期刊文献+
共找到168篇文章
< 1 2 9 >
每页显示 20 50 100
Image Denoising Using Dual Convolutional Neural Network with Skip Connection
1
作者 Mengnan Lü Xianchun Zhou +2 位作者 Zhiting Du Yuze Chen Binxin Tang 《Instrumentation》 2024年第3期74-85,共12页
In recent years, deep convolutional neural networks have shown superior performance in image denoising. However, deep network structures often come with a large number of model parameters, leading to high training cos... In recent years, deep convolutional neural networks have shown superior performance in image denoising. However, deep network structures often come with a large number of model parameters, leading to high training costs and long inference times, limiting their practical application in denoising tasks. This paper proposes a new dual convolutional denoising network with skip connections(DECDNet), which achieves an ideal balance between denoising effect and network complexity. The proposed DECDNet consists of a noise estimation network, a multi-scale feature extraction network, a dual convolutional neural network, and dual attention mechanisms. The noise estimation network is used to estimate the noise level map, and the multi-scale feature extraction network is combined to improve the model's flexibility in obtaining image features. The dual convolutional neural network branch design includes convolution and dilated convolution interactive connections, with the lower branch consisting of dilated convolution layers, and both branches using skip connections. Experiments show that compared with other models, the proposed DECDNet achieves superior PSNR and SSIM values at all compared noise levels, especially at higher noise levels, showing robustness to images with higher noise levels. It also demonstrates better visual effects, maintaining a balance between denoising and detail preservation. 展开更多
关键词 image denoising convolutional neural network skip connections multi-scale feature extraction network noise estimation network
下载PDF
Skip-cycleGAN:一种果园苹果异源图像配准模型 被引量:1
2
作者 何亚鹏 刘立群 《计算机技术与发展》 2024年第7期40-47,共8页
针对有监督的配准模型的性能受限于给定的标签以及循环一致性生成对抗网络训练不稳定,收敛速度较慢,易过拟合,对复杂场景的图像处理效果不佳的问题,基于循环一致性生成对抗网络从3个方面(生成器、鉴别器和损失函数)进行改进,提出一种无... 针对有监督的配准模型的性能受限于给定的标签以及循环一致性生成对抗网络训练不稳定,收敛速度较慢,易过拟合,对复杂场景的图像处理效果不佳的问题,基于循环一致性生成对抗网络从3个方面(生成器、鉴别器和损失函数)进行改进,提出一种无监督的异源图像配准模型。生成网络的下采样与上采样之间引入带有特征转换残差层的跳跃连接,可以确保梯度的有效传递,减少前向与反向传播过程中信息损失,实现低级特征和高级特征的结合,从而缓解梯度消失和梯度爆炸,促进神经网络的收敛,有助于网络学习更多的上下文信息。在一个自建果园苹果数据集和两个公共数据集上对模型进行评估,实验得出在改进后的生成器基础上,对于形变比较大的数据集选取70×70 PatchGAN鉴别器更合适,对于形变比较小的数据集选取PixelGAN鉴别器更合适。与8个经典算法进行对比,用6个性能指标进行评估,实验结果表明该模型在异源果园苹果数据集上的综合表现优于对比算法。未来将提升模型对异源图像亮度和对比度的鲁棒性,并进行轻量化模型的工作。 展开更多
关键词 图像配准 异源图像 生成对抗网络 跳跃连接 岭回归损失
下载PDF
STRENGTH DESIGN OF PREMIUM THREADED CASING CONNECTION
3
作者 GaoLianxin JinYe ZhangYi 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2004年第1期110-113,共4页
Using premium casing connections instead of API ones is one of the mosteffective technique to prevent casing failure. The factors contribute to the strength of premiumcasing connections are studied with FEA and full-s... Using premium casing connections instead of API ones is one of the mosteffective technique to prevent casing failure. The factors contribute to the strength of premiumcasing connections are studied with FEA and full-scale test. The criterions are presented thatensure the connection's strength higher than the pipe. At the same time, the method is given todecrease the peak stress of the connection so as to improve its anticorruption property. At last,full-scale tests are done to test the strength of the connections designed with the methoddescribed, the results show that the connection's strength is higher than the pipe. This indicatedthat the method described is effective in designing premium casing connection. 展开更多
关键词 Casing connection Premium thread connecting strength Finite elementmethod full-scale test
下载PDF
基于UNet3+生成对抗网络的视频异常检测 被引量:1
4
作者 陈景霞 林文涛 +1 位作者 龙旻翔 张鹏伟 《计算机工程与设计》 北大核心 2024年第3期777-784,共8页
为解决传统视频异常检测方法在不同场景下多尺度特征提取不完全的问题,提出两种方法:一种是用于简单场景的基于UNet3+的生成对抗网络方法(简称U3P^(2)),另一种是用于复杂场景的基于UNet++的生成对抗网络方法(简称UP^(3))。两种方法分别... 为解决传统视频异常检测方法在不同场景下多尺度特征提取不完全的问题,提出两种方法:一种是用于简单场景的基于UNet3+的生成对抗网络方法(简称U3P^(2)),另一种是用于复杂场景的基于UNet++的生成对抗网络方法(简称UP^(3))。两种方法分别对连续输入的视频帧生成预测,引入多种损失函数和光流模型学习其外观与运动信息,通过计算AUC进行性能评估。U3P^(2)方法以6.3 M参数量在Ped2数据集的AUC提升约0.6%,而UP^(3)方法在Avenue数据集的AUC提升约0.8%,验证其能够有效应对不同场景下的异常检测任务。 展开更多
关键词 生成对抗网络 视频异常检测 U型卷积网络 全尺度跳跃连接 密集跳跃连接 光流模型 多尺度特征提取
下载PDF
加入跳跃连接的深度嵌入K-means聚类 被引量:2
5
作者 李顺勇 胥瑞 李师毅 《计算机系统应用》 2024年第1期11-21,共11页
现有的深度聚类算法大多采用对称的自编码器来提取高维数据的低维特征,但随着自编码器训练次数的不断增加,数据的低维特征空间在一定程度上发生了扭曲,这样得到的数据低维特征空间无法反映原始数据空间中潜在的聚类结构信息.为了解决上... 现有的深度聚类算法大多采用对称的自编码器来提取高维数据的低维特征,但随着自编码器训练次数的不断增加,数据的低维特征空间在一定程度上发生了扭曲,这样得到的数据低维特征空间无法反映原始数据空间中潜在的聚类结构信息.为了解决上述问题,本文提出了一种新的深度嵌入K-means算法(SDEKC).首先,在低维特征提取阶段,在对称的卷积自编码器中相对应的编码器与解码器之间以一定的权重加入两个跳跃连接,以减弱解码器对编码器的编码要求同时突出卷积自编码器的编码能力,这样可以更好地保留原始数据空间中蕴含的聚类结构信息;其次,在聚类阶段,通过一个标准正交变换矩阵将低维数据空间转换为一个新的揭示聚类结构信息的空间;最后,本文以端到端的方式采用贪婪算法迭代优化数据的低维表示及其聚类,在6个真实数据集上验证了本文提出新算法的有效性. 展开更多
关键词 跳跃连接 深度学习 卷积自编码器 嵌入K-means
下载PDF
融合编码器多尺度特征的RGB-D图像语义分割
6
作者 杨晓文 靳瑜昕 +2 位作者 韩慧妍 况立群 《计算机仿真》 2024年第9期205-212,227,共9页
针对语义分割任务中,室内场景中目标物体尺寸变化较大的问题,在ACFNet的基础上,提出融合编码器多尺度特征的RGB-D语义分割网络。首先,为有效利用网络提取的多尺度特征,提出结合池化操作的多尺度特征融合模块(PMFM),选择编码器不同阶段RG... 针对语义分割任务中,室内场景中目标物体尺寸变化较大的问题,在ACFNet的基础上,提出融合编码器多尺度特征的RGB-D语义分割网络。首先,为有效利用网络提取的多尺度特征,提出结合池化操作的多尺度特征融合模块(PMFM),选择编码器不同阶段RGB和深度特征的融合特征作为该模块的输入;其次,设计改进的跳跃连接模块(ISCM),使用下一层级包含更多语义信息的特征图辅助修正当前层级的特征图,再经跳跃连接以拼接的方式传输到解码器对应阶段。将提出的网络模型应用到NYUD V2和SUN RGB-D数据集上,平均交并比分别达到了52.6%和48.8%。通过这两项改进,实验结果表明,上述方法达到了较高的分割准确率,优于对比的语义分割方法。 展开更多
关键词 语义分割 多尺度特征 跳跃连接 深度学习
下载PDF
金字塔渐进融合低照度图像增强网络
7
作者 余映 徐超越 +2 位作者 李淼 何鹏浩 杨昊 《国防科技大学学报》 EI CAS CSCD 北大核心 2024年第2期224-237,共14页
针对现有低照度图像增强网络对不同尺度特征信息存在感知与表达能力不足的问题,提出金字塔渐进融合低照度图像增强网络模型。网络对图像进行多次下采样操作以组成特征金字塔,通过在特征金字塔的三个不同分支上加入跳跃连接,将不同尺度... 针对现有低照度图像增强网络对不同尺度特征信息存在感知与表达能力不足的问题,提出金字塔渐进融合低照度图像增强网络模型。网络对图像进行多次下采样操作以组成特征金字塔,通过在特征金字塔的三个不同分支上加入跳跃连接,将不同尺度的特征图进行相互融合。通过精细恢复模块进一步提取精炼信息,将特征图恢复到正常的光照图像。结果表明,该网络模型不但能有效地提升低照度图像的整体亮度,而且能很好地保持图像中的细节信息和清晰的物体边缘轮廓,同时能够有效地抑制图像中的暗部噪声,使增强后的图像整体画面真实自然。 展开更多
关键词 低照度图像增强 深度学习 特征金字塔 多尺度特征 跳跃连接
下载PDF
基于条件生成对抗网络的大视角单图像人脸纹理重建
8
作者 孙进 周威 谢文涛 《智能计算机与应用》 2024年第3期159-162,共4页
针对当前的人脸重建方法、尤其是纹理重建部分,应用于自遮挡或物体遮挡区域表现不佳,使得人脸纹理重建后的结果不真实的问题,本文提出了基于条件生成对抗网络的大视角单图像人脸纹理重建的方法,实现人脸图像的纹理补全。补全网络基于改... 针对当前的人脸重建方法、尤其是纹理重建部分,应用于自遮挡或物体遮挡区域表现不佳,使得人脸纹理重建后的结果不真实的问题,本文提出了基于条件生成对抗网络的大视角单图像人脸纹理重建的方法,实现人脸图像的纹理补全。补全网络基于改进的条件生成对抗网络,包括编码器和解码器的粗层之间的跳跃连接来保存高频细节;每个卷积层的输出上叠加了高斯噪声映射;将U-V纹理映射与其翻转版本共同连接输入的方法来提高纹理重建的质量以及真实性。使用Multi-PIE数据集与CFP数据集进行评估,整体网络能够实现更高的纹理重建精度,尤其在±90°图像重建上,能获得更为完整的纹理图像。 展开更多
关键词 纹理补全 单图像 大视角 生成对抗网络 跳跃连接
下载PDF
一种基于多跳注意残差网络的调制识别算法
9
作者 侯艳丽 刘春晓 《电子信息对抗技术》 2024年第3期27-34,共8页
为了进一步提升通信信号调制识别的准确率,在ResNet网络的基础上提出一种基于多跳注意残差网络(Multi-skip Attention Residual Network,MARN)的调制识别方法。该方法利用提取不同特征的卷积核进行多跳连接构建3种残差块,进而构建多跳... 为了进一步提升通信信号调制识别的准确率,在ResNet网络的基础上提出一种基于多跳注意残差网络(Multi-skip Attention Residual Network,MARN)的调制识别方法。该方法利用提取不同特征的卷积核进行多跳连接构建3种残差块,进而构建多跳残差网络,提取信号的时域特征;加入CBAM(Convolutional Block Attention Module)注意力机制自适应地调整通道权重,加强信号特征的表征能力;采用自适配归一化(Switchable Normalization,SN)加速网络收敛;加入丢弃率为0.3的AlphaDropout层,提高算法的拟合能力,最终实现对通信信号端到端的分类识别。在RadioML2018.01a数据集上仿真实验,结果表明在信噪比为-10~15 dB下,MARN网络平均识别率达到63.3%,较ResNet网络的平均识别率提升3.7%。 展开更多
关键词 调制识别 多跳连接 残差网络 注意力机制 自适配归一化
下载PDF
改进的UNet3+网络高分辨率遥感影像道路提取 被引量:2
10
作者 周家厚 普运伟 +3 位作者 陈如俊 邓云龙 周鑫城 李俊 《激光杂志》 CAS 北大核心 2024年第2期161-168,共8页
为解决UNet3+网络随深度加深出现大量融合冗余操作以至于模型训练时间过长而导致在道路提取中运用较少的问题,对UNet3+网络进行改进,通过删减UNet3+的网络层级使用Bottleneck模块替换原有网络中的卷积层,保留网络特征融合能力的同时降... 为解决UNet3+网络随深度加深出现大量融合冗余操作以至于模型训练时间过长而导致在道路提取中运用较少的问题,对UNet3+网络进行改进,通过删减UNet3+的网络层级使用Bottleneck模块替换原有网络中的卷积层,保留网络特征融合能力的同时降低网络复杂度,并引入混合注意力机制优化模型,构建了一个新的网络模型。将改进方法与几种典型的道路提取模型做对比。实验结果表明:(1)所提方法相较于Unet3+网络在、Recall、IOU、ACC四个指标上分别提升了4.72%、2.46%、4.84%、2.01%,均优于对比算法;(2)对比几个经典的特征提取模型,改进的模型具有更好的识别效果,在道路提取的精度、连接性、完整性等方面均表现出优越性。 展开更多
关键词 深度学习 注意力机制 UNet3+ 道路提取 跳跃连接
下载PDF
基于TransUNet的甲状腺结节超声图像精准分割方法 被引量:2
11
作者 陈格 李翔 《北京生物医学工程》 2024年第2期165-170,共6页
目的甲状腺结节的精准分割在医学影像处理中具有重要意义,然而,超声图像中的结节通常具有尺寸多变和边缘模糊的特点,这为其准确分割带来了挑战。为有效应对这一挑战,本文提出了一种结合卷积神经网络(convolutional neural network,CNN)... 目的甲状腺结节的精准分割在医学影像处理中具有重要意义,然而,超声图像中的结节通常具有尺寸多变和边缘模糊的特点,这为其准确分割带来了挑战。为有效应对这一挑战,本文提出了一种结合卷积神经网络(convolutional neural network,CNN)和Transformer的分割网络,命名为TransUNet,旨在实现对甲状腺结节超声图像的精准分割。方法首先,使用卷积神经网络对超声图像进行编码,以生成特征图。接着,将特征图转换为序列向量,并利用Transformer的编码机制来捕捉上下文信息。此外,为保持局部细节特征的完整性,研究组还引入了跳跃连接,将其用于在解码器中对编码特征进行上采样,这对于处理边缘模糊等问题尤为重要。结果通过在甲状腺结节图像分割任务中进行广泛的实验,验证TransUNet的有效性。具体而言,骰子系数(dice coefficient,DICE)为0.75,交并比(intersection over union,IoU)为0.60,F1分数(F1 Score)为0.72,准确率高达0.93,AUC(area under the ROC curve)为0.91。这些性能指标反映了该方法在处理尺寸多变和边缘模糊等挑战方面的出色表现。结论本文提出的TransUNet为甲状腺结节超声图像分割任务带来了显著的性能提升。相较于传统的U-Net方法,TransUNet不仅更好地处理了尺寸多变和边缘模糊等挑战,而且在分割性能上具有更为出色的表现,为医学图像处理领域的进一步研究和临床应用提供了有力支持。 展开更多
关键词 甲状腺结节 超声图像分割 深度学习 全局自注意力 跳跃连接
下载PDF
融合混合注意力的自编码器视频异常检测 被引量:1
12
作者 郑重 杨晓文 +3 位作者 谢剑斌 欧阳楠楠 忽欣谕 王晋涛 《计算机工程与设计》 北大核心 2024年第2期516-523,共8页
为提高视频异常检测的准确率,提出一种融合混合注意力的自编码器视频异常检测算法。针对自编码器网络强大的“泛化”能力可能重构异常行为问题,提出一种混合注意力模块(CSCFAM)并将其融合至编码器和解码器之间的跳跃连接层以限制异常行... 为提高视频异常检测的准确率,提出一种融合混合注意力的自编码器视频异常检测算法。针对自编码器网络强大的“泛化”能力可能重构异常行为问题,提出一种混合注意力模块(CSCFAM)并将其融合至编码器和解码器之间的跳跃连接层以限制异常行为的生成。为考虑正常样本的多样性,在编码器和解码器之间的瓶颈处引入存储记忆模块(Memory),记录正常样本潜在特征的原型模式。实验结果表明,该算法在UCSD Ped2、CUHK Avenue数据集上帧级AUC分别达到97.3%、87.0%,与当前先进的视频异常检测算法相比,异常检测能力得到有效提升。 展开更多
关键词 视频异常检测 自编码器 跳跃连接 混合注意力模块 存储记忆模块 异常行为 原型模式
下载PDF
联合图随机游走和跳跃连接的动态超图神经网络
13
作者 牛雪琼 农丽萍 +2 位作者 梁海 王俊义 林基明 《计算机应用与软件》 北大核心 2024年第3期182-187,共6页
针对传统超图神经网络难以提取节点直接邻域外关联度高的节点特征,导致全局特征信息不完整的问题,对动态超图神经网络(DHGNN)进行改进,提出联合图随机游走和跳跃连接的动态超图神经网络(RWS-DHGNN),用于非欧几里得数据的分类。该网络在D... 针对传统超图神经网络难以提取节点直接邻域外关联度高的节点特征,导致全局特征信息不完整的问题,对动态超图神经网络(DHGNN)进行改进,提出联合图随机游走和跳跃连接的动态超图神经网络(RWS-DHGNN),用于非欧几里得数据的分类。该网络在DHGNN的基础上,引入了图随机游走,从而有效地获取直接邻域外关联度高的节点特征。同时,引入残差网络的思想在超图的顶点卷积处增加跳跃连接构成残差结构。所提网络模型充分发挥图结构和超图结构的优势。在Cora数据集的标准分割和随机分割上将所提网络与GCN、HGNN、GAT和DHGNN进行对比实验,实验结果表明,该模型可以有效提高分类准确率。 展开更多
关键词 超图神经网络 随机游走 跳跃连接 节点分类
下载PDF
DNAS-Net:一种用于肺炎分割的新型密集嵌套网状编码器
14
作者 刘庭江 周凯 +1 位作者 章毅 徐修远 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第6期49-58,共10页
自2019年新型冠状病毒肺炎迅速传播以来,肺炎的检测和治疗逐渐成为一个热门话题.基于深度学习的计算机辅助筛查作为提高肺炎筛查和临床诊断准确性的辅助手段,受到了广泛关注.然而,由于医学图像中病变的形状、大小和位置存在显著差异,传... 自2019年新型冠状病毒肺炎迅速传播以来,肺炎的检测和治疗逐渐成为一个热门话题.基于深度学习的计算机辅助筛查作为提高肺炎筛查和临床诊断准确性的辅助手段,受到了广泛关注.然而,由于医学图像中病变的形状、大小和位置存在显著差异,传统的深度学习方法在有限的医学图像数据集上表现不佳.我们提出了一种新的密集嵌套网状肺炎分割模型(Dense Nested Anastomosing Segmentation Network,DNAS-Net),它是一种从CT图像中分割肺炎区域的有效模型.首先,该模型使用注意层次空间金字塔模块(Attentive Hierarchical Spatial Pyramid Module,AHSP)和注意可分离特征金字塔模块(Attentive Separable Feature Pyramid Module,ASFP)建立了一种用于深度特征提取的密集嵌套网状编码器.其次,在跳跃连接中,模型不再只连接来自对应阶段的编码器和解码器,而是使用密集跳跃特征融合模块(Dense Skip Feature Fusion Module,DSFF)来弥合低级和高级特征之间的语义差距,以促进语义分割.大量实验表明,提出的DNAS-Net具有更好的分割准确性. 展开更多
关键词 深度学习 图像分割 肺炎 多尺度 跳跃连接
下载PDF
基于多路混合注意力机制的水下图像增强网络 被引量:3
15
作者 李云 孙山林 +1 位作者 黄晴 井佩光 《电子与信息学报》 EI CAS CSCD 北大核心 2024年第1期118-128,共11页
光线在水下被吸收或者散射使得水下图像成像出现色偏、模糊遮挡等问题,影响水下视觉任务。传统的图像增强方法分别采用直方图均衡、伽马矫正和白平衡方法较好地增强水下图像。然而,3种方法融合增强水下图像的互补性和相关性方面的研究... 光线在水下被吸收或者散射使得水下图像成像出现色偏、模糊遮挡等问题,影响水下视觉任务。传统的图像增强方法分别采用直方图均衡、伽马矫正和白平衡方法较好地增强水下图像。然而,3种方法融合增强水下图像的互补性和相关性方面的研究较少。因此,该文提出一种基于多路混合注意力机制的水下图像增强网络。首先,提出多路特征提取模块,对图像进行直方图均衡支路、伽马矫正支路和白平衡支路的多路特征提取,提取图像的对比度、亮度和颜色特征;然后,融合直方图均衡、伽马矫正和白平衡3支路特征,增强3支路特征融合的互补性;最后,设计混合注意力学习模块,深度挖掘3支路在对比度、亮度和颜色的相关性矩阵,并引入跳跃连接增强图像输出。在多个数据集上的实验结果表明,该方法能够有效恢复水下图像色偏、模糊遮挡和提高图像明亮度。 展开更多
关键词 水下图像增强 深度学习 注意力机制 跳跃连接
下载PDF
一种基于自注意力机制的人脸图像补全算法
16
作者 杨博文 何衡湘 邓洪峰 《计算机应用与软件》 北大核心 2024年第8期266-270,318,共6页
针对目前深度学习的方法在大面积信息缺失的人脸图像进行补全应用中,补全结果出现纹理细节模糊、结构变形扭曲等问题,提出一种基于自注意力机制的图像补全算法。该算法将待补全的图像输入基于跳跃连接的粗生成网络,得到初步修复;将初步... 针对目前深度学习的方法在大面积信息缺失的人脸图像进行补全应用中,补全结果出现纹理细节模糊、结构变形扭曲等问题,提出一种基于自注意力机制的图像补全算法。该算法将待补全的图像输入基于跳跃连接的粗生成网络,得到初步修复;将初步结果输入自注意力感知分支和混合空洞卷积分支共同编码,再通过解码得到生成结果;由双判别器完成判别优化工作。通过人脸图像CelebA-HQ数据集进行实验与测试,所提方法的补全结果在客观和主观评价方面,优于deepfill和PLC两种算法。 展开更多
关键词 图像补全 生成对抗网络 跳跃连接 自注意力机制 混合空洞卷积
下载PDF
基于并行多尺度卷积记忆残差网络的物联网流量预测 被引量:4
17
作者 陆勤政 朱晓娟 《廊坊师范学院学报(自然科学版)》 2024年第1期33-41,共9页
针对现有物联网流量预测方法中特征提取不足、丢失重要信息、预测准确度不高的问题,提出了一种基于并行多尺度卷积记忆残差网络的物联网流量预测方法。首先,采用并行结构,CNN提取多尺度的局部特征得到包含有局部特征的序列,LSTM和BiLST... 针对现有物联网流量预测方法中特征提取不足、丢失重要信息、预测准确度不高的问题,提出了一种基于并行多尺度卷积记忆残差网络的物联网流量预测方法。首先,采用并行结构,CNN提取多尺度的局部特征得到包含有局部特征的序列,LSTM和BiLSTM分别提取前向的时间关系和前后向的时间关系得到有合适比例的前后向时间特征序列;其次,引入ResNet结构,在CNN、LSTM、BiLSTM的输入和输出之间加入跳跃连接,即通过跳跃连接在特征序列中加入原始序列信息;再次,在有原始信息的特征序列中分配可训练的权重参数,突出相应序列的重要性,进行拼接得到总的输出序列;最后,将总的输出序列输入到全连接网络中得到预测结果。实验结果表明,本方法在均方根误差(RMSE)、平均绝对误差(MAE)、拟合系数(R2)3项指标上要优于其他方法,能更准确地进行物联网流量的预测。 展开更多
关键词 物联网流量预测 卷积神经网络 长短时记忆网络 双向长短时记忆网络 跳跃连接
下载PDF
多尺度和边界融合的皮肤病变区域分割网络
18
作者 王国凯 张翔 王顺芳 《计算机科学与探索》 CSCD 北大核心 2024年第7期1826-1837,共12页
皮肤病变区域的准确分割是临床诊断分析的关键一步。针对现有网络在皮肤病变区域存在尺寸大小多变、形状不规则、边界模糊和病变区域被遮挡的情况导致的分割效果不佳问题,在U-Net的基础上改进了原有结构,提出了一种用于皮肤病变区域分... 皮肤病变区域的准确分割是临床诊断分析的关键一步。针对现有网络在皮肤病变区域存在尺寸大小多变、形状不规则、边界模糊和病变区域被遮挡的情况导致的分割效果不佳问题,在U-Net的基础上改进了原有结构,提出了一种用于皮肤病变区域分割的多尺度和边界融合网络(MSBF-Net)。首先,提出了分裂池化(SplitPool)模块,在缩小图像分辨率的同时有效地解决了空间信息丢失的问题。其次,提出了全尺度特征融合(FSFF)模块,有效地解决了以往方法仅将深层特征向浅层特征融合,而忽略了更浅层特征中的细节信息对网络分割决策的贡献问题。同时,重新设计了U-Net原有的跳跃连接,为解码器提供了更丰富的上下文信息。最后,提出了用于增强网络对边界特征学习能力的子路径,并引入边界融合(BF)模块将主路径和子路径的预测结果进行融合,有效地解决了病变区域形状不规则和边界模糊问题。在ISIC2018数据集上,Dice和JI分别达到了90.12%和83.61%,比基线网络分别提高了1.13个百分点和1.62个百分点;在PH2数据集上,Dice和JI分别达到了94.72%和90.18%,比基线网络分别提高了1.49个百分点和2.17个百分点。实验结果表明,MSBFNet显著提升了皮肤病变区域分割的精确度,并在多个指标上超过了现有的先进方法,进一步验证了方法的有效性。 展开更多
关键词 皮肤病变区域分割 跳跃连接 边界特征 特征融合 注意力机制
下载PDF
高频域多深度空洞网络的遥感图像全色锐化算法
19
作者 郭彭浩 邱建林 赵淑男 《自然资源遥感》 CSCD 北大核心 2024年第3期146-153,共8页
遥感图像全色锐化是提取多光谱图像的光谱信息和全色图像的结构信息,将其融合成高分辨率多光谱遥感图像的过程。然而,高分辨率多光谱图像会存在光谱或结构信息的缺失问题。为了优化这一问题,该文提出一种基于多深度神经网络的遥感图像... 遥感图像全色锐化是提取多光谱图像的光谱信息和全色图像的结构信息,将其融合成高分辨率多光谱遥感图像的过程。然而,高分辨率多光谱图像会存在光谱或结构信息的缺失问题。为了优化这一问题,该文提出一种基于多深度神经网络的遥感图像全色锐化算法,该算法有结构保护和光谱保护2个模块。结构保护模块使用滤波操作,提取全色图像和多光谱图像的高频信息,然后采用多深度神经网络提取图像的多尺度信息,从而提高模型的空间信息提取能力,减小过拟合的风险;光谱保护模块通过跳跃连接将上采样的多光谱图像与结构保护模块相连接,以保护图像的光谱信息。为了验证新模型的有效性,在相同实验条件下,将所提方法与多种遥感图像全色锐化算法进行比较,并从主观视觉效果和客观评价2个方面进行评估。实验结果表明,所提方法能够改善当前算法存在的结构信息缺失现象,更好地保护多光谱图像的光谱信息以及全色图像的结构信息。 展开更多
关键词 遥感图像全色锐化 多深度网络 多尺度学习 跳跃连接 空谱融合
下载PDF
分层特征编解码驱动的视觉引导立体声生成方法
20
作者 王睿琦 程皓楠 叶龙 《软件学报》 EI CSCD 北大核心 2024年第5期2165-2175,共11页
视觉引导的立体声生成是多模态学习中具有广泛应用价值的重要任务之一,其目标是在给定视觉模态信息及单声道音频模态信息的情况下,生成符合视听一致性的立体声音频.针对现有视觉引导的立体声生成方法因编码阶段视听信息利用率不足、解... 视觉引导的立体声生成是多模态学习中具有广泛应用价值的重要任务之一,其目标是在给定视觉模态信息及单声道音频模态信息的情况下,生成符合视听一致性的立体声音频.针对现有视觉引导的立体声生成方法因编码阶段视听信息利用率不足、解码阶段忽视浅层特征导致的立体声生成效果不理想的问题,提出一种基于分层特征编解码的视觉引导的立体声生成方法,有效提升立体声生成的质量.其中,为了有效地缩小阻碍视听觉模态数据间关联融合的异构鸿沟,提出一种视听觉特征分层编码融合的编码器结构,提高视听模态数据在编码阶段的综合利用效率;为了实现解码过程中浅层结构特征信息的有效利用,构建一种由深到浅不同深度特征层间跳跃连接的解码器结构,实现了对视听觉模态信息的浅层细节特征与深度特征的充分利用.得益于对视听觉信息的高效利用以及对深层浅层结构特征的分层结合,所提方法可有效处理复杂视觉场景中的立体声合成,相较于现有方法,所提方法生成效果在真实感等方面性能提升超过6%. 展开更多
关键词 立体声 视觉引导的声音生成 分层特征编解码 多模态学习 跳跃连接
下载PDF
上一页 1 2 9 下一页 到第
使用帮助 返回顶部