Green supplier selection is an important debate in green supply chain management(GSCM),attracting global attention from scholars,especially companies and policymakers.Companies frequently search for new ideas and stra...Green supplier selection is an important debate in green supply chain management(GSCM),attracting global attention from scholars,especially companies and policymakers.Companies frequently search for new ideas and strategies to assist them in realizing sustainable development.Because of the speculative character of human opinions,supplier selection frequently includes unreliable data,and the interval-valued Pythagorean fuzzy soft set(IVPFSS)provides an exceptional capacity to cope with excessive fuzziness,inconsistency,and inexactness through the decision-making procedure.The main goal of this study is to come up with new operational laws for interval-valued Pythagorean fuzzy soft numbers(IVPFSNs)and create two interaction operators-the intervalvalued Pythagorean fuzzy soft interaction weighted average(IVPFSIWA)and the interval-valued Pythagorean fuzzy soft interaction weighted geometric(IVPFSIWG)operators,and analyze their properties.These operators are highly advantageous in addressing uncertain problems by considering membership and non-membership values within intervals,providing a superior solution to other methods.Moreover,specialist judgments were calculated by the MCGDM technique,supporting the use of interaction AOs to regulate the interdependence and fundamental partiality of green supplier assessment aspects.Lastly,a statistical clarification of the planned method for green supplier selection is presented.展开更多
This research is devoted to diagnosing water-borne infectious diseases caused by floods employing a novel diagnosis approach,the Einstein hybrid structure of q-rung orthopair fuzzy soft set.This approach integrates pa...This research is devoted to diagnosing water-borne infectious diseases caused by floods employing a novel diagnosis approach,the Einstein hybrid structure of q-rung orthopair fuzzy soft set.This approach integrates parts of fuzzy logic and soft set theory to develop a robust alternative for disease detection in stressful situations,especially in areas affected by floods.Compared to the traditional intuitionistic fuzzy soft set and Pythagorean fuzzy soft set,the q-rung orthopair fuzzy soft set(q-ROFSS)adequately incorporates unclear and indeterminate facts.The major objective of this investigation is to formulate the q-rung orthopair fuzzy soft Einstein hybrid weighted average(q-ROFSEHWA)operator and its specific characteristics.Moreover,our stated operator is implementing intelligentmulti-criteria group decision-making(MCGDM)methodology.Floods are severe natural catastrophes that raise the risk of diseases and epidemics,particularly those caused by contaminants in the water,such as gastrointestinal diseases,respiratory infections,vector-borne diseases,skin infections,and water-borne parasites.The designed MCGDM strategy tackles the prevalence of certain conditions in flood-affected patients.A comparative investigation determined that the suggested method for detecting water-borne infectious disease due to floods is more effective and productive than conventional methods because of its logical structure.展开更多
The aim of this paper is to introduce the concept of a generalized Pythagorean fuzzy soft set(GPFSS),which is a combination of the generalized fuzzy soft sets and Pythagorean fuzzy sets.Several of important operations...The aim of this paper is to introduce the concept of a generalized Pythagorean fuzzy soft set(GPFSS),which is a combination of the generalized fuzzy soft sets and Pythagorean fuzzy sets.Several of important operations of GPFSS including complement,restricted union,and extended intersection are discussed.The basic properties of GPFSS are presented.Further,an algorithm of GPFSSs is given to solve the fuzzy soft decision-making.Finally,a comparative analysis between the GPFSS approach and some existing approaches is provided to show their reliability over them.展开更多
Interval-valued Pythagorean fuzzy soft set(IVPFSS)is a generalization of the interval-valued intuitionistic fuzzy soft set(IVIFSS)and interval-valued Pythagorean fuzzy set(IVPFS).The IVPFSS handled more uncertainty co...Interval-valued Pythagorean fuzzy soft set(IVPFSS)is a generalization of the interval-valued intuitionistic fuzzy soft set(IVIFSS)and interval-valued Pythagorean fuzzy set(IVPFS).The IVPFSS handled more uncertainty comparative to IVIFSS;it is the most significant technique for explaining fuzzy information in the decision-making process.In this work,some novel operational laws for IVPFSS have been proposed.Based on presented operational laws,two innovative aggregation operators(AOs)have been developed such as interval-valued Pythagorean fuzzy soft weighted average(IVPFSWA)and interval-valued Pythagorean fuzzy soft weighted geometric(IVPFSWG)operators with their fundamental properties.A multi-attribute group decision-making(MAGDM)approach has been established utilizing our developed operators.A numerical example has been presented to ensure the validity of the proposed MAGDM technique.Finally,comparative studies have been given between the proposed approach and some existing studies.The obtained results through comparative studies show that the proposed technique is more credible and reliable than existing approaches.展开更多
Classification is one of the data mining processes used to predict predetermined target classes with data learning accurately.This study discusses data classification using a fuzzy soft set method to predict target cl...Classification is one of the data mining processes used to predict predetermined target classes with data learning accurately.This study discusses data classification using a fuzzy soft set method to predict target classes accurately.This study aims to form a data classification algorithm using the fuzzy soft set method.In this study,the fuzzy soft set was calculated based on the normalized Hamming distance.Each parameter in this method is mapped to a power set from a subset of the fuzzy set using a fuzzy approximation function.In the classification step,a generalized normalized Euclidean distance is used to determine the similarity between two sets of fuzzy soft sets.The experiments used the University of California(UCI)Machine Learning dataset to assess the accuracy of the proposed data classification method.The dataset samples were divided into training(75%of samples)and test(25%of samples)sets.Experiments were performed in MATLAB R2010a software.The experiments showed that:(1)The fastest sequence is matching function,distance measure,similarity,normalized Euclidean distance,(2)the proposed approach can improve accuracy and recall by up to 10.3436%and 6.9723%,respectively,compared with baseline techniques.Hence,the fuzzy soft set method is appropriate for classifying data.展开更多
The maintenance window scheme(MWS) is one of the most important railway transportation organizational plans and plays an important role in ensuring railway operational safety. However, MWS setting is a very complicate...The maintenance window scheme(MWS) is one of the most important railway transportation organizational plans and plays an important role in ensuring railway operational safety. However, MWS setting is a very complicated process, and most countries currently do so with the help of a computer-aided decision system. In general, a decision system can generate multiple alternatives for MWS within an acceptable time. Therefore, how to choose the best option from the alternatives is a vital decision. This paper presents a novel framework for MWS evaluation based on the Chinese railway system. Specifically, the requirements of each department related to MWS setting are analysed, and we construct an evaluation indicator system for MWS based on the preferences of different departments. Then, we apply the fuzzy soft set theory to MWS evaluation, a method that not only effectively deals with evaluation of uncertain information, but also gives flexibility for experts to input their subjective judgment.Additionally, using the ‘‘AND’’ operation of soft set theory allows combing evaluation information from multiple evaluators to give comprehensive results. Finally, a case study illustrates the proposed framework, showing that the proposed evaluation indicator system and evaluation method are effective and practical.展开更多
The probabilistic hesitant fuzzy multi-attribute group decision-making method introduces probability and hesitation into decision-making problems at the same time,which can improve the reliability and accuracy of deci...The probabilistic hesitant fuzzy multi-attribute group decision-making method introduces probability and hesitation into decision-making problems at the same time,which can improve the reliability and accuracy of decision-making results,and has become a research hotspots in recent years.However,there are still many problems,such as overly complex calculations and difficulty in obtaining probability data.Based on these,the paper proposes a multi-attribute group decision-making model based on probability hesitant fuzzy soft sets.Firstly,the definition of probabilistic hesitant fuzzy soft set is given.Then,based on soft set theory and probabilistic hesitant fuzzy set,the similarity measure of probabilistic hesitant fuzzy soft set is proposed,and the two measures are further combined.Finally,it is applied to the construction of multi-attribute group decision-making model,and the effectiveness and rationality of the model are verified by an example.The example shows that the new similarity calculation formula and algorithm model in this paper have higher accuracy,and the calculation process is more simple,it provides a feasible method for multi-attribute group decision making problems.展开更多
Hypersoft set theory is a most advanced form of soft set theory and an innovative mathematical tool for dealing with unclear complications.Pythagorean fuzzy hypersoft set(PFHSS)is the most influential and capable leew...Hypersoft set theory is a most advanced form of soft set theory and an innovative mathematical tool for dealing with unclear complications.Pythagorean fuzzy hypersoft set(PFHSS)is the most influential and capable leeway of the hypersoft set(HSS)and Pythagorean fuzzy soft set(PFSS).It is also a general form of the intuitionistic fuzzy hypersoft set(IFHSS),which provides a better and more perfect assessment of the decision-making(DM)process.The fundamental objective of this work is to enrich the precision of decision-making.A novel mixed aggregation operator called Pythagorean fuzzy hypersoft Einstein weighted geometric(PFHSEWG)based on Einstein’s operational laws has been developed.Some necessary properties,such as idempotency,boundedness,and homogeneity,have been presented for the anticipated PFHSEWG operator.Multi-criteria decision-making(MCDM)plays an active role in dealing with the complications of manufacturing design for material selection.However,conventional methods of MCDM usually produce inconsistent results.Based on the proposed PFHSEWG operator,a robust MCDM procedure for material selection in manufacturing design is planned to address these inconveniences.The expected MCDM method for material selection(MS)of cryogenic storing vessels has been established in the real world.Significantly,the planned model for handling inaccurate data based on PFHSS is more operative and consistent.展开更多
In this paper, uncertainty has been measured in the form of fuzziness which arises due to imprecise boundaries of fuzzy sets. Uncertainty caused due to human’s cognition can be decreased by the use of fuzzy soft sets...In this paper, uncertainty has been measured in the form of fuzziness which arises due to imprecise boundaries of fuzzy sets. Uncertainty caused due to human’s cognition can be decreased by the use of fuzzy soft sets. There are different approaches to deal with the measurement of uncertainty. The method we proposed uses fuzzified evidence theory to calculate total degree of fuzziness of the parameters. It consists of mainly four parts.The first part is to measure uncertainties of parameters using fuzzy soft sets and then to modulate the uncertainties calculated. Afterward, the appropriate basic probability assignments with respect to each parameter are produced. In the last, we use Dempster’s rule of combination to fuse independent parameters into integrated one. To validate the proposed method, we perform an experiment and compare our outputs with grey relational analysis method. Also,a medical diagnosis application in reference to COVID-19 has been given to show the effectiveness of advanced method by comparing with other method.展开更多
A unique mathematical strategy for dealing with uncertainty is fuzzy soft set theory. In this paper, we propose fuzzy soft expert matrices and describe numerous varieties of fuzzy soft expert matrices, as well as spec...A unique mathematical strategy for dealing with uncertainty is fuzzy soft set theory. In this paper, we propose fuzzy soft expert matrices and describe numerous varieties of fuzzy soft expert matrices, as well as specific operations. Finally, by applying these matrices to decision-making scenarios, we widen our methodology.展开更多
In this paper,we point out that several assertions(Propositions 3.15 and 5.2(v)) in a previous paper by Majumdar and Samanta are not true in general,by counterexamples.
In this paper,we focus on combining the theories of fuzzy soft sets with Γ-modules,and establishing a new framework for fuzzy soft Γ-submodules.The main contributions of the paper are 3-fold.First,we present the con...In this paper,we focus on combining the theories of fuzzy soft sets with Γ-modules,and establishing a new framework for fuzzy soft Γ-submodules.The main contributions of the paper are 3-fold.First,we present the concepts of(R,S)-bi-Γ-submodules,quasi-Γ-submodules and regular Γ-modules.Meanwhile,some illustrative examples are given to show the rationality of the definitions introduced in this paper.Second,several new kinds of generalized fuzzy soft Γ-submodules are proposed,and related properties and mutual relationships are also investigated.Third,we discover some intrinsic connections between the generalized fuzzy soft Γ-submodules presented in this paper and crisp Γ-submodules,and describe the relationships between regular Γ-modules and the generalized fuzzy soft Γ-submodules presented in this paper.展开更多
Soft set theory has a rich potential application in several fields. A soft group is a parameterized family of subgroups and a fuzzy soft group is a parameterized family of fuzzy subgroups. The concept of fuzzy soft gr...Soft set theory has a rich potential application in several fields. A soft group is a parameterized family of subgroups and a fuzzy soft group is a parameterized family of fuzzy subgroups. The concept of fuzzy soft group is the generalization of soft group. Abdulkadir Aygunoglu and Halis Aygun introduced the notion of fuzzy soft groups in 2009[1]. In this paper, the concept of lattice ordered fuzzy soft groups and its duality has been introduced. Then distributive and modular lattice ordered fuzzy soft groups are analysed. The objective of this paper is to study the lattice theory over the collection of fuzzy soft group in a parametric manner. Some pertinent properties have been analysed and hence established duality principle.展开更多
基金funded by King Saud University,Riyadh,Saudi Arabia.
文摘Green supplier selection is an important debate in green supply chain management(GSCM),attracting global attention from scholars,especially companies and policymakers.Companies frequently search for new ideas and strategies to assist them in realizing sustainable development.Because of the speculative character of human opinions,supplier selection frequently includes unreliable data,and the interval-valued Pythagorean fuzzy soft set(IVPFSS)provides an exceptional capacity to cope with excessive fuzziness,inconsistency,and inexactness through the decision-making procedure.The main goal of this study is to come up with new operational laws for interval-valued Pythagorean fuzzy soft numbers(IVPFSNs)and create two interaction operators-the intervalvalued Pythagorean fuzzy soft interaction weighted average(IVPFSIWA)and the interval-valued Pythagorean fuzzy soft interaction weighted geometric(IVPFSIWG)operators,and analyze their properties.These operators are highly advantageous in addressing uncertain problems by considering membership and non-membership values within intervals,providing a superior solution to other methods.Moreover,specialist judgments were calculated by the MCGDM technique,supporting the use of interaction AOs to regulate the interdependence and fundamental partiality of green supplier assessment aspects.Lastly,a statistical clarification of the planned method for green supplier selection is presented.
基金funded by King Saud University,Research Supporting Project Number(RSP2024R167),Riyadh,Saudi Arabia.
文摘This research is devoted to diagnosing water-borne infectious diseases caused by floods employing a novel diagnosis approach,the Einstein hybrid structure of q-rung orthopair fuzzy soft set.This approach integrates parts of fuzzy logic and soft set theory to develop a robust alternative for disease detection in stressful situations,especially in areas affected by floods.Compared to the traditional intuitionistic fuzzy soft set and Pythagorean fuzzy soft set,the q-rung orthopair fuzzy soft set(q-ROFSS)adequately incorporates unclear and indeterminate facts.The major objective of this investigation is to formulate the q-rung orthopair fuzzy soft Einstein hybrid weighted average(q-ROFSEHWA)operator and its specific characteristics.Moreover,our stated operator is implementing intelligentmulti-criteria group decision-making(MCGDM)methodology.Floods are severe natural catastrophes that raise the risk of diseases and epidemics,particularly those caused by contaminants in the water,such as gastrointestinal diseases,respiratory infections,vector-borne diseases,skin infections,and water-borne parasites.The designed MCGDM strategy tackles the prevalence of certain conditions in flood-affected patients.A comparative investigation determined that the suggested method for detecting water-borne infectious disease due to floods is more effective and productive than conventional methods because of its logical structure.
文摘The aim of this paper is to introduce the concept of a generalized Pythagorean fuzzy soft set(GPFSS),which is a combination of the generalized fuzzy soft sets and Pythagorean fuzzy sets.Several of important operations of GPFSS including complement,restricted union,and extended intersection are discussed.The basic properties of GPFSS are presented.Further,an algorithm of GPFSSs is given to solve the fuzzy soft decision-making.Finally,a comparative analysis between the GPFSS approach and some existing approaches is provided to show their reliability over them.
文摘Interval-valued Pythagorean fuzzy soft set(IVPFSS)is a generalization of the interval-valued intuitionistic fuzzy soft set(IVIFSS)and interval-valued Pythagorean fuzzy set(IVPFS).The IVPFSS handled more uncertainty comparative to IVIFSS;it is the most significant technique for explaining fuzzy information in the decision-making process.In this work,some novel operational laws for IVPFSS have been proposed.Based on presented operational laws,two innovative aggregation operators(AOs)have been developed such as interval-valued Pythagorean fuzzy soft weighted average(IVPFSWA)and interval-valued Pythagorean fuzzy soft weighted geometric(IVPFSWG)operators with their fundamental properties.A multi-attribute group decision-making(MAGDM)approach has been established utilizing our developed operators.A numerical example has been presented to ensure the validity of the proposed MAGDM technique.Finally,comparative studies have been given between the proposed approach and some existing studies.The obtained results through comparative studies show that the proposed technique is more credible and reliable than existing approaches.
文摘Classification is one of the data mining processes used to predict predetermined target classes with data learning accurately.This study discusses data classification using a fuzzy soft set method to predict target classes accurately.This study aims to form a data classification algorithm using the fuzzy soft set method.In this study,the fuzzy soft set was calculated based on the normalized Hamming distance.Each parameter in this method is mapped to a power set from a subset of the fuzzy set using a fuzzy approximation function.In the classification step,a generalized normalized Euclidean distance is used to determine the similarity between two sets of fuzzy soft sets.The experiments used the University of California(UCI)Machine Learning dataset to assess the accuracy of the proposed data classification method.The dataset samples were divided into training(75%of samples)and test(25%of samples)sets.Experiments were performed in MATLAB R2010a software.The experiments showed that:(1)The fastest sequence is matching function,distance measure,similarity,normalized Euclidean distance,(2)the proposed approach can improve accuracy and recall by up to 10.3436%and 6.9723%,respectively,compared with baseline techniques.Hence,the fuzzy soft set method is appropriate for classifying data.
基金supported by the National Natural Science Foundation of China (Project Nos.61273242,61403317)Science and Technology Plan of Sichuan province (Project No.2017015)Service Science and Innovation Key Laboratory of Sichuan Province (KL1701)
文摘The maintenance window scheme(MWS) is one of the most important railway transportation organizational plans and plays an important role in ensuring railway operational safety. However, MWS setting is a very complicated process, and most countries currently do so with the help of a computer-aided decision system. In general, a decision system can generate multiple alternatives for MWS within an acceptable time. Therefore, how to choose the best option from the alternatives is a vital decision. This paper presents a novel framework for MWS evaluation based on the Chinese railway system. Specifically, the requirements of each department related to MWS setting are analysed, and we construct an evaluation indicator system for MWS based on the preferences of different departments. Then, we apply the fuzzy soft set theory to MWS evaluation, a method that not only effectively deals with evaluation of uncertain information, but also gives flexibility for experts to input their subjective judgment.Additionally, using the ‘‘AND’’ operation of soft set theory allows combing evaluation information from multiple evaluators to give comprehensive results. Finally, a case study illustrates the proposed framework, showing that the proposed evaluation indicator system and evaluation method are effective and practical.
基金Supported by 2023 Henan Provincial Department of Science and Technology Key R&D and Promotion Special Project(Soft Science Research)(232400411049)Henan Province Science and Technology Research and Development Plan Joint Fund(Industry)Project(225101610054)。
文摘The probabilistic hesitant fuzzy multi-attribute group decision-making method introduces probability and hesitation into decision-making problems at the same time,which can improve the reliability and accuracy of decision-making results,and has become a research hotspots in recent years.However,there are still many problems,such as overly complex calculations and difficulty in obtaining probability data.Based on these,the paper proposes a multi-attribute group decision-making model based on probability hesitant fuzzy soft sets.Firstly,the definition of probabilistic hesitant fuzzy soft set is given.Then,based on soft set theory and probabilistic hesitant fuzzy set,the similarity measure of probabilistic hesitant fuzzy soft set is proposed,and the two measures are further combined.Finally,it is applied to the construction of multi-attribute group decision-making model,and the effectiveness and rationality of the model are verified by an example.The example shows that the new similarity calculation formula and algorithm model in this paper have higher accuracy,and the calculation process is more simple,it provides a feasible method for multi-attribute group decision making problems.
基金funding this work through General Research Project under Grant No.GRP/93/43.
文摘Hypersoft set theory is a most advanced form of soft set theory and an innovative mathematical tool for dealing with unclear complications.Pythagorean fuzzy hypersoft set(PFHSS)is the most influential and capable leeway of the hypersoft set(HSS)and Pythagorean fuzzy soft set(PFSS).It is also a general form of the intuitionistic fuzzy hypersoft set(IFHSS),which provides a better and more perfect assessment of the decision-making(DM)process.The fundamental objective of this work is to enrich the precision of decision-making.A novel mixed aggregation operator called Pythagorean fuzzy hypersoft Einstein weighted geometric(PFHSEWG)based on Einstein’s operational laws has been developed.Some necessary properties,such as idempotency,boundedness,and homogeneity,have been presented for the anticipated PFHSEWG operator.Multi-criteria decision-making(MCDM)plays an active role in dealing with the complications of manufacturing design for material selection.However,conventional methods of MCDM usually produce inconsistent results.Based on the proposed PFHSEWG operator,a robust MCDM procedure for material selection in manufacturing design is planned to address these inconveniences.The expected MCDM method for material selection(MS)of cryogenic storing vessels has been established in the real world.Significantly,the planned model for handling inaccurate data based on PFHSS is more operative and consistent.
文摘In this paper, uncertainty has been measured in the form of fuzziness which arises due to imprecise boundaries of fuzzy sets. Uncertainty caused due to human’s cognition can be decreased by the use of fuzzy soft sets. There are different approaches to deal with the measurement of uncertainty. The method we proposed uses fuzzified evidence theory to calculate total degree of fuzziness of the parameters. It consists of mainly four parts.The first part is to measure uncertainties of parameters using fuzzy soft sets and then to modulate the uncertainties calculated. Afterward, the appropriate basic probability assignments with respect to each parameter are produced. In the last, we use Dempster’s rule of combination to fuse independent parameters into integrated one. To validate the proposed method, we perform an experiment and compare our outputs with grey relational analysis method. Also,a medical diagnosis application in reference to COVID-19 has been given to show the effectiveness of advanced method by comparing with other method.
文摘A unique mathematical strategy for dealing with uncertainty is fuzzy soft set theory. In this paper, we propose fuzzy soft expert matrices and describe numerous varieties of fuzzy soft expert matrices, as well as specific operations. Finally, by applying these matrices to decision-making scenarios, we widen our methodology.
基金Supported by the Science Fund for Young Scholars of Shaanxi Normal University (Grant No 200701007)the Natural Science Foundation of Shaanxi Province (Grant No 2010JM1005)
文摘In this paper,we point out that several assertions(Propositions 3.15 and 5.2(v)) in a previous paper by Majumdar and Samanta are not true in general,by counterexamples.
基金Supported by the National Natural Science Foundation of China (61175055)the Innovation Term of Higher Education of Hubei Province,China (T201109)+1 种基金the Natural Science Foundation of Hubei Province (2012FFB01101)the Natural Science Foundation of Education Committee of Hubei Province (D20131903)
文摘In this paper,we focus on combining the theories of fuzzy soft sets with Γ-modules,and establishing a new framework for fuzzy soft Γ-submodules.The main contributions of the paper are 3-fold.First,we present the concepts of(R,S)-bi-Γ-submodules,quasi-Γ-submodules and regular Γ-modules.Meanwhile,some illustrative examples are given to show the rationality of the definitions introduced in this paper.Second,several new kinds of generalized fuzzy soft Γ-submodules are proposed,and related properties and mutual relationships are also investigated.Third,we discover some intrinsic connections between the generalized fuzzy soft Γ-submodules presented in this paper and crisp Γ-submodules,and describe the relationships between regular Γ-modules and the generalized fuzzy soft Γ-submodules presented in this paper.
文摘Soft set theory has a rich potential application in several fields. A soft group is a parameterized family of subgroups and a fuzzy soft group is a parameterized family of fuzzy subgroups. The concept of fuzzy soft group is the generalization of soft group. Abdulkadir Aygunoglu and Halis Aygun introduced the notion of fuzzy soft groups in 2009[1]. In this paper, the concept of lattice ordered fuzzy soft groups and its duality has been introduced. Then distributive and modular lattice ordered fuzzy soft groups are analysed. The objective of this paper is to study the lattice theory over the collection of fuzzy soft group in a parametric manner. Some pertinent properties have been analysed and hence established duality principle.