The characteristics of the photonic crystal vertical cavity surface emitting lasers(PhC-VCSELs) were investigated by using the full vector finite-difference time-domain(FDTD) method through the transverse mode los...The characteristics of the photonic crystal vertical cavity surface emitting lasers(PhC-VCSELs) were investigated by using the full vector finite-difference time-domain(FDTD) method through the transverse mode loss analysis. PhC-VCSELs with different photonic crystal structures were analyzed theoretically and experimentally. Through combining the dual mode confinement of oxide aperture and seven-point-defect photonic crystal structure, the PhC-VCSELs with low threshold current of 0.9 mA and maximum output power of 3.1 mW operating in single fundamental mode were demonstrated. Mode loss analysis method was proven as a reliable and useful way to analyze and optimize the PhC-VCSELs.展开更多
By coupling a train of femtosecond pulses with 100 fs pulse width at a repetition rate of 76 MHz generated by a mode-locked Ti: sapphire laser into the fundamental mode of photonic crystal fibre (PCF) with central ...By coupling a train of femtosecond pulses with 100 fs pulse width at a repetition rate of 76 MHz generated by a mode-locked Ti: sapphire laser into the fundamental mode of photonic crystal fibre (PCF) with central holes fabricated through extracting air from the central hole, the broad and ultra-flattened supercontinuum (SC) in the visible wavelengths is generated. When the fundamental mode experiences an anomalous dispersion regime, three phases in the SC generation process are primarily presented. The SC generation (SCG) in the wavelength range from 470 nm to 805 nm does not emerge significant ripples due to a higher pump peak power and the corresponding mode fields at different wavelengths are observed using Bragg gratings. The relative intensity fluctuations of output spectrum in the wavelength ranges of 530 nm to 640 nm and 543 nm to 590 nm are only 0.028 and 0.0071, respectively.展开更多
Spherical aberrations of the thermal lens of the active media are severe when solid state lasers are strongly pumped. The fundamental mode profile deteriorates due to the aberrations. Self-consistent modes of a resona...Spherical aberrations of the thermal lens of the active media are severe when solid state lasers are strongly pumped. The fundamental mode profile deteriorates due to the aberrations. Self-consistent modes of a resonator with aberrations are calculated by using the Fox-Li diffraction iterative algorithm. Calculation results show that the aberration induced fundamental mode beam quality deterioration depends greatly on the resonator design. The tolerance of a flat-flat resonator to the aberration coefficient is about 30λ in the middle of stability, where λ is the wavelength of laser beam. But for a dynamically stable resonator, 2λ of spherical aberration will create diffraction loss of more than 40%, if inappropriate design criteria are used. A birefringence compensated laser resonator with two Nd:YAG rods is experimentally studied. The experimental data are in quite good agreement with simulation results.展开更多
A detailed investigation is presented for Love waves (LWs) with thick viscoelastic guiding layers. A theoretical calculation and an experiment are carried out for LW devices incorporating an SU-8 guiding layer, an S...A detailed investigation is presented for Love waves (LWs) with thick viscoelastic guiding layers. A theoretical calculation and an experiment are carried out for LW devices incorporating an SU-8 guiding layer, an ST-90° X quartz substrate and two 28-μm periodic interdigital transducers. Both the calculated and the measured results show an increase in propagation velocity when h / λ〉0.05. The measured insertion loss of LWs is consistent with the calculated propagation loss. The insertion loss of bulk waves is also measured and is compared with that of LWs.展开更多
Background CEPC is a 100-kilometer-long electron-position collider,aiming to produce Higgs,W and Z-pole.Double ring(DR)is the baseline design of its main ring,and advanced partial double ring(APDR)is the alternative o...Background CEPC is a 100-kilometer-long electron-position collider,aiming to produce Higgs,W and Z-pole.Double ring(DR)is the baseline design of its main ring,and advanced partial double ring(APDR)is the alternative one.Purpose The purpose of this paper is to study the beam loading effects and the corresponding longitudinal beam dynamics of CEPC DR and APDR.Methods The phase shift of the bunches modulated by the bunch gap is calculated with the approximation formulas and simulated with the program.All these methods are compared,and the application conditions of them are also elaborated.In addition,the longitudinal coupled-bunch instability in CEPC main ring is calculated by analytical formulas.Results In CEPC DR high-lumi Z,the phase shift can be reduced to 0.51 deg(°).Besides,the total number of unstable longitudinal modes is 15 in CEPC DR high-lumi Z when no feedback system is added.Conclusion The phase shift of the bunches in CEPC can be reduced to an acceptable value if the optimal filling pattern is chosen.For CEPC APDR,the RF parameters are calculated and the beam loading effects are tolerable.展开更多
Raman spectra of purified oxygen evolution core complexes (Pd OECC) thin films on silver mirror substrates have been taken over the frequency range of 250-3100 cm -1 by surface enhanced Raman scattering (SERS). B...Raman spectra of purified oxygen evolution core complexes (Pd OECC) thin films on silver mirror substrates have been taken over the frequency range of 250-3100 cm -1 by surface enhanced Raman scattering (SERS). Besides the fundamental frequency modes of β_carotene in Pd OECC, many weak peaks are observed. According to the selection rules of overtone and combination bands, most of them are attributed to the second_order Raman spectra of β_carotene. Compared with the SERS of normal Pd OECC, the SERS of Pd OECC after strong illumination shows a decrease in scattering intensity and an increase in line widths, indicating changes of conformation and micro_environment of β_carotene. The results of SERS are consistent with the changes of absorption spectrum of Pd OECC induced by strong illumination. There are no changes that can be ascribed to new vibration bands, so it is deduced that Pd OECC on the silver mirror is identical to that in the solution. In summary, SERS proved a good method to study the photodamage mechanism of photosynthesis.展开更多
This paper reports that, based on the electromagnetic scattering theory of the multipole method, a high-quality hollow beam is produced through a selectively liquid-filled photonic crystal fibre. Instead of a doughnut...This paper reports that, based on the electromagnetic scattering theory of the multipole method, a high-quality hollow beam is produced through a selectively liquid-filled photonic crystal fibre. Instead of a doughnut shape, a typical hollow beam is produced by other methods; the mode-field images of the hollow-beam photonic crystal fibre satisfy sixth-order rotation symmetry, according to the symmetry of the photonic crystal fibre (PCF) structure. A dark spot size of the liquid-filled photonic crystal fibre-generated hollow beam can be tuned by inserting liquid into the cladding region and varying the photonic crystal fibre structure parameters. The liquid-filled PCF makes a convenient and flexible tool for the guiding and trapping of atoms and the creation of all-fibre optical tweezers.展开更多
Analytical studies are made for the proton acceleration during its motion inthe fields of the fundamental mode excited by a high-intensity microwave in a rectangular waveguide,when the proton is injected along the pro...Analytical studies are made for the proton acceleration during its motion inthe fields of the fundamental mode excited by a high-intensity microwave in a rectangular waveguide,when the proton is injected along the propagating direction of the mode. The trajectory of theproton is calculated and the expressions are obtained for the energy gain and acceleration gradienttogether with the effects of plasma density, microwave frequency and waveguide width. Energy gain of181 keV is attained by a 50 keV proton in a 0.015m x 0.020 m evacuated waveguide when 0.5 x 10^(10)W/m^2 microwave intensity is used. However, this gain increases to 1387 keV when the waveguide isfilled with a plasma having a density of 1.0 x 10^(19) m^(-3). Higher acceleration gradients areachieved when the proton is injected with a higher initial energy and also when the microwaveintensity increases. The effects of the microwave frequency and width of the waveguide are found todecrease the acceleration gradient.展开更多
Erbium-doped holey fiber with hexagonal lattice was modeled by using effective index method. In order to calculate the equivalent step index of the periodic structure of the cladding holey optical fiber, all-vectorial...Erbium-doped holey fiber with hexagonal lattice was modeled by using effective index method. In order to calculate the equivalent step index of the periodic structure of the cladding holey optical fiber, all-vectorial fundamental space filling mode approach was utilized. By using EHll mode, we have numerically solved the rate equations of a three-level pumping scheme for a fiber laser. The obtained results have shown a good agreement with the other experimental results, recently. The results have predicted amplifiers with gain efficiencies as high as 10 dB/mW.展开更多
Background Circular electron positron collider(CEPC)is a 100-km electron positron collider proposed by IHEP.The longitudinal coupled-bunch instability(LCBI)of CEPC main ring operating to study the Z particle(Z machine...Background Circular electron positron collider(CEPC)is a 100-km electron positron collider proposed by IHEP.The longitudinal coupled-bunch instability(LCBI)of CEPC main ring operating to study the Z particle(Z machine)may be a limiting factor of CEPC and needs to be considered seriously.Purpose The purposes of this paper are to calculate the LCBI caused by the fundamental mode of superconducting RF cavities in CEPC main ring,which is the most critical impedance,and to complete the design of the RF feedback systems suitable for CEPC,whose specifications can suppress the LCBI to a manageable level.Methods The LCBI growth rate in the CEPC main ring is calculated in the frequency domain.Two kinds of RF feedback,i.e.,direct feedback and one-turn delay feedback,are simulated with the program to suppress the LCBI.And according to the suppression effect of LCBI growth rate after adding RF feedback,the required design parameters are given.Results Two operation conditions of Z machine have severe LCBI without suppression,and dozens of longitudinal modes are unstable.Only the direct RF feedback is needed to suppress LCBI in the case of Z-30 MW,while both the direct RF feedback with maximum gain and one-turn feedback are needed in the case of Z-50 MW.The LCBI growth rates can be reduced to the order of half frequency of the synchronous oscillation.Conclusion The LCBI of CEPC Z machine has been studied.Selecting appropriate feedback RF feedback can reduce the LCBI to an acceptable value that bunch by bunch feedback can suppress.展开更多
We demonstrate a new kind of multi-core photonic liquid crystal fibers (PLCFs) which have six liquid crystal cores arrayed in the ring-type geometry and separated by the air holes. Through analyzing the structure of t...We demonstrate a new kind of multi-core photonic liquid crystal fibers (PLCFs) which have six liquid crystal cores arrayed in the ring-type geometry and separated by the air holes. Through analyzing the structure of this kind of PLCFs, it can be found that they have the ability to resist the structure deformation. Due to the effective index of the liquid crystal can be adjusted by temperature and wavelength, the energy in the six liquid crystal cores is increased with the temperature increasing and wavelength decreasing. The effective index of the PLCFs is decreased, the effective fundamental mode area is increased and the dispersion properties are gently affected with the wavelength increasing and temperature decreasing.展开更多
A special optical fiber is investigated, which has a helical core in the cylindrical cladding. The beam propagation method (BPM) is used for analyzing the impacts of the geometric and physical parameters on the prop...A special optical fiber is investigated, which has a helical core in the cylindrical cladding. The beam propagation method (BPM) is used for analyzing the impacts of the geometric and physical parameters on the properties of mode losses of the helical-core fiber. The propagation loss is 0.32 dB/m for the fundamental mode and the propagation loss is 20.95 dB/m for the LPu mode in the wavelength range of 1050-1065 nm when the core diameter is 19 μm, the pitch of the core's helix is 2.66 mm, and the offset of the helix core from the center of the fiber axis is 31 μm. The core diameter of the single-mode helical-core fiber well exceeds that of the conventional large-mode-area fiber. The helical-core fiber can provide the effec- tive large-mode-area single-mode operation without coiling fiber or selecting excitation mode.展开更多
基金supported by the National Basic Research Program of China(Grant Nos.2010CB934104,2009CB320300,and 2011CBA00608)the National Natural Foundation of China(Grant Nos.61604007,61378058,61376049,61575008,and 61574011)
文摘The characteristics of the photonic crystal vertical cavity surface emitting lasers(PhC-VCSELs) were investigated by using the full vector finite-difference time-domain(FDTD) method through the transverse mode loss analysis. PhC-VCSELs with different photonic crystal structures were analyzed theoretically and experimentally. Through combining the dual mode confinement of oxide aperture and seven-point-defect photonic crystal structure, the PhC-VCSELs with low threshold current of 0.9 mA and maximum output power of 3.1 mW operating in single fundamental mode were demonstrated. Mode loss analysis method was proven as a reliable and useful way to analyze and optimize the PhC-VCSELs.
基金Project supported by the National Key Basic Research Special Foundation of China(Grant No.2010CB327605 and 2010CB328300)National High-Technology Research and Development Program of China(Grant No.2009AA01Z220)+3 种基金the Key Program of Chinese Ministry of Education(Grant No.109015)the Discipline Co-construction Project of Beijing Municipal Commission of Education(Grant No.YB20081001301)the Open Fund of Key Laboratory of Information Photonics and Optical Communications(Beijing University of Posts and Telecommunications) of Ministry of Educationthe Specialized Research Fund for the Doctoral Program of Beijing University of Posts and Telecommunications,China(Grant No.CX201023)
文摘By coupling a train of femtosecond pulses with 100 fs pulse width at a repetition rate of 76 MHz generated by a mode-locked Ti: sapphire laser into the fundamental mode of photonic crystal fibre (PCF) with central holes fabricated through extracting air from the central hole, the broad and ultra-flattened supercontinuum (SC) in the visible wavelengths is generated. When the fundamental mode experiences an anomalous dispersion regime, three phases in the SC generation process are primarily presented. The SC generation (SCG) in the wavelength range from 470 nm to 805 nm does not emerge significant ripples due to a higher pump peak power and the corresponding mode fields at different wavelengths are observed using Bragg gratings. The relative intensity fluctuations of output spectrum in the wavelength ranges of 530 nm to 640 nm and 543 nm to 590 nm are only 0.028 and 0.0071, respectively.
基金Project supported by the National Natural Science Foundation-the Science Foundation of China Academy of Engineering Physics(NSAF) (Grant No 10876037)China Postdoctoral Science Foundation (Grant No 20080441238)
文摘Spherical aberrations of the thermal lens of the active media are severe when solid state lasers are strongly pumped. The fundamental mode profile deteriorates due to the aberrations. Self-consistent modes of a resonator with aberrations are calculated by using the Fox-Li diffraction iterative algorithm. Calculation results show that the aberration induced fundamental mode beam quality deterioration depends greatly on the resonator design. The tolerance of a flat-flat resonator to the aberration coefficient is about 30λ in the middle of stability, where λ is the wavelength of laser beam. But for a dynamically stable resonator, 2λ of spherical aberration will create diffraction loss of more than 40%, if inappropriate design criteria are used. A birefringence compensated laser resonator with two Nd:YAG rods is experimentally studied. The experimental data are in quite good agreement with simulation results.
基金Supported by the National Natural Science Foundation of China under Grant No 11104314
文摘A detailed investigation is presented for Love waves (LWs) with thick viscoelastic guiding layers. A theoretical calculation and an experiment are carried out for LW devices incorporating an SU-8 guiding layer, an ST-90° X quartz substrate and two 28-μm periodic interdigital transducers. Both the calculated and the measured results show an increase in propagation velocity when h / λ〉0.05. The measured insertion loss of LWs is consistent with the calculated propagation loss. The insertion loss of bulk waves is also measured and is compared with that of LWs.
基金This study was supported by National Key Programme for S&T Research and Development(Grant No.:2016YFA0400400)National Natural Science Foundation of China(No.11575218)Key research Program of Frontier Science,CAS(Grant No.:QYZDJ-SSW-SLH004).
文摘Background CEPC is a 100-kilometer-long electron-position collider,aiming to produce Higgs,W and Z-pole.Double ring(DR)is the baseline design of its main ring,and advanced partial double ring(APDR)is the alternative one.Purpose The purpose of this paper is to study the beam loading effects and the corresponding longitudinal beam dynamics of CEPC DR and APDR.Methods The phase shift of the bunches modulated by the bunch gap is calculated with the approximation formulas and simulated with the program.All these methods are compared,and the application conditions of them are also elaborated.In addition,the longitudinal coupled-bunch instability in CEPC main ring is calculated by analytical formulas.Results In CEPC DR high-lumi Z,the phase shift can be reduced to 0.51 deg(°).Besides,the total number of unstable longitudinal modes is 15 in CEPC DR high-lumi Z when no feedback system is added.Conclusion The phase shift of the bunches in CEPC can be reduced to an acceptable value if the optimal filling pattern is chosen.For CEPC APDR,the RF parameters are calculated and the beam loading effects are tolerable.
基金The State Key Basic Research and Developmental Plan(G1998010100).
文摘Raman spectra of purified oxygen evolution core complexes (Pd OECC) thin films on silver mirror substrates have been taken over the frequency range of 250-3100 cm -1 by surface enhanced Raman scattering (SERS). Besides the fundamental frequency modes of β_carotene in Pd OECC, many weak peaks are observed. According to the selection rules of overtone and combination bands, most of them are attributed to the second_order Raman spectra of β_carotene. Compared with the SERS of normal Pd OECC, the SERS of Pd OECC after strong illumination shows a decrease in scattering intensity and an increase in line widths, indicating changes of conformation and micro_environment of β_carotene. The results of SERS are consistent with the changes of absorption spectrum of Pd OECC induced by strong illumination. There are no changes that can be ascribed to new vibration bands, so it is deduced that Pd OECC on the silver mirror is identical to that in the solution. In summary, SERS proved a good method to study the photodamage mechanism of photosynthesis.
基金Project supported in part by the National Natural Science Foundation of China(Grant No.10874145)the Specialized Research Fund for Doctorial Program of Higher Education(Grant No.20091333110010)+1 种基金the Natural Science Foundation of Heibei Province, China(Grant No.F2009000481)the China Postdoctoral Science Foundation(Grant Nos.20080440014 and 200902046)
文摘This paper reports that, based on the electromagnetic scattering theory of the multipole method, a high-quality hollow beam is produced through a selectively liquid-filled photonic crystal fibre. Instead of a doughnut shape, a typical hollow beam is produced by other methods; the mode-field images of the hollow-beam photonic crystal fibre satisfy sixth-order rotation symmetry, according to the symmetry of the photonic crystal fibre (PCF) structure. A dark spot size of the liquid-filled photonic crystal fibre-generated hollow beam can be tuned by inserting liquid into the cladding region and varying the photonic crystal fibre structure parameters. The liquid-filled PCF makes a convenient and flexible tool for the guiding and trapping of atoms and the creation of all-fibre optical tweezers.
文摘Analytical studies are made for the proton acceleration during its motion inthe fields of the fundamental mode excited by a high-intensity microwave in a rectangular waveguide,when the proton is injected along the propagating direction of the mode. The trajectory of theproton is calculated and the expressions are obtained for the energy gain and acceleration gradienttogether with the effects of plasma density, microwave frequency and waveguide width. Energy gain of181 keV is attained by a 50 keV proton in a 0.015m x 0.020 m evacuated waveguide when 0.5 x 10^(10)W/m^2 microwave intensity is used. However, this gain increases to 1387 keV when the waveguide isfilled with a plasma having a density of 1.0 x 10^(19) m^(-3). Higher acceleration gradients areachieved when the proton is injected with a higher initial energy and also when the microwaveintensity increases. The effects of the microwave frequency and width of the waveguide are found todecrease the acceleration gradient.
文摘Erbium-doped holey fiber with hexagonal lattice was modeled by using effective index method. In order to calculate the equivalent step index of the periodic structure of the cladding holey optical fiber, all-vectorial fundamental space filling mode approach was utilized. By using EHll mode, we have numerically solved the rate equations of a three-level pumping scheme for a fiber laser. The obtained results have shown a good agreement with the other experimental results, recently. The results have predicted amplifiers with gain efficiencies as high as 10 dB/mW.
文摘Background Circular electron positron collider(CEPC)is a 100-km electron positron collider proposed by IHEP.The longitudinal coupled-bunch instability(LCBI)of CEPC main ring operating to study the Z particle(Z machine)may be a limiting factor of CEPC and needs to be considered seriously.Purpose The purposes of this paper are to calculate the LCBI caused by the fundamental mode of superconducting RF cavities in CEPC main ring,which is the most critical impedance,and to complete the design of the RF feedback systems suitable for CEPC,whose specifications can suppress the LCBI to a manageable level.Methods The LCBI growth rate in the CEPC main ring is calculated in the frequency domain.Two kinds of RF feedback,i.e.,direct feedback and one-turn delay feedback,are simulated with the program to suppress the LCBI.And according to the suppression effect of LCBI growth rate after adding RF feedback,the required design parameters are given.Results Two operation conditions of Z machine have severe LCBI without suppression,and dozens of longitudinal modes are unstable.Only the direct RF feedback is needed to suppress LCBI in the case of Z-30 MW,while both the direct RF feedback with maximum gain and one-turn feedback are needed in the case of Z-50 MW.The LCBI growth rates can be reduced to the order of half frequency of the synchronous oscillation.Conclusion The LCBI of CEPC Z machine has been studied.Selecting appropriate feedback RF feedback can reduce the LCBI to an acceptable value that bunch by bunch feedback can suppress.
基金supported by the National Natural Science Foundation of China (Nos.61077047 and 61107059)the Natural Science Foundation of Heilongjiang Province (No.A200914)the Research Fund for the Doctoral Program of Higher Education of China (No.200802171034)
文摘We demonstrate a new kind of multi-core photonic liquid crystal fibers (PLCFs) which have six liquid crystal cores arrayed in the ring-type geometry and separated by the air holes. Through analyzing the structure of this kind of PLCFs, it can be found that they have the ability to resist the structure deformation. Due to the effective index of the liquid crystal can be adjusted by temperature and wavelength, the energy in the six liquid crystal cores is increased with the temperature increasing and wavelength decreasing. The effective index of the PLCFs is decreased, the effective fundamental mode area is increased and the dispersion properties are gently affected with the wavelength increasing and temperature decreasing.
基金supported by the National Natural Science Foundation of China(Nos.11104043,61107069,60927008)the Natural Science Foundation of Heilongjiang Provincein China(No.LC201006)
文摘A special optical fiber is investigated, which has a helical core in the cylindrical cladding. The beam propagation method (BPM) is used for analyzing the impacts of the geometric and physical parameters on the properties of mode losses of the helical-core fiber. The propagation loss is 0.32 dB/m for the fundamental mode and the propagation loss is 20.95 dB/m for the LPu mode in the wavelength range of 1050-1065 nm when the core diameter is 19 μm, the pitch of the core's helix is 2.66 mm, and the offset of the helix core from the center of the fiber axis is 31 μm. The core diameter of the single-mode helical-core fiber well exceeds that of the conventional large-mode-area fiber. The helical-core fiber can provide the effec- tive large-mode-area single-mode operation without coiling fiber or selecting excitation mode.