Functional brain networks (FBN) based on resting-state functional magnetic resonance imaging (rs-fMRI) have become an important tool for exploring underlying organization patterns in the brain, which can provide an ob...Functional brain networks (FBN) based on resting-state functional magnetic resonance imaging (rs-fMRI) have become an important tool for exploring underlying organization patterns in the brain, which can provide an objective basis for brain disorders such as autistic spectrum disorder (ASD). Due to its importance, researchers have proposed a number of FBN estimation methods. However, most existing methods only model a type of functional connection relationship between brain regions-of-interest (ROIs), such as partial correlation or full correlation, which is difficult to fully capture the subtle connections among ROIs since these connections are extremely complex. Motivated by the multi-view learning, in this study we propose a novel Consistent and Specific Multi-view FBNs Fusion (CSMF) approach. Concretely, we first construct multi-view FBNs (i.e., multiple types of FBNs modelling various relationships among ROIs), and then these FBNs are decomposed into a consistent representation matrix and their own specific matrices which capture their common and unique information, respectively. Lastly, to obtain a better brain representation, it is fusing the consistent and specific representation matrices in the latent representation spaces of FBNs, but not directly fusing the original FBNs. This potentially makes it more easily to find the comprehensively brain connections. The experimental results of ASD identification on the ABIDE datasets validate the effectiveness of our proposed method compared to several state-of-the-art methods. Our proposed CSMF method achieved 72.8% and 76.67% classification performance on the ABIDE dataset.展开更多
Functional brain network (FBN) measures based on functional magnetic resonance imaging (fMRI) data, has become important biomarkers for early diagnosis and prediction of clinical outcomes in neurological diseases, suc...Functional brain network (FBN) measures based on functional magnetic resonance imaging (fMRI) data, has become important biomarkers for early diagnosis and prediction of clinical outcomes in neurological diseases, such as Alzheimer’s diseases (AD) and its prodromal state (<em>i</em>.<em>e</em>., Mild cognitive impairment, MCI). In the past decades, researchers have developed numbers of approaches for FBN estimation, including Pearson’s correction (PC), sparse representation (SR), and so on. Despite their popularity and wide applications in current studies, most of the approaches for FBN estimation only consider the dependency between the measured blood oxygen level dependent (BOLD) time series, but ignore the spatial relationships between pairs of brain regions. In practice, the strength of functional connection between brain regions will decrease as their distance increases. Inspired by this, we proposed a new approach for FBN estimation based on the assumption that the closer brain regions tend to share stronger relationships or similarities. To verify the effectiveness of the proposed method, we conduct experiments on a public dataset to identify the patients with MCIs from health controls (HCs) using the estimated FBNs. Experimental results demonstrate that the proposed approach yields statistically significant improvement in seven performance metrics over using the baseline methods.展开更多
Functional brain networks (FBNs) provide a potential way for understanding the brain organizational patterns and diagnosing neurological diseases. Due to its importance, many FBN construction methods have been propose...Functional brain networks (FBNs) provide a potential way for understanding the brain organizational patterns and diagnosing neurological diseases. Due to its importance, many FBN construction methods have been proposed currently, including the low-order Pearson’s correlation (PC) and sparse representation (SR), as well as the high-order functional connection (HoFC). However, most existing methods usually ignore the information of topological structures of FBN, such as low-rank structure which can reduce the noise and improve modularity to enhance the stability of networks. In this paper, we propose a novel method for improving the estimated FBNs utilizing matrix factorization (MF). More specifically, we firstly construct FBNs based on three traditional methods, including PC, SR, and HoFC. Then, we reduce the rank of these FBNs via MF model for estimating FBN with low-rank structure. Finally, to evaluate the effectiveness of the proposed method, experiments have been conducted to identify the subjects with mild cognitive impairment (MCI) and autism spectrum disorder (ASD) from norm controls (NCs) using the estimated FBNs. The results on Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset and Autism Brain Imaging Data Exchange (ABIDE) dataset demonstrate that the classification performances achieved by our proposed method are better than the selected baseline methods.展开更多
Brain functional networks model the brain's ability to exchange information across different regions,aiding in the understanding of the cognitive process of human visual attention during target searching,thereby c...Brain functional networks model the brain's ability to exchange information across different regions,aiding in the understanding of the cognitive process of human visual attention during target searching,thereby contributing to the advancement of camouflage evaluation.In this study,images with various camouflage effects were presented to observers to generate electroencephalography(EEG)signals,which were then used to construct a brain functional network.The topological parameters of the network were subsequently extracted and input into a machine learning model for training.The results indicate that most of the classifiers achieved accuracy rates exceeding 70%.Specifically,the Logistic algorithm achieved an accuracy of 81.67%.Therefore,it is possible to predict target camouflage effectiveness with high accuracy without the need to calculate discovery probability.The proposed method fully considers the aspects of human visual and cognitive processes,overcomes the subjectivity of human interpretation,and achieves stable and reliable accuracy.展开更多
Distinct brain remodeling has been found after different nerve reconstruction strategies,including motor representation of the affected limb.However,differences among reconstruction strategies at the brain network lev...Distinct brain remodeling has been found after different nerve reconstruction strategies,including motor representation of the affected limb.However,differences among reconstruction strategies at the brain network level have not been elucidated.This study aimed to explore intranetwork changes related to altered peripheral neural pathways after different nerve reconstruction surgeries,including nerve repair,endto-end nerve transfer,and end-to-side nerve transfer.Sprague–Dawley rats underwent complete left brachial plexus transection and were divided into four equal groups of eight:no nerve repair,grafted nerve repair,phrenic nerve end-to-end transfer,and end-to-side transfer with a graft sutured to the anterior upper trunk.Resting-state brain functional magnetic resonance imaging was obtained 7 months after surgery.The independent component analysis algorithm was utilized to identify group-level network components of interest and extract resting-state functional connectivity values of each voxel within the component.Alterations in intra-network resting-state functional connectivity were compared among the groups.Target muscle reinnervation was assessed by behavioral observation(elbow flexion)and electromyography.The results showed that alterations in the sensorimotor and interoception networks were mostly related to changes in the peripheral neural pathway.Nerve repair was related to enhanced connectivity within the sensorimotor network,while end-to-side nerve transfer might be more beneficial for restoring control over the affected limb by the original motor representation.The thalamic-cortical pathway was enhanced within the interoception network after nerve repair and end-to-end nerve transfer.Brain areas related to cognition and emotion were enhanced after end-to-side nerve transfer.Our study revealed important brain networks related to different nerve reconstructions.These networks may be potential targets for enhancing motor recovery.展开更多
Background: The mechanisms by which acupuncture affects poststroke cognitive impairment (PSCI) remain unclear. Objective: To investigate brain functional network (BFN) changes in patients with PSCI after acupuncture t...Background: The mechanisms by which acupuncture affects poststroke cognitive impairment (PSCI) remain unclear. Objective: To investigate brain functional network (BFN) changes in patients with PSCI after acupuncture therapy. Methods: Twenty-two PSCI patients who underwent acupuncture therapy in our hospital were enrolled as research subjects. Another 14 people matched for age, sex, and education level were included in the normal control (HC) group. All the subjects underwent resting-state functional magnetic resonance imaging (rs-fMRI) scans;the PSCI patients underwent one scan before acupuncture therapy and another after. The network metric difference between PSCI patients and HCs was analyzed via the independent-sample t test, whereas the paired-sample t test was employed to analyze the network metric changes in PSCI patients before vs. after treatment. Results: Small-world network attributes were observed in both groups for sparsities between 0.1 and 0.28. Compared with the HC group, the PSCI group presented significantly lower values for the global topological properties (γ, Cp, and Eloc) of the brain;significantly greater values for the nodal attributes of betweenness centrality in the CUN. L and the HES. R, degree centrality in the SFGdor. L, PCG. L, IPL. L, and HES. R, and nodal local efficiency in the ORBsup. R, ORBsupmed. R, DCG. L, SMG. R, and TPOsup. L;and decreased degree centrality in the MFG. R, IFGoperc. R, and SOG. R. After treatment, PSCI patients presented increased degree centrality in the LING.L, LING.R, and IOG. L and nodal local efficiency in PHG. L, IOG. R, FFG. L, and the HES. L, and decreased betweenness centrality in the PCG. L and CUN. L, degree centrality in the ORBsupmed. R, and nodal local efficiency in ANG. R. Conclusion: Cognitive decline in PSCI patients may be related to BFN disorders;acupuncture therapy may modulate the topological properties of the BFNs of PSCI patients.展开更多
Epilepsy can be defined as a dysfunction of the brain network,and each type of epilepsy involves different brain-network changes that are implicated diffe rently in the control and propagation of interictal or ictal d...Epilepsy can be defined as a dysfunction of the brain network,and each type of epilepsy involves different brain-network changes that are implicated diffe rently in the control and propagation of interictal or ictal discharges.Gaining more detailed information on brain network alterations can help us to further understand the mechanisms of epilepsy and pave the way for brain network-based precise therapeutic approaches in clinical practice.An increasing number of advanced neuroimaging techniques and electrophysiological techniques such as diffusion tensor imaging-based fiber tra ctography,diffusion kurtosis imaging-based fiber tractography,fiber ball imagingbased tra ctography,electroencephalography,functional magnetic resonance imaging,magnetoencephalography,positron emission tomography,molecular imaging,and functional ultrasound imaging have been extensively used to delineate epileptic networks.In this review,we summarize the relevant neuroimaging and neuroelectrophysiological techniques for assessing structural and functional brain networks in patients with epilepsy,and extensively analyze the imaging mechanisms,advantages,limitations,and clinical application ranges of each technique.A greater focus on emerging advanced technologies,new data analysis software,a combination of multiple techniques,and the construction of personalized virtual epilepsy models can provide a theoretical basis to better understand the brain network mechanisms of epilepsy and make surgical decisions.展开更多
Since the outbreak and spread of corona virus disease 2019(COVID-19),the prevalence of mental disorders,such as depression,has continued to increase.To explore the abnormal changes of brain functional connections in p...Since the outbreak and spread of corona virus disease 2019(COVID-19),the prevalence of mental disorders,such as depression,has continued to increase.To explore the abnormal changes of brain functional connections in patients with depression,this paper proposes a depression analysis method based on brain function network(BFN).To avoid the volume conductor effect,BFN was constructed based on phase lag index(PLI).Then the indicators closely related to depression were selected from weighted BFN based on small-worldness(SW)characteristics and binarization BFN based on the minimum spanning tree(MST).Differences analysis between groups and correlation analysis between these indicators and diagnostic indicators were performed in turn.The resting state electroencephalogram(EEG)data of 24 patients with depression and 29 healthy controls(HC)was used to verify our proposed method.The results showed that compared with HC,the information processing of BFN in patients with depression decreased,and BFN showed a trend of randomization.展开更多
The structure and function of brain networks have been altered in patients with end-stage renal disease(ESRD).Manifold regularization(MR)only considers the pairing relationship between two brain regions and cannot rep...The structure and function of brain networks have been altered in patients with end-stage renal disease(ESRD).Manifold regularization(MR)only considers the pairing relationship between two brain regions and cannot represent functional interactions or higher-order relationships between multiple brain regions.To solve this issue,we developed a method to construct a dynamic brain functional network(DBFN)based on dynamic hypergraph MR(DHMR)and applied it to the classification of ESRD associated with mild cognitive impairment(ESRDaMCI).The construction of DBFN with Pearson’s correlation(PC)was transformed into an optimization model.Node convolution and hyperedge convolution superposition were adopted to dynamically modify the hypergraph structure,and then got the dynamic hypergraph to form the manifold regular terms of the dynamic hypergraph.The DHMR and L_(1) norm regularization were introduced into the PC-based optimization model to obtain the final DHMR-based DBFN(DDBFN).Experiment results demonstrated the validity of the DDBFN method by comparing the classification results with several related brain functional network construction methods.Our work not only improves better classification performance but also reveals the discriminative regions of ESRDaMCI,providing a reference for clinical research and auxiliary diagnosis of concomitant cognitive impairments.展开更多
Rhythm of brain activities represents oscillations of postsynaptic potentials in neocortex, therefore it can serve as an indicator of the brain activity state. In order to check the connectivity of brain rhythm, this ...Rhythm of brain activities represents oscillations of postsynaptic potentials in neocortex, therefore it can serve as an indicator of the brain activity state. In order to check the connectivity of brain rhythm, this paper develops a new method of constructing functional network based on phase synchronization. Electroencephalogram (EEG) data were collected while subjects looking at a green cross in two states, performing an attention task and relaxing with eyes-open. The EEG from these two states was filtered by three band-pass filters to obtain signals of theta (4-7 Hz), alpha (8-13 Hz) and beta (14-30 Hz) bands. Mean resultant length was used to estimate strength of phase synchronization in three bands to construct networks of both states, and mean degree K and cluster coefficient C of networks were calculated as a function of threshold. The result shows higher cluster coetticient in the attention state than in the eyes-open state in all three bands, suggesting that cluster coefficient reflects brain state. In addition, an obvious fronto-parietal network is found in the attention state, which is a well-known attention network. These results indicate that attention modulates the fronto-parietal connectivity in different modes as compared with the eyes-open state. Taken together this method is an objective and important tool to study the properties of neural networks of brain rhythm,展开更多
The human brain is highly plastic.Cognitive training is usually used to modify functional connectivity of brain networks.Moreover,the structures of brain networks may determine its dynamic behavior which is related to...The human brain is highly plastic.Cognitive training is usually used to modify functional connectivity of brain networks.Moreover,the structures of brain networks may determine its dynamic behavior which is related to human cognitive abilities.To study the effect of functional connectivity on the brain dynamics,the dynamic model based on functional connections of the brain and the Hindmarsh–Rose model is utilized in this work.The resting-state fMRI data from the experimental group undergoing abacus-based mental calculation(AMC)training and from the control group are used to construct the functional brain networks.The dynamic behavior of brain at the resting and task states for the AMC group and the control group are simulated with the above-mentioned dynamic model.In the resting state,there are the differences of brain activation between the AMC group and the control group,and more brain regions are inspired in the AMC group.A stimulus with sinusoidal signals to brain networks is introduced to simulate the brain dynamics in the task states.The dynamic characteristics are extracted by the excitation rates,the response intensities and the state distributions.The change in the functional connectivity of brain networks with the AMC training would in turn improve the brain response to external stimulus,and make the brain more efficient in processing tasks.展开更多
Functional magnetic resonance imaging(fMRI)is an in-vivo non-invasive technique for measuring brain activity with excellent spatial and good temporal resolution.Without performing explicit tasks,resting-state fMRI(...Functional magnetic resonance imaging(fMRI)is an in-vivo non-invasive technique for measuring brain activity with excellent spatial and good temporal resolution.Without performing explicit tasks,resting-state fMRI(rfMRI)is widely used to map the functional connectivity network(FCN),which refers to a large-scale network of interdependent or functionally connected brain regions and it could be detected by using different algorithms(Zuo and Xing, 2014).ciation CAS (2016084), Guangxi Bagui Scholarship, the Natural Science Foundation of China (81471740, 81220108014), the Major Project of National Social Science Foundation of China (14ZDB161), Beijing Municipal Science and Tech Commission (Z161100002616023, Z161100000216152) and the National R&D Infrastructure and Facility Development Program "Fundamental Science Data Sharing Platform" (DKA2017-12-02-21).展开更多
Currently,functional connectomes constructed from neuroimaging data have emerged as a powerful tool in identifying brain disorders.If one brain disease just manifests as some cognitive dysfunction,it means that the di...Currently,functional connectomes constructed from neuroimaging data have emerged as a powerful tool in identifying brain disorders.If one brain disease just manifests as some cognitive dysfunction,it means that the disease may affect some local connectivity in the brain functional network.That is,there are functional abnormalities in the sub-network.Therefore,it is crucial to accurately identify them in pathological diagnosis.To solve these problems,we proposed a sub-network extraction method based on graph regularization nonnegative matrix factorization(GNMF).The dynamic functional networks of normal subjects and early mild cognitive impairment(eMCI)subjects were vectorized and the functional connection vectors(FCV)were assembled to aggregation matrices.Then GNMF was applied to factorize the aggregation matrix to get the base matrix,in which the column vectors were restored to a common sub-network and a distinctive sub-network,and visualization and statistical analysis were conducted on the two sub-networks,respectively.Experimental results demonstrated that,compared with other matrix factorization methods,the proposed method can more obviously reflect the similarity between the common subnetwork of eMCI subjects and normal subjects,as well as the difference between the distinctive sub-network of eMCI subjects and normal subjects,Therefore,the high-dimensional features in brain functional networks can be best represented locally in the lowdimensional space,which provides a new idea for studying brain functional connectomes.展开更多
The purpose of the paper is to provide a way to model the brain functional network based on the complex networks with brain anatomical architecture. We introduce the brain structural and functional researches, and del...The purpose of the paper is to provide a way to model the brain functional network based on the complex networks with brain anatomical architecture. We introduce the brain structural and functional researches, and delineate the brain anatomical and functional networks based on complex networks, then we discuss the brain functional complex network models; at last we put forward the brain functional networks modeling process and the data processing with fMRI (functional magnetic resonance imaging) in detailed.展开更多
To investigate the effects of magnetic stimulation at acupoints on brain functional network during mental fatigue, magnetic stimulation was applied to stimulate SHENMEN (HT7), HEGU (LI4) and LAOGONG (PC8) acupoint in ...To investigate the effects of magnetic stimulation at acupoints on brain functional network during mental fatigue, magnetic stimulation was applied to stimulate SHENMEN (HT7), HEGU (LI4) and LAOGONG (PC8) acupoint in this paper. The brain functional networks of normal state, mental fatigue state and stimulated state were constructed and the characteristic parameters were comparatively studied based on the complex network theory. The results showed that the connection of the network was enhanced by stimulating the HT7, LI4 and PC8 acupoint. In conclusion, magnetic stimulation at acupoints can effectively relieve mental fatigue.展开更多
Purpose: Brain functional networks (BFNs) has become important approach for diagnosis of some neurological or psychological disorders. Before estimating BFN, obtaining blood oxygen level dependent (BOLD) representativ...Purpose: Brain functional networks (BFNs) has become important approach for diagnosis of some neurological or psychological disorders. Before estimating BFN, obtaining blood oxygen level dependent (BOLD) representative signals from brain regions of interest (ROIs) is important. In the past decades, the common method is generally to take a ROI as a node, averaging all the voxel time series inside it to extract a representative signal. However, one node does not represent the entire information of this ROI, and averaging method often leads to signal cancellation and information loss. Inspired by this, we propose a novel model extraction method based on an assumption that a ROI can be represented by multiple nodes. Methods: In this paper, we first extract multiple nodes (the number is user-defined) from the ROI based on two traditional methods, including principal component analysis (PCA), and K-means (Clustering according to the spatial position of voxels). Then, canonical correlation analysis (CCA) was issued to construct BFNs by maximizing the correlation between the representative signals corresponding to the nodes in any two ROIs. Finally, to further verify the effectiveness of the proposed method, the estimated BFNs are applied to identify subjects with autism spectrum disorder (ASD) and mild cognitive impairment (MCI) from health controls (HCs). Results: Experimental results on two benchmark databases demonstrate that the proposed method outperforms the baseline method in the sense of classification performance. Conclusions: We propose a novel method for obtaining nodes of ROId based on the hypothesis that a ROI can be represented by multiple nodes, that is, to extract the node signals of ROIs with K-means or PCA. Then, CCA is used to construct BFNs.展开更多
Patients with age-related hearing loss face hearing difficulties in daily life.The causes of age-related hearing loss are complex and include changes in peripheral hearing,central processing,and cognitive-related abil...Patients with age-related hearing loss face hearing difficulties in daily life.The causes of age-related hearing loss are complex and include changes in peripheral hearing,central processing,and cognitive-related abilities.Furthermore,the factors by which aging relates to hearing loss via changes in audito ry processing ability are still unclear.In this cross-sectional study,we evaluated 27 older adults(over 60 years old) with age-related hearing loss,21 older adults(over 60years old) with normal hearing,and 30 younger subjects(18-30 years old) with normal hearing.We used the outcome of the uppe r-threshold test,including the time-compressed thres h old and the speech recognition threshold in noisy conditions,as a behavioral indicator of auditory processing ability.We also used electroencephalogra p hy to identify presbycusis-related abnormalities in the brain while the participants were in a spontaneous resting state.The timecompressed threshold and speech recognition threshold data indicated significant diffe rences among the groups.In patients with age-related hearing loss,information masking(babble noise) had a greater effect than energy masking(speech-shaped noise) on processing difficulties.In terms of resting-state electroencephalography signals,we observed enhanced fro ntal lobe(Brodmann’s area,BA11) activation in the older adults with normal hearing compared with the younger participants with normal hearing,and greater activation in the parietal(BA7) and occipital(BA19) lobes in the individuals with age-related hearing loss compared with the younger adults.Our functional connection analysis suggested that compared with younger people,the older adults with normal hearing exhibited enhanced connections among networks,including the default mode network,sensorimotor network,cingulo-opercular network,occipital network,and frontoparietal network.These results suggest that both normal aging and the development of age-related hearing loss have a negative effect on advanced audito ry processing capabilities and that hearing loss accele rates the decline in speech comprehension,especially in speech competition situations.Older adults with normal hearing may have increased compensatory attentional resource recruitment represented by the to p-down active listening mechanism,while those with age-related hearing loss exhibit decompensation of network connections involving multisensory integration.展开更多
Functional magnetic resonance imaging has been widely used to investigate the effects of acupuncture on neural activity. However, most functional magnetic resonance imaging studies have focused on acute changes in bra...Functional magnetic resonance imaging has been widely used to investigate the effects of acupuncture on neural activity. However, most functional magnetic resonance imaging studies have focused on acute changes in brain activation induced by acupuncture. Thus, the time course of the therapeutic effects of acupuncture remains unclear. In this study, 32 patients with amnestic mild cognitive impairment were randomly divided into two groups, where they received either Tiaoshen Yizhi acupuncture or sham acupoint acupuncture. The needles were either twirled at Tiaoshen Yizhi acupoints, including Sishencong(EX-HN1), Yintang(EX-HN3), Neiguan(PC6), Taixi(KI3), Fenglong(ST40), and Taichong(LR3), or at related sham acupoints at a depth of approximately 15 mm, an angle of ± 60°, and a rate of approximately 120 times per minute. Acupuncture was conducted for 4 consecutive weeks, five times per week, on weekdays. Resting-state functional magnetic resonance imaging indicated that connections between cognition-related regions such as the insula, dorsolateral prefrontal cortex, hippocampus, thalamus, inferior parietal lobule, and anterior cingulate cortex increased after acupuncture at Tiaoshen Yizhi acupoints. The insula, dorsolateral prefrontal cortex, and hippocampus acted as central brain hubs. Patients in the Tiaoshen Yizhi group exhibited improved cognitive performance after acupuncture. In the sham acupoint acupuncture group, connections between brain regions were dispersed, and we found no differences in cognitive function following the treatment. These results indicate that acupuncture at Tiaoshen Yizhi acupoints can regulate brain networks by increasing connectivity between cognition-related regions, thereby improving cognitive function in patients with mild cognitive impairment.展开更多
<strong>Objective:</strong> To explore the characteristics of brain functional network with anxiety in patients with acute cerebral infarction. <strong>Methods: </strong>A total of 39 patients ...<strong>Objective:</strong> To explore the characteristics of brain functional network with anxiety in patients with acute cerebral infarction. <strong>Methods: </strong>A total of 39 patients with acute cerebral infarction by cranial magnetic resonance examination were included, and all the patients were scored by the Hamilton Anxiety Scale. The anxiety scale is scored by a professional psychiatrist. There are a total of 14 items, including anxiety, nervousness, fear, insomnia, cognitive function, depressed mood, somatic anxiety, sensory system, etc. The total score ≥ 29 points may be severe;≥21 points, there must be obvious;≥14 points, there must be anxiety;a score of more than 7 may indicate anxiety. If the score is less than 7, there are no anxiety symptoms. All patients within 24 to 72 hours, complete the head examination magnetic resonance, computerized calculation of the DWI sequence images, according to the results of the calculation to superimpose the image of the lesion, image reconstruction in space, and carry out Binarization, defining the value of lesions as 1, and the value of non as 0. All lesions are superimposed into one image and integrated. The relationship between the lesions in this superimposed image and anxiety after cerebral infarction was analyzed. <strong>Results: </strong>The lesions were basically concentrated around the lateral ventricle, and they were mainly concentrated around the lateral ventricle. <strong>Conclusion:</strong> Patients with acute cerebral infarction in the lateral ventricle or basal ganglia are more prone to post-stroke anxiety. This has a certain evaluation value for the prognosis of future cerebral infarction, and has a certain understanding of the exploration of complications, and has a certain understanding of the exploration of complications.展开更多
Auditory sense is an important way for people to receive and interact with foreign information.In different environment,the auditory sense changes.Therefore,it is necessary to find a detection method that can detect h...Auditory sense is an important way for people to receive and interact with foreign information.In different environment,the auditory sense changes.Therefore,it is necessary to find a detection method that can detect hearing in a timely manner.In this paper,EEG experiments were used to construct and compare brain functional networks in different states,and auditory state models were constructed with different auditory input signals.Secondly,the cross-correlation method is used to slice the signal and construct the adjacency matrix.Louvain community detection algorithm is used to process the data and calculate the network conversion rate under different parameters.It is concluded that the network conversion rate can be used to analyze the temporal variation of auditory information under the condition of controlled parameters.This indicates that the network conversion rate can also be used as a method to analyze auditory signals in the future.展开更多
文摘Functional brain networks (FBN) based on resting-state functional magnetic resonance imaging (rs-fMRI) have become an important tool for exploring underlying organization patterns in the brain, which can provide an objective basis for brain disorders such as autistic spectrum disorder (ASD). Due to its importance, researchers have proposed a number of FBN estimation methods. However, most existing methods only model a type of functional connection relationship between brain regions-of-interest (ROIs), such as partial correlation or full correlation, which is difficult to fully capture the subtle connections among ROIs since these connections are extremely complex. Motivated by the multi-view learning, in this study we propose a novel Consistent and Specific Multi-view FBNs Fusion (CSMF) approach. Concretely, we first construct multi-view FBNs (i.e., multiple types of FBNs modelling various relationships among ROIs), and then these FBNs are decomposed into a consistent representation matrix and their own specific matrices which capture their common and unique information, respectively. Lastly, to obtain a better brain representation, it is fusing the consistent and specific representation matrices in the latent representation spaces of FBNs, but not directly fusing the original FBNs. This potentially makes it more easily to find the comprehensively brain connections. The experimental results of ASD identification on the ABIDE datasets validate the effectiveness of our proposed method compared to several state-of-the-art methods. Our proposed CSMF method achieved 72.8% and 76.67% classification performance on the ABIDE dataset.
文摘Functional brain network (FBN) measures based on functional magnetic resonance imaging (fMRI) data, has become important biomarkers for early diagnosis and prediction of clinical outcomes in neurological diseases, such as Alzheimer’s diseases (AD) and its prodromal state (<em>i</em>.<em>e</em>., Mild cognitive impairment, MCI). In the past decades, researchers have developed numbers of approaches for FBN estimation, including Pearson’s correction (PC), sparse representation (SR), and so on. Despite their popularity and wide applications in current studies, most of the approaches for FBN estimation only consider the dependency between the measured blood oxygen level dependent (BOLD) time series, but ignore the spatial relationships between pairs of brain regions. In practice, the strength of functional connection between brain regions will decrease as their distance increases. Inspired by this, we proposed a new approach for FBN estimation based on the assumption that the closer brain regions tend to share stronger relationships or similarities. To verify the effectiveness of the proposed method, we conduct experiments on a public dataset to identify the patients with MCIs from health controls (HCs) using the estimated FBNs. Experimental results demonstrate that the proposed approach yields statistically significant improvement in seven performance metrics over using the baseline methods.
文摘Functional brain networks (FBNs) provide a potential way for understanding the brain organizational patterns and diagnosing neurological diseases. Due to its importance, many FBN construction methods have been proposed currently, including the low-order Pearson’s correlation (PC) and sparse representation (SR), as well as the high-order functional connection (HoFC). However, most existing methods usually ignore the information of topological structures of FBN, such as low-rank structure which can reduce the noise and improve modularity to enhance the stability of networks. In this paper, we propose a novel method for improving the estimated FBNs utilizing matrix factorization (MF). More specifically, we firstly construct FBNs based on three traditional methods, including PC, SR, and HoFC. Then, we reduce the rank of these FBNs via MF model for estimating FBN with low-rank structure. Finally, to evaluate the effectiveness of the proposed method, experiments have been conducted to identify the subjects with mild cognitive impairment (MCI) and autism spectrum disorder (ASD) from norm controls (NCs) using the estimated FBNs. The results on Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset and Autism Brain Imaging Data Exchange (ABIDE) dataset demonstrate that the classification performances achieved by our proposed method are better than the selected baseline methods.
基金sponsored by the National Defense Science and Technology Key Laboratory Fund(Grant No.61422062205)the Equipment Pre-Research Fund(Grant No.JCKYS2022LD9)。
文摘Brain functional networks model the brain's ability to exchange information across different regions,aiding in the understanding of the cognitive process of human visual attention during target searching,thereby contributing to the advancement of camouflage evaluation.In this study,images with various camouflage effects were presented to observers to generate electroencephalography(EEG)signals,which were then used to construct a brain functional network.The topological parameters of the network were subsequently extracted and input into a machine learning model for training.The results indicate that most of the classifiers achieved accuracy rates exceeding 70%.Specifically,the Logistic algorithm achieved an accuracy of 81.67%.Therefore,it is possible to predict target camouflage effectiveness with high accuracy without the need to calculate discovery probability.The proposed method fully considers the aspects of human visual and cognitive processes,overcomes the subjectivity of human interpretation,and achieves stable and reliable accuracy.
基金supported by the National Natural Science Foundation of China,Nos.81871836(to MZ),82172554(to XH),and 81802249(to XH),81902301(to JW)the National Key R&D Program of China,Nos.2018YFC2001600(to JX)and 2018YFC2001604(to JX)+3 种基金Shanghai Rising Star Program,No.19QA1409000(to MZ)Shanghai Municipal Commission of Health and Family Planning,No.2018YQ02(to MZ)Shanghai Youth Top Talent Development PlanShanghai“Rising Stars of Medical Talent”Youth Development Program,No.RY411.19.01.10(to XH)。
文摘Distinct brain remodeling has been found after different nerve reconstruction strategies,including motor representation of the affected limb.However,differences among reconstruction strategies at the brain network level have not been elucidated.This study aimed to explore intranetwork changes related to altered peripheral neural pathways after different nerve reconstruction surgeries,including nerve repair,endto-end nerve transfer,and end-to-side nerve transfer.Sprague–Dawley rats underwent complete left brachial plexus transection and were divided into four equal groups of eight:no nerve repair,grafted nerve repair,phrenic nerve end-to-end transfer,and end-to-side transfer with a graft sutured to the anterior upper trunk.Resting-state brain functional magnetic resonance imaging was obtained 7 months after surgery.The independent component analysis algorithm was utilized to identify group-level network components of interest and extract resting-state functional connectivity values of each voxel within the component.Alterations in intra-network resting-state functional connectivity were compared among the groups.Target muscle reinnervation was assessed by behavioral observation(elbow flexion)and electromyography.The results showed that alterations in the sensorimotor and interoception networks were mostly related to changes in the peripheral neural pathway.Nerve repair was related to enhanced connectivity within the sensorimotor network,while end-to-side nerve transfer might be more beneficial for restoring control over the affected limb by the original motor representation.The thalamic-cortical pathway was enhanced within the interoception network after nerve repair and end-to-end nerve transfer.Brain areas related to cognition and emotion were enhanced after end-to-side nerve transfer.Our study revealed important brain networks related to different nerve reconstructions.These networks may be potential targets for enhancing motor recovery.
文摘Background: The mechanisms by which acupuncture affects poststroke cognitive impairment (PSCI) remain unclear. Objective: To investigate brain functional network (BFN) changes in patients with PSCI after acupuncture therapy. Methods: Twenty-two PSCI patients who underwent acupuncture therapy in our hospital were enrolled as research subjects. Another 14 people matched for age, sex, and education level were included in the normal control (HC) group. All the subjects underwent resting-state functional magnetic resonance imaging (rs-fMRI) scans;the PSCI patients underwent one scan before acupuncture therapy and another after. The network metric difference between PSCI patients and HCs was analyzed via the independent-sample t test, whereas the paired-sample t test was employed to analyze the network metric changes in PSCI patients before vs. after treatment. Results: Small-world network attributes were observed in both groups for sparsities between 0.1 and 0.28. Compared with the HC group, the PSCI group presented significantly lower values for the global topological properties (γ, Cp, and Eloc) of the brain;significantly greater values for the nodal attributes of betweenness centrality in the CUN. L and the HES. R, degree centrality in the SFGdor. L, PCG. L, IPL. L, and HES. R, and nodal local efficiency in the ORBsup. R, ORBsupmed. R, DCG. L, SMG. R, and TPOsup. L;and decreased degree centrality in the MFG. R, IFGoperc. R, and SOG. R. After treatment, PSCI patients presented increased degree centrality in the LING.L, LING.R, and IOG. L and nodal local efficiency in PHG. L, IOG. R, FFG. L, and the HES. L, and decreased betweenness centrality in the PCG. L and CUN. L, degree centrality in the ORBsupmed. R, and nodal local efficiency in ANG. R. Conclusion: Cognitive decline in PSCI patients may be related to BFN disorders;acupuncture therapy may modulate the topological properties of the BFNs of PSCI patients.
基金supported by the Natural Science Foundation of Sichuan Province of China,Nos.2022NSFSC1545 (to YG),2022NSFSC1387 (to ZF)the Natural Science Foundation of Chongqing of China,Nos.CSTB2022NSCQ-LZX0038,cstc2021ycjh-bgzxm0035 (both to XT)+3 种基金the National Natural Science Foundation of China,No.82001378 (to XT)the Joint Project of Chongqing Health Commission and Science and Technology Bureau,No.2023QNXM009 (to XT)the Science and Technology Research Program of Chongqing Education Commission of China,No.KJQN202200435 (to XT)the Chongqing Talents:Exceptional Young Talents Project,No.CQYC202005014 (to XT)。
文摘Epilepsy can be defined as a dysfunction of the brain network,and each type of epilepsy involves different brain-network changes that are implicated diffe rently in the control and propagation of interictal or ictal discharges.Gaining more detailed information on brain network alterations can help us to further understand the mechanisms of epilepsy and pave the way for brain network-based precise therapeutic approaches in clinical practice.An increasing number of advanced neuroimaging techniques and electrophysiological techniques such as diffusion tensor imaging-based fiber tra ctography,diffusion kurtosis imaging-based fiber tractography,fiber ball imagingbased tra ctography,electroencephalography,functional magnetic resonance imaging,magnetoencephalography,positron emission tomography,molecular imaging,and functional ultrasound imaging have been extensively used to delineate epileptic networks.In this review,we summarize the relevant neuroimaging and neuroelectrophysiological techniques for assessing structural and functional brain networks in patients with epilepsy,and extensively analyze the imaging mechanisms,advantages,limitations,and clinical application ranges of each technique.A greater focus on emerging advanced technologies,new data analysis software,a combination of multiple techniques,and the construction of personalized virtual epilepsy models can provide a theoretical basis to better understand the brain network mechanisms of epilepsy and make surgical decisions.
基金supported by the National Natural Science Foundation of China(Nos.61962034,61862058)Longyuan Youth Innovation and Entrepreneurship Talent(Individual)Project and Tianyou Youth Talent Lift Program of Lanzhou Jiaotong Univesity。
文摘Since the outbreak and spread of corona virus disease 2019(COVID-19),the prevalence of mental disorders,such as depression,has continued to increase.To explore the abnormal changes of brain functional connections in patients with depression,this paper proposes a depression analysis method based on brain function network(BFN).To avoid the volume conductor effect,BFN was constructed based on phase lag index(PLI).Then the indicators closely related to depression were selected from weighted BFN based on small-worldness(SW)characteristics and binarization BFN based on the minimum spanning tree(MST).Differences analysis between groups and correlation analysis between these indicators and diagnostic indicators were performed in turn.The resting state electroencephalogram(EEG)data of 24 patients with depression and 29 healthy controls(HC)was used to verify our proposed method.The results showed that compared with HC,the information processing of BFN in patients with depression decreased,and BFN showed a trend of randomization.
基金supported by the National Natural Science Foundation of China (No.51877013),(ZJ),(http://www.nsfc.gov.cn/)the Jiangsu Provincial Key Research and Development Program (No.BE2021636),(ZJ),(http://kxjst.jiangsu.gov.cn/)+1 种基金the Science and Technology Project of Changzhou City (No.CE20205056),(ZJ),(http://kjj.changzhou.gov.cn/)by Qing Lan Project of Jiangsu Province (no specific grant number),(ZJ),(http://jyt.jiangsu.gov.cn/).
文摘The structure and function of brain networks have been altered in patients with end-stage renal disease(ESRD).Manifold regularization(MR)only considers the pairing relationship between two brain regions and cannot represent functional interactions or higher-order relationships between multiple brain regions.To solve this issue,we developed a method to construct a dynamic brain functional network(DBFN)based on dynamic hypergraph MR(DHMR)and applied it to the classification of ESRD associated with mild cognitive impairment(ESRDaMCI).The construction of DBFN with Pearson’s correlation(PC)was transformed into an optimization model.Node convolution and hyperedge convolution superposition were adopted to dynamically modify the hypergraph structure,and then got the dynamic hypergraph to form the manifold regular terms of the dynamic hypergraph.The DHMR and L_(1) norm regularization were introduced into the PC-based optimization model to obtain the final DHMR-based DBFN(DDBFN).Experiment results demonstrated the validity of the DDBFN method by comparing the classification results with several related brain functional network construction methods.Our work not only improves better classification performance but also reveals the discriminative regions of ESRDaMCI,providing a reference for clinical research and auxiliary diagnosis of concomitant cognitive impairments.
基金supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 30800242)
文摘Rhythm of brain activities represents oscillations of postsynaptic potentials in neocortex, therefore it can serve as an indicator of the brain activity state. In order to check the connectivity of brain rhythm, this paper develops a new method of constructing functional network based on phase synchronization. Electroencephalogram (EEG) data were collected while subjects looking at a green cross in two states, performing an attention task and relaxing with eyes-open. The EEG from these two states was filtered by three band-pass filters to obtain signals of theta (4-7 Hz), alpha (8-13 Hz) and beta (14-30 Hz) bands. Mean resultant length was used to estimate strength of phase synchronization in three bands to construct networks of both states, and mean degree K and cluster coefficient C of networks were calculated as a function of threshold. The result shows higher cluster coetticient in the attention state than in the eyes-open state in all three bands, suggesting that cluster coefficient reflects brain state. In addition, an obvious fronto-parietal network is found in the attention state, which is a well-known attention network. These results indicate that attention modulates the fronto-parietal connectivity in different modes as compared with the eyes-open state. Taken together this method is an objective and important tool to study the properties of neural networks of brain rhythm,
基金Project supported by the National Natural Science Foundation of China(Grant Nos.62276229 and 32071096).
文摘The human brain is highly plastic.Cognitive training is usually used to modify functional connectivity of brain networks.Moreover,the structures of brain networks may determine its dynamic behavior which is related to human cognitive abilities.To study the effect of functional connectivity on the brain dynamics,the dynamic model based on functional connections of the brain and the Hindmarsh–Rose model is utilized in this work.The resting-state fMRI data from the experimental group undergoing abacus-based mental calculation(AMC)training and from the control group are used to construct the functional brain networks.The dynamic behavior of brain at the resting and task states for the AMC group and the control group are simulated with the above-mentioned dynamic model.In the resting state,there are the differences of brain activation between the AMC group and the control group,and more brain regions are inspired in the AMC group.A stimulus with sinusoidal signals to brain networks is introduced to simulate the brain dynamics in the task states.The dynamic characteristics are extracted by the excitation rates,the response intensities and the state distributions.The change in the functional connectivity of brain networks with the AMC training would in turn improve the brain response to external stimulus,and make the brain more efficient in processing tasks.
基金supported by the National Basic Research Program(2015CB351702)the Youth Innovation Promotion Association CAS(2016084)+3 种基金Guangxi Bagui Scholarship,the Natural Science Foundation of China(81471740,81220108014)the Major Project of National Social Science Foundation of China(14ZDB161)Beijing Municipal Science and Tech Commission(Z161100002616023,Z161100000216152)the National R&D Infrastructure and Facility Development Program“Fundamental Science Data Sharing Platform”(DKA2017-12-02-21)
文摘Functional magnetic resonance imaging(fMRI)is an in-vivo non-invasive technique for measuring brain activity with excellent spatial and good temporal resolution.Without performing explicit tasks,resting-state fMRI(rfMRI)is widely used to map the functional connectivity network(FCN),which refers to a large-scale network of interdependent or functionally connected brain regions and it could be detected by using different algorithms(Zuo and Xing, 2014).ciation CAS (2016084), Guangxi Bagui Scholarship, the Natural Science Foundation of China (81471740, 81220108014), the Major Project of National Social Science Foundation of China (14ZDB161), Beijing Municipal Science and Tech Commission (Z161100002616023, Z161100000216152) and the National R&D Infrastructure and Facility Development Program "Fundamental Science Data Sharing Platform" (DKA2017-12-02-21).
基金supported by the National Natural Science Foundation of China(No.51877013),(ZJ),(http://www.nsfc.gov.cn/)the Natural Science Foundation of Jiangsu Province(No.BK20181463),(ZJ),(http://kxjst.jiangsu.gov.cn/)sponsored by Qing Lan Project of Jiangsu Province(no specific grant number),(ZJ),(http://jyt.jiangsu.gov.cn/).
文摘Currently,functional connectomes constructed from neuroimaging data have emerged as a powerful tool in identifying brain disorders.If one brain disease just manifests as some cognitive dysfunction,it means that the disease may affect some local connectivity in the brain functional network.That is,there are functional abnormalities in the sub-network.Therefore,it is crucial to accurately identify them in pathological diagnosis.To solve these problems,we proposed a sub-network extraction method based on graph regularization nonnegative matrix factorization(GNMF).The dynamic functional networks of normal subjects and early mild cognitive impairment(eMCI)subjects were vectorized and the functional connection vectors(FCV)were assembled to aggregation matrices.Then GNMF was applied to factorize the aggregation matrix to get the base matrix,in which the column vectors were restored to a common sub-network and a distinctive sub-network,and visualization and statistical analysis were conducted on the two sub-networks,respectively.Experimental results demonstrated that,compared with other matrix factorization methods,the proposed method can more obviously reflect the similarity between the common subnetwork of eMCI subjects and normal subjects,as well as the difference between the distinctive sub-network of eMCI subjects and normal subjects,Therefore,the high-dimensional features in brain functional networks can be best represented locally in the lowdimensional space,which provides a new idea for studying brain functional connectomes.
基金The authors thank the College of Information and Engineering Taishan Medical University colleagues for assistance with data collection and the manuscript comments. Special thanks to Polly and Xiaochen Xu for suggestions on writing in the English language. The authors are grateful to the anonymous referees for their valuable comments and suggestions. This research was supported by the Natural Science Foundation of Shandong (No. ZR2013FL031), State Accident Prevention Key Technology of Work Safety Program (No. 2013-084), Work Safety Science Technology Development Program of Shandong (No. LAJK2013-137), High-level Training Project of Taishan Medical University (No. 2013GCC09).
文摘The purpose of the paper is to provide a way to model the brain functional network based on the complex networks with brain anatomical architecture. We introduce the brain structural and functional researches, and delineate the brain anatomical and functional networks based on complex networks, then we discuss the brain functional complex network models; at last we put forward the brain functional networks modeling process and the data processing with fMRI (functional magnetic resonance imaging) in detailed.
文摘To investigate the effects of magnetic stimulation at acupoints on brain functional network during mental fatigue, magnetic stimulation was applied to stimulate SHENMEN (HT7), HEGU (LI4) and LAOGONG (PC8) acupoint in this paper. The brain functional networks of normal state, mental fatigue state and stimulated state were constructed and the characteristic parameters were comparatively studied based on the complex network theory. The results showed that the connection of the network was enhanced by stimulating the HT7, LI4 and PC8 acupoint. In conclusion, magnetic stimulation at acupoints can effectively relieve mental fatigue.
文摘Purpose: Brain functional networks (BFNs) has become important approach for diagnosis of some neurological or psychological disorders. Before estimating BFN, obtaining blood oxygen level dependent (BOLD) representative signals from brain regions of interest (ROIs) is important. In the past decades, the common method is generally to take a ROI as a node, averaging all the voxel time series inside it to extract a representative signal. However, one node does not represent the entire information of this ROI, and averaging method often leads to signal cancellation and information loss. Inspired by this, we propose a novel model extraction method based on an assumption that a ROI can be represented by multiple nodes. Methods: In this paper, we first extract multiple nodes (the number is user-defined) from the ROI based on two traditional methods, including principal component analysis (PCA), and K-means (Clustering according to the spatial position of voxels). Then, canonical correlation analysis (CCA) was issued to construct BFNs by maximizing the correlation between the representative signals corresponding to the nodes in any two ROIs. Finally, to further verify the effectiveness of the proposed method, the estimated BFNs are applied to identify subjects with autism spectrum disorder (ASD) and mild cognitive impairment (MCI) from health controls (HCs). Results: Experimental results on two benchmark databases demonstrate that the proposed method outperforms the baseline method in the sense of classification performance. Conclusions: We propose a novel method for obtaining nodes of ROId based on the hypothesis that a ROI can be represented by multiple nodes, that is, to extract the node signals of ROIs with K-means or PCA. Then, CCA is used to construct BFNs.
基金supported by the National Natural Science Foundation of China,Nos.82171138 (to YQZ),82071 062 (to YXC)the Natural Science Foundation of Guangdong Province,No.2021A1515012038 (to YXC)+1 种基金the Fundamental Research Funds for the Central Universities,No.20ykpy91 (to YXC)the Sun Yat-Sen Clinical Research Cultivating Program,No.SYS-Q-201903 (to YXC)。
文摘Patients with age-related hearing loss face hearing difficulties in daily life.The causes of age-related hearing loss are complex and include changes in peripheral hearing,central processing,and cognitive-related abilities.Furthermore,the factors by which aging relates to hearing loss via changes in audito ry processing ability are still unclear.In this cross-sectional study,we evaluated 27 older adults(over 60 years old) with age-related hearing loss,21 older adults(over 60years old) with normal hearing,and 30 younger subjects(18-30 years old) with normal hearing.We used the outcome of the uppe r-threshold test,including the time-compressed thres h old and the speech recognition threshold in noisy conditions,as a behavioral indicator of auditory processing ability.We also used electroencephalogra p hy to identify presbycusis-related abnormalities in the brain while the participants were in a spontaneous resting state.The timecompressed threshold and speech recognition threshold data indicated significant diffe rences among the groups.In patients with age-related hearing loss,information masking(babble noise) had a greater effect than energy masking(speech-shaped noise) on processing difficulties.In terms of resting-state electroencephalography signals,we observed enhanced fro ntal lobe(Brodmann’s area,BA11) activation in the older adults with normal hearing compared with the younger participants with normal hearing,and greater activation in the parietal(BA7) and occipital(BA19) lobes in the individuals with age-related hearing loss compared with the younger adults.Our functional connection analysis suggested that compared with younger people,the older adults with normal hearing exhibited enhanced connections among networks,including the default mode network,sensorimotor network,cingulo-opercular network,occipital network,and frontoparietal network.These results suggest that both normal aging and the development of age-related hearing loss have a negative effect on advanced audito ry processing capabilities and that hearing loss accele rates the decline in speech comprehension,especially in speech competition situations.Older adults with normal hearing may have increased compensatory attentional resource recruitment represented by the to p-down active listening mechanism,while those with age-related hearing loss exhibit decompensation of network connections involving multisensory integration.
基金supported by the National Natural Science Foundation of China,No.81173354a grant from the Science and Technology Plan Project of Guangdong Province of China,No.2013B021800099a grant from the Science and Technology Plan Project of Shenzhen City of China,No.JCYJ20150402152005642
文摘Functional magnetic resonance imaging has been widely used to investigate the effects of acupuncture on neural activity. However, most functional magnetic resonance imaging studies have focused on acute changes in brain activation induced by acupuncture. Thus, the time course of the therapeutic effects of acupuncture remains unclear. In this study, 32 patients with amnestic mild cognitive impairment were randomly divided into two groups, where they received either Tiaoshen Yizhi acupuncture or sham acupoint acupuncture. The needles were either twirled at Tiaoshen Yizhi acupoints, including Sishencong(EX-HN1), Yintang(EX-HN3), Neiguan(PC6), Taixi(KI3), Fenglong(ST40), and Taichong(LR3), or at related sham acupoints at a depth of approximately 15 mm, an angle of ± 60°, and a rate of approximately 120 times per minute. Acupuncture was conducted for 4 consecutive weeks, five times per week, on weekdays. Resting-state functional magnetic resonance imaging indicated that connections between cognition-related regions such as the insula, dorsolateral prefrontal cortex, hippocampus, thalamus, inferior parietal lobule, and anterior cingulate cortex increased after acupuncture at Tiaoshen Yizhi acupoints. The insula, dorsolateral prefrontal cortex, and hippocampus acted as central brain hubs. Patients in the Tiaoshen Yizhi group exhibited improved cognitive performance after acupuncture. In the sham acupoint acupuncture group, connections between brain regions were dispersed, and we found no differences in cognitive function following the treatment. These results indicate that acupuncture at Tiaoshen Yizhi acupoints can regulate brain networks by increasing connectivity between cognition-related regions, thereby improving cognitive function in patients with mild cognitive impairment.
文摘<strong>Objective:</strong> To explore the characteristics of brain functional network with anxiety in patients with acute cerebral infarction. <strong>Methods: </strong>A total of 39 patients with acute cerebral infarction by cranial magnetic resonance examination were included, and all the patients were scored by the Hamilton Anxiety Scale. The anxiety scale is scored by a professional psychiatrist. There are a total of 14 items, including anxiety, nervousness, fear, insomnia, cognitive function, depressed mood, somatic anxiety, sensory system, etc. The total score ≥ 29 points may be severe;≥21 points, there must be obvious;≥14 points, there must be anxiety;a score of more than 7 may indicate anxiety. If the score is less than 7, there are no anxiety symptoms. All patients within 24 to 72 hours, complete the head examination magnetic resonance, computerized calculation of the DWI sequence images, according to the results of the calculation to superimpose the image of the lesion, image reconstruction in space, and carry out Binarization, defining the value of lesions as 1, and the value of non as 0. All lesions are superimposed into one image and integrated. The relationship between the lesions in this superimposed image and anxiety after cerebral infarction was analyzed. <strong>Results: </strong>The lesions were basically concentrated around the lateral ventricle, and they were mainly concentrated around the lateral ventricle. <strong>Conclusion:</strong> Patients with acute cerebral infarction in the lateral ventricle or basal ganglia are more prone to post-stroke anxiety. This has a certain evaluation value for the prognosis of future cerebral infarction, and has a certain understanding of the exploration of complications, and has a certain understanding of the exploration of complications.
文摘Auditory sense is an important way for people to receive and interact with foreign information.In different environment,the auditory sense changes.Therefore,it is necessary to find a detection method that can detect hearing in a timely manner.In this paper,EEG experiments were used to construct and compare brain functional networks in different states,and auditory state models were constructed with different auditory input signals.Secondly,the cross-correlation method is used to slice the signal and construct the adjacency matrix.Louvain community detection algorithm is used to process the data and calculate the network conversion rate under different parameters.It is concluded that the network conversion rate can be used to analyze the temporal variation of auditory information under the condition of controlled parameters.This indicates that the network conversion rate can also be used as a method to analyze auditory signals in the future.