The Gannet Optimization Algorithm (GOA) and the Whale Optimization Algorithm (WOA) demonstrate strong performance;however, there remains room for improvement in convergence and practical applications. This study intro...The Gannet Optimization Algorithm (GOA) and the Whale Optimization Algorithm (WOA) demonstrate strong performance;however, there remains room for improvement in convergence and practical applications. This study introduces a hybrid optimization algorithm, named the adaptive inertia weight whale optimization algorithm and gannet optimization algorithm (AIWGOA), which addresses challenges in enhancing handwritten documents. The hybrid strategy integrates the strengths of both algorithms, significantly enhancing their capabilities, whereas the adaptive parameter strategy mitigates the need for manual parameter setting. By amalgamating the hybrid strategy and parameter-adaptive approach, the Gannet Optimization Algorithm was refined to yield the AIWGOA. Through a performance analysis of the CEC2013 benchmark, the AIWGOA demonstrates notable advantages across various metrics. Subsequently, an evaluation index was employed to assess the enhanced handwritten documents and images, affirming the superior practical application of the AIWGOA compared with other algorithms.展开更多
The performance of lithium-ion batteries(LIBs)gradually declines over time,making it critical to predict the battery’s state of health(SOH)in real-time.This paper presents a model that incorporates health indicators ...The performance of lithium-ion batteries(LIBs)gradually declines over time,making it critical to predict the battery’s state of health(SOH)in real-time.This paper presents a model that incorporates health indicators and ensemble Gaussian process regression(EGPR)to predict the SOH of LIBs.Firstly,the degradation process of an LIB is analyzed through indirect health indicators(HIs)derived from voltage and temperature during discharge.Next,the parameters in the EGPR model are optimized using the gannet optimization algorithm(GOA),and the EGPR is employed to estimate the SOH of LIBs.Finally,the proposed model is tested under various experimental scenarios and compared with other machine learning models.The effectiveness of EGPR model is demonstrated using the National Aeronautics and Space Administration(NASA)LIB.The root mean square error(RMSE)is maintained within 0.20%,and the mean absolute error(MAE)is below 0.16%,illustrating the proposed approach’s excellent predictive accuracy and wide applicability.展开更多
A bionic gannet was developed based on the analysis of the body configuration and skeleton structure and the motion pattern of wings of a gannet in plunge-diving. In the current prototype, adjustable sweptback wings w...A bionic gannet was developed based on the analysis of the body configuration and skeleton structure and the motion pattern of wings of a gannet in plunge-diving. In the current prototype, adjustable sweptback wings were implemented so as to achieve different body shapes for entering water. The impact acceleration in the longitudinal body axis direction and the axial overload on the body were investigated through the falling-down experiments under different conditions including dropping height, water-entry inclination angle, and wing sweptback angle. It is found that when the above three key parameters are 10 m for dropping height, 0° for wing sweptback angle, and 90° for water-entry inclination angle, the maximum peak impact acceleration and overload are -167.20 m.s-2 and 18.06 respectively. Furthermore, the variation of peak impact acceleration with the three key parameters were also analyzed and discussed.展开更多
In this paper,we studied the wing root pivot joint’s radial load of a submersible airplane which imitates the locomotion of gannet’s Morus plunge-diving,by implementing a test device name Mimic-Gannet.The housing of...In this paper,we studied the wing root pivot joint’s radial load of a submersible airplane which imitates the locomotion of gannet’s Morus plunge-diving,by implementing a test device name Mimic-Gannet.The housing of the device was designed by mimicking the morphology of a living gannet,and the folding wings were realized by the mechanism of variable swept back wing.Then,the radial loads of the wing root were obtained under the conditions of different dropping heights,different sweptback angles and different water-entry inclination angles(i.e.,the angle between the longitudinal body axis and the water surface),and the relationships between the peak radial load and the above three parameters were analyzed and discussed respectively.In the studied areas,the minimum peak radial load of the pivot joint is 50.93 N,while the maximum reaches up to1135.00 N.The largest peak load would be generated for the situation of vertical water entry and zero wing sweptback angle.And it is of great significance to choose the three parameters properly to reduce the pivot joint’s radial load,i.e.,larger wing sweptback angle,smaller dropping height and water-entry inclination angle.It is also concluded that the peak radial load on the wing root is closely linear with the water-entry dropping height and the wing sweptback angle with a significant correlation.Eventually,the relationship between the wing load and the dropping height,water-entry inclination angle or wing sweptback angle,could be used to calculate the wing load about plunge-diving of a submersible aircraft,and the conclusions reveal the wing load characteristic of the gannet’s plunge process for the biologists.展开更多
文摘The Gannet Optimization Algorithm (GOA) and the Whale Optimization Algorithm (WOA) demonstrate strong performance;however, there remains room for improvement in convergence and practical applications. This study introduces a hybrid optimization algorithm, named the adaptive inertia weight whale optimization algorithm and gannet optimization algorithm (AIWGOA), which addresses challenges in enhancing handwritten documents. The hybrid strategy integrates the strengths of both algorithms, significantly enhancing their capabilities, whereas the adaptive parameter strategy mitigates the need for manual parameter setting. By amalgamating the hybrid strategy and parameter-adaptive approach, the Gannet Optimization Algorithm was refined to yield the AIWGOA. Through a performance analysis of the CEC2013 benchmark, the AIWGOA demonstrates notable advantages across various metrics. Subsequently, an evaluation index was employed to assess the enhanced handwritten documents and images, affirming the superior practical application of the AIWGOA compared with other algorithms.
基金supported by Fundamental Research Program of Shanxi Province(No.202203021211088)Shanxi Provincial Natural Science Foundation(No.202204021301049).
文摘The performance of lithium-ion batteries(LIBs)gradually declines over time,making it critical to predict the battery’s state of health(SOH)in real-time.This paper presents a model that incorporates health indicators and ensemble Gaussian process regression(EGPR)to predict the SOH of LIBs.Firstly,the degradation process of an LIB is analyzed through indirect health indicators(HIs)derived from voltage and temperature during discharge.Next,the parameters in the EGPR model are optimized using the gannet optimization algorithm(GOA),and the EGPR is employed to estimate the SOH of LIBs.Finally,the proposed model is tested under various experimental scenarios and compared with other machine learning models.The effectiveness of EGPR model is demonstrated using the National Aeronautics and Space Administration(NASA)LIB.The root mean square error(RMSE)is maintained within 0.20%,and the mean absolute error(MAE)is below 0.16%,illustrating the proposed approach’s excellent predictive accuracy and wide applicability.
基金This work was supported by the National Natural Science Foundation of China (Grant no. 51005008).
文摘A bionic gannet was developed based on the analysis of the body configuration and skeleton structure and the motion pattern of wings of a gannet in plunge-diving. In the current prototype, adjustable sweptback wings were implemented so as to achieve different body shapes for entering water. The impact acceleration in the longitudinal body axis direction and the axial overload on the body were investigated through the falling-down experiments under different conditions including dropping height, water-entry inclination angle, and wing sweptback angle. It is found that when the above three key parameters are 10 m for dropping height, 0° for wing sweptback angle, and 90° for water-entry inclination angle, the maximum peak impact acceleration and overload are -167.20 m.s-2 and 18.06 respectively. Furthermore, the variation of peak impact acceleration with the three key parameters were also analyzed and discussed.
基金supported by the National Natural Science Foundation of China(Grant No.51005008)
文摘In this paper,we studied the wing root pivot joint’s radial load of a submersible airplane which imitates the locomotion of gannet’s Morus plunge-diving,by implementing a test device name Mimic-Gannet.The housing of the device was designed by mimicking the morphology of a living gannet,and the folding wings were realized by the mechanism of variable swept back wing.Then,the radial loads of the wing root were obtained under the conditions of different dropping heights,different sweptback angles and different water-entry inclination angles(i.e.,the angle between the longitudinal body axis and the water surface),and the relationships between the peak radial load and the above three parameters were analyzed and discussed respectively.In the studied areas,the minimum peak radial load of the pivot joint is 50.93 N,while the maximum reaches up to1135.00 N.The largest peak load would be generated for the situation of vertical water entry and zero wing sweptback angle.And it is of great significance to choose the three parameters properly to reduce the pivot joint’s radial load,i.e.,larger wing sweptback angle,smaller dropping height and water-entry inclination angle.It is also concluded that the peak radial load on the wing root is closely linear with the water-entry dropping height and the wing sweptback angle with a significant correlation.Eventually,the relationship between the wing load and the dropping height,water-entry inclination angle or wing sweptback angle,could be used to calculate the wing load about plunge-diving of a submersible aircraft,and the conclusions reveal the wing load characteristic of the gannet’s plunge process for the biologists.