1,1-dichloroethene selectivity.Through this research,we not only explored the active site structure and catalytic mechanism of B,N co-doped catalysts in depth but also provided an efficient,selective,and stable catalyst for the dehydrochlorination of TCE,contributing significantly to the development of non-metallic catalysts.
基金supported by the Beijing Natural Science Foundation(Z180013)(YC)National Natural Science Foundation of China(NSFC)under Grant No.12174358(YC)and No.11734010(YC and CW)MOST Grant No.2016YFA0301600(CW)。
文摘Density order is usually a consequence of the competition between long-range and short-range interactions.Here we report a density ordered superfluid emergent from a homogeneous Mott insulator due to the competition between frustrations and local interactions.This transition is found in a Bose–Hubbard model on a frustrated triangle lattice with an extra pairing term.Furthermore,we find a quantum phase transition between two different density ordered superfluids,which is beyond the Landau–Ginzburg(LG)paradigm.A U(1)symmetry is emergent at the critical point,while the symmetry in each density ordered superfluid is Z_(2)×Z_(3).We call the transition a‘shamrock transition’,due to its degenerate ground state in the parameter space being a shamrock-like curve rather than a circle in an LG-type transition.Effective low energy theories are established for the two transitions mentioned above and we find their resemblance and differences with clock models.
基金supported by the National Natural Science Foundation of China (52161025)the Natural Science Foundation of Gansu Province (20JR10RA241)。
文摘Electrochemical NO_(2)~--to-NH_(3) conversion(NO_(2)RR) offers a green route to NH_(3) electrosynthesis, while developing efficient NO_(2)RR catalysis systems at high current densities remains a grand challenge. Herein, we report an efficient Zr-NiO catalyst with atomically dispersed Zr-dopants incorporated in NiO lattice, delivering the exceptional NO_(2)RR performance with industriallevel current density(>0.2 A cm^(-2)). In situ spectroscopic measurements and theoretical simulations reveal the construction of ZrNi frustrated Lewis acid-base pairs(FLPs) on Zr-Ni O, which can substantially increase the number of absorbed nitrite(NO_(2)~-),promote the activation and protonation of NO_(2)~- and concurrently hamper the H coverage, boosting the activity and selectivity of Zr-NiO towards the NO_(2)RR. Remarkably, Zr-NiO exhibits the exceptional performance in a flow cell with high Faradaic efficiency for NH_(3) of 94.0% and NH_(3)yield rate of 1,394.1 μmol h^(-1)cm^(-2) at an industrial-level current density of 228.2 m A cm^(-2),placing it among the best NO_(2)RR electrocatalysts for NH_(3) production.
基金supported by the National Natural Science Foundation of China(Grant Nos.12234016 and 12174317)supported by the National Natural Science Foundation of China(Grant No.12074031)+1 种基金supported by the National Natural Science Foundation of China(Grant No.12304180)supported by the New Cornerstone Science Foundation。
文摘The superconducting state typically favors a uniform spatial distribution akin to ferromagnetism.Nevertheless,the pair-densitywave state exhibits sign changes in the pairing order,leading to potential frustrations in phase coherence.We propose a mechanism to the sextetting order stemming from the frustrations in the phase coherence of a pair-density-wave state,whose spatial modulation manifests a vortex-antivortex honeycomb lattice.The classical ground state configurations are mapped to Baxter's three-coloring model,revealing a macroscopic degeneracy accompanied by extensive entropy.The phase coherence problem intertwines the U(1)phases and the vorticity variables.While the resultant color and phase fluctuations suppress the pair-densitywave order,they maintain the sextetting order above the superconducting transition temperature(T_(c)).The 1/3-fractional vortex emerges as the fundamental topological defect in the sextetting order.This novel mechanism of frustrated superconductivity provides an alternative explanation for the experimental observed fractional oscillations in CsV_(3)Sb_(5).