During the Indian National Gas Hydrate Program(NGHP)Expedition 02,Logging-while-drilling(LWD)logs were acquired at three sites(NGHP-02-11,NGHP-02-12,and NGHP-02-13)across the Mahanadi Basin in area A.We applied rock p...During the Indian National Gas Hydrate Program(NGHP)Expedition 02,Logging-while-drilling(LWD)logs were acquired at three sites(NGHP-02-11,NGHP-02-12,and NGHP-02-13)across the Mahanadi Basin in area A.We applied rock physics theory to available sonic velocity logs to know the distribution of gas hydrate at site NGHP-02-11 and NGHP-02-13.Rock physics modeling using sonic velocity at well location shows that gas hydrate is distributed mainly within the depth intervals of 150-265 m and 100 -215 mbsf at site NGHP-02-11 and NGHP-02-13,respectively,with an average saturation of about 4%of the pore space and the maximum concentration of about 40%of the pore space at 250 m depth at site NGHP-02-11,and at site NGHP-02-13 an average saturation of about 2%of the pore space and the maximum concentration of about 20%of the pore space at 246 m depth,as gas hydrate is distributed mainly within 100-246 mbsf at this site.Saturation of gas hydrate estimated from the electrical resistivity method using density derived porosity and electrical resistivity logs from Archie's empirical formula shows high saturation compared to that from the sonic log.However,estimates of hydrate saturation based on sonic P-wave velocity may differ significantly from that based on resistivity,because gas and hydrate have higher resistivity than conductive pore fluid and sonic P-wave velocity shows strong effect on gas hydrate as a small amount of gas reduces the velocity significantly while increasing velocity due to the presence of hydrate.At site NGHP-02-11,gas hydrate saturation is in the range of 15%e30%,in two zones between 150-180 and 245-265 mbsf.Site NGHP-02-012 shows a gas hydrate saturation of 20%e30%in the zone between 100 and 207 mbsf.Site NGHP-02-13 shows a gas hydrate saturation up to 30%in the zone between 215 and 246 mbsf.Combined observations from rock physics modeling and Archie’s approximation show the gas hydrate concentrations are relatively low(<4%of the pore space)at the sites of the Mahanadi Basin in the turbidite channel system.展开更多
Many locations with concentrated hydrates at vents have confirmed the presence of abundant thermogenic gas in the middle of the Qiongdongnan Basin(QDNB).However,the impact of deep structures on gasbearing fluids migra...Many locations with concentrated hydrates at vents have confirmed the presence of abundant thermogenic gas in the middle of the Qiongdongnan Basin(QDNB).However,the impact of deep structures on gasbearing fluids migration and gas hydrates distribution in tectonically inactive regions is still unclear.In this study,the authors apply high-resolution 3D seismic and logging while drilling(LWD)data from the middle of the QDNB to investigate the influence of deep-large faults on gas chimneys and preferred gasescape pipes.The findings reveal the following:(1)Two significant deep-large faults,F1 and F2,developed on the edge of the Songnan Low Uplift,control the dominant migration of thermogenic hydrocarbons and determine the initial locations of gas chimneys.(2)The formation of gas chimneys is likely related to fault activation and reactivation.Gas chimney 1 is primarily arises from convergent fluid migration resulting from the intersection of the two faults,while the gas chimney 2 benefits from a steeper fault plane and shorter migration distance of fault F2.(3)Most gas-escape pipes are situated near the apex of the two faults.Their reactivations facilitate free gas flow into the GHSZ and contribute to the formation of fracture‐filling hydrates.展开更多
Gas hydrate drilling expeditions in the Pearl River Mouth Basin,South China Sea,have identified concentrated gas hydrates with variable thickness.Moreover,free gas and the coexistence of gas hydrate and free gas have ...Gas hydrate drilling expeditions in the Pearl River Mouth Basin,South China Sea,have identified concentrated gas hydrates with variable thickness.Moreover,free gas and the coexistence of gas hydrate and free gas have been confirmed by logging,coring,and production tests in the foraminifera-rich silty sediments with complex bottom-simulating reflectors(BSRs).The broad-band processing is conducted on conventional three-dimensional(3D)seismic data to improve the image and detection accuracy of gas hydratebearing layers and delineate the saturation and thickness of gas hydrate-and free gas-bearing sediments.Several geophysical attributes extracted along the base of the gas hydrate stability zone are used to demonstrate the variable distribution and the controlling factors for the differential enrichment of gas hydrate.The inverted gas hydrate saturation at the production zone is over 40% with a thickness of 90 m,showing the interbedded distribution with different boundaries between gas hydrate-and free gas-bearing layers.However,the gas hydrate saturation value at the adjacent canyon is 70%,with 30-m-thick patches and linear features.The lithological and fault controls on gas hydrate and free gas distributions are demonstrated by tracing each gas hydrate-bearing layer.Moreover,the BSR depths based on broad-band reprocessed 3D seismic data not only exhibit variations due to small-scale topographic changes caused by seafloor sedimentation and erosion but also show the upward shift of BSR and the blocky distribution of the coexistence of gas hydrate and free gas in the Pearl River Mouth Basin.展开更多
Natural gas hydrate(NGH)can cause pipeline blockages during the transportation of oil and gas under high pressures and low temperatures.Reducing hydrate adhesion on pipelines is viewed as an efficient way to prevent N...Natural gas hydrate(NGH)can cause pipeline blockages during the transportation of oil and gas under high pressures and low temperatures.Reducing hydrate adhesion on pipelines is viewed as an efficient way to prevent NGH blockages.Previous studies suggested the water film can greatly increase hydrate adhesion in gas-dominant system.Herein,by performing the molecular dynamics simulations,we find in water-dominant system,the water film plays different roles in hydrate deposition on Fe and its corrosion surfaces.Specifically,due to the strong affinity of water on Fe surface,the deposited hydrate cannot convert the adsorbed water into hydrate,thus,a water film exists.As water affinities decrease(Fe>Fe_(2)O_(3)>FeO>Fe_(3)O_(4)),adsorbed water would convert to amorphous hydrate on Fe_(2)O_(3)and form the ordered hydrate on FeO and Fe_(3)O_(4)after hydrate deposition.While absorbed water film converts to amorphous or to hydrate,the adhesion strength of hydrate continuously increases(Fe<Fe_(2)O_(3)<FeO<Fe_(3)O_(4)).This is because the detachment of deposited hydrate prefers to occur at soft region of liquid layer,the process of which becomes harder as liquid layer vanishes.As a result,contrary to gas-dominant system,the water film plays the weakening roles on hydrate adhesion in water-dominant system.Overall,our results can help to better understand the hydrate deposition mechanisms on Fe and its corrosion surfaces and suggest hydrate deposition can be adjusted by changing water affinities on pipeline surfaces.展开更多
Natural gas hydrates,intricate crystalline structures formed by water molecules and small gas molecules,have emerged as a significant and globally impactful clean energy resource.However,their commercial exploitation ...Natural gas hydrates,intricate crystalline structures formed by water molecules and small gas molecules,have emerged as a significant and globally impactful clean energy resource.However,their commercial exploitation faces challenges,particularly operational disruptions caused by sand-related blockages.Understanding the rheological properties of hydrate slurry,especially in the presence of micron-sized sand particles,is imperative for ensuring the flow assurance of subsea hydrate exploitation.This study extensively investigates the rheological properties of sand-containing hydrate slurries.The findings reveal that these slurries exhibit non-Newtonian fluid characteristics,including yield stress,thixotropy,and shear-thinning behavior.Solid-like elastic features are observed in sand-containing hydrate slurries before yielding,transitioning to viscous behavior after yielding.Even with a minimal amount of sand,both static yield stress and yield strain experience substantial changes,correlating with the increase in sand concentration.The research conclusively establishes the thixotropic nature of sand-hydrate slurries,where the viscosity decay rate is directly influenced by the shear rate.These insights aim to contribute comprehensively to the development of effective flow assurance strategies,ensuring the safe and stable operation of subsea hydrate exploitation.展开更多
Natural gas hydrate is prospected as a new and promising,highly clean energy resource that mainly occurs in perma-frost or at continental margins.Its formation is subject to many soil conditions,such as grain size,mat...Natural gas hydrate is prospected as a new and promising,highly clean energy resource that mainly occurs in perma-frost or at continental margins.Its formation is subject to many soil conditions,such as grain size,matrix materials,pore morphology,and permeability.In this study,we propose that grain size is the most decisive parameter that affects the saturation of gas hydrate in sediments based on data from Ocean Drilling Program Leg 164 and Mallik 5L-38,which represent marine sediments and terrestrial sediments,respectively.Our study reveals that high gas hydrate saturation generally occurs in coarse-grained sand,regardless of whether sediment formation is homogeneous or inhomogeneous,and the sorting of sediments may affect the hydrate saturation to a certain degree.Using grain size and sorting of sediments may be the most intuitive proxy method for a rough estimation of hydrate saturation.Further study is necessary to fully understand the relationship between hydrate morphology and sediment grain size,even though massive hydrates are typically found in fine clayey-rich sediments.展开更多
A detailed understanding of the distribution and potential of natural gas hydrate(NGHs)resources is crucial to fostering the industrialization of those resources in the South China Sea,where NGHs are abundant.In this ...A detailed understanding of the distribution and potential of natural gas hydrate(NGHs)resources is crucial to fostering the industrialization of those resources in the South China Sea,where NGHs are abundant.In this study,this study analyzed the applicability of resource evaluation methods,including the volumetric,genesis,and analogy methods,and estimated NGHs resource potential in the South China Sea by using scientific resource evaluation methods based on the factors controlling the geological accumulation and the reservoir characteristics of NGHs.Furthermore,this study compared the evaluation results of NGHs resource evaluations in representative worldwise sea areas via rational analysis.The results of this study are as follows:(1)The gas hydrate accumulation in the South China Sea is characterized by multiple sources of gas supply,multi-channel migration,and extensive accumulation,which are significantly different from those of oil and gas and other unconventional resources.(2)The evaluation of gas hydrate resources in the South China Sea is a highly targeted,stratified,and multidisciplinary evaluation of geological resources under the framework of a multi-type gas hydrate resource evaluation system and focuses on the comprehensive utilization of multi-source heterogeneous data.(3)Global NGHs resources is n×10^(15)m^(3),while the NGHs resources in the South China Sea are estimated to be 10^(13)m^(3),which is comparable to the abundance of typical marine NGHs deposits in other parts of the world.In the South China Sea,the NGHs resources have a broad prospect and provide a substantial resource base for production tests and industrialization of NGHs.展开更多
To analyze the relationship between macro and meso parameters of the gas hydrate bearing coal(GHBC)and to calibrate the meso-parameters,the numerical tests were conducted to simulate the laboratory triaxial compressio...To analyze the relationship between macro and meso parameters of the gas hydrate bearing coal(GHBC)and to calibrate the meso-parameters,the numerical tests were conducted to simulate the laboratory triaxial compression tests by PFC3D,with the parallel bond model employed as the particle contact constitutive model.First,twenty simulation tests were conducted to quantify the relationship between the macro–meso parameters.Then,nine orthogonal simulation tests were performed using four meso-mechanical parameters in a three-level to evaluate the sensitivity of the meso-mechanical parameters.Furthermore,the calibration method of the meso-parameters were then proposed.Finally,the contact force chain,the contact force and the contact number were examined to investigate the saturation effect on the meso-mechanical behavior of GHBC.The results show that:(1)The elastic modulus linearly increases with the bonding stiffness ratio and the friction coefficient while exponentially increasing with the normal bonding strength and the bonding radius coefficient.The failure strength increases exponentially with the increase of the friction coefficient,the normal bonding strength and the bonding radius coefficient,and remains constant with the increase of bond stiffness ratio;(2)The friction coefficient and the bond radius coefficient are most sensitive to the elastic modulus and the failure strength;(3)The number of the force chains,the contact force,and the bond strength between particles will increase with the increase of the hydrate saturation,which leads to the larger failure strength.展开更多
It has been evidenced that shallow gas hydrate resources are abundant in deep oceans worldwide.Their geological back-ground,occurrence,and other characteristics differ significantly from deep-seated hydrates.Because o...It has been evidenced that shallow gas hydrate resources are abundant in deep oceans worldwide.Their geological back-ground,occurrence,and other characteristics differ significantly from deep-seated hydrates.Because of the high risk of well construction and low production efficiency,they are difficult to be recovered by using conventional oil production methods.As a result,this paper proposes an alternative design based on a combination of radial drilling,heat injection,and backfilling methods.Multi-branch holes are used to penetrate shallow gas hydrate reservoirs to expand the depressurization area,and heat injection is utilized as a supplement to improve gas production.Geotechnical information collected from an investigation site close to the offshore production well in the South China Sea is used to assess the essential components of this plan,including well construction stability and gas production behavior.It demonstrates that the hydraulic fracturing of the 60mbsf overburden layer can be prevented by regulating the drilling fluid densities.However,the traditional well structure is unstable,and the suction anchor is advised for better mechanical performance.The gas produc-tion rate can be significantly increased by combining hot water injection and depressurization methods.Additionally,the suitable produc-tion equipment already in use is discussed.展开更多
Natural gas hydrate(NGH)is generally produced and accumulated together with the underlying conventional gas.Therefore,optimizing the production technology of these two gases should be seen as a relevant way to effecti...Natural gas hydrate(NGH)is generally produced and accumulated together with the underlying conventional gas.Therefore,optimizing the production technology of these two gases should be seen as a relevant way to effectively reduce the exploitation cost of the gas hydrate.In this study,three types of models accounting for the coexistence of these gases are considered.Type A considers the upper hydrate-bearing layer(HBL)adjacent to the lower conventional gas layer(CGL);with the Type B a permeable interlayer exists between the upper HBL and the lower CGL;with the type C there is an impermeable interlayer between the upper HBL and the lower CGL.The production performances associated with the above three models are calculated under different conditions,including only a depressurized HBL(only HBL DP);only a depressurized CGL(only CGL DP);and both the HBL and the CGL being depressurized(HBL+CGL DP).The results show that for Type A and Type B coexistence accumulation models,when only HBL or CGL is depressurized,the gas from the other layer will flow into the production layer due to the pressure difference between the two layers.In the coexistence accumulation model of type C,the cumulative gas production is much lower than that of Type A and Type B,regardless of whether only HBL DP,only CGL DP,or HBL+CGL DP are considered.This indicates that the impermeable interlayer restricts the cross-flow of gas between HBL and CGL.For three different coexistence accumulation models,CGL DP has the largest gas-to-water ratio.展开更多
Methane gas hydrate related bottom-simulating reflectors(BSRs)are imaged based on the in-line and cross-line multi-channel seismic(MCS)data from the Andaman Forearc Basin.The depth of the BSR depends on pressure and t...Methane gas hydrate related bottom-simulating reflectors(BSRs)are imaged based on the in-line and cross-line multi-channel seismic(MCS)data from the Andaman Forearc Basin.The depth of the BSR depends on pressure and temperature and pore water salinity.With these assumptions,the BSR depth can be used to estimate the geothermal gradient(GTG)based on the availability of in-situ temperature measurements.This calculation is done assuming a 1D conductive model based on available in-situ temperature measurement at site NGHP-01-17 in the study area.However,in the presence of seafloor topography,the conductive temperature field in the subsurface is affected by lateral refraction of heat,which focuses heat in topographic lows and away from topographic highs.The 1D estimate of GTG in the Andaman Forearc Basin has been validated by drilling results from the NGHP-01 expedition.2D analytic modeling to estimate the effects of topography is performed earlier along selected seismic profiles in the study area.The study extended to estimate the effect of topography in 3D using a numerical model.The corrected GTG data allow us to determine GTG values free of topographic effect.The difference between the estimated GTG and values corrected for the 3D topographic effect varies up to~5℃/km.These conclude that the topographic correction is relatively small compared to other uncertainties in the 1D model and that apparent GTG determined with the 1D model captures the major features,although the correction is needed prior to interpreting subtle features of the derived GTG maps.展开更多
To investigate the distribution and velocity attributes of gas hydrates in the northern continental slope of South China Sea, Guangzhou Marine Geological Survey conducted four-component (4C) ocean-bottom seismometer...To investigate the distribution and velocity attributes of gas hydrates in the northern continental slope of South China Sea, Guangzhou Marine Geological Survey conducted four-component (4C) ocean-bottom seismometer (OBS) surveys. A case study is presented to show the results of acquiring and processing OBS data for detecting gas hydrates. Key processing steps such as repositioning, reorientation, PZ summation, and mirror imaging are discussed. Repositioning and reorientation find the correct location and direction of nodes. PZ summation matches P- and Z-components and sums them to separate upgoing and downgoing waves. Upgoing waves are used in conventional imaging, whereas downgoing waves are used in mirror imaging. Mirror imaging uses the energy of the receiver ghost reflection to improve the illumination of shallow structures, where gas hydrates and the associated bottom-simulating reflections (BSRs) are located. We developed a new method of velocity analysis using mirror imaging. The proposed method is based on velocity scanning and iterative prestack time migration. The final imaging results are promising. When combined with the derived velocity field, we can characterize the BSR and shallow structures; hence, we conclude that using 4C OBS can reveal the distribution and velocity attributes of gas hydrates.展开更多
We investigated the effect of microscopic distribution modes of hydrates in porous sediments, and the saturation of hydrates and free gas on the elastic properties of saturated sediments. We simulated the propagation ...We investigated the effect of microscopic distribution modes of hydrates in porous sediments, and the saturation of hydrates and free gas on the elastic properties of saturated sediments. We simulated the propagation of seismic waves in gas hydrate-bearing sediments beneath the seafloor, and obtained the common receiver gathers of compressional waves(P-waves) and shear waves(S-waves). The numerical results suggest that the interface between sediments containing gas hydrates and free gas produces a large-amplitude bottomsimulating reflector. The analysis of multicomponent common receiver data suggests that ocean-bottom seismometers receive the converted waves of upgoing P- and S-waves, which increases the complexity of the wavefield record.展开更多
Based on the sensitivity of geophysical response to gas hydrates contained in sediments, we studied the prediction of gas hydrates with seismic techniques, including seismic attributes analysis, AVO, inverted velocity...Based on the sensitivity of geophysical response to gas hydrates contained in sediments, we studied the prediction of gas hydrates with seismic techniques, including seismic attributes analysis, AVO, inverted velocity field construction for dipping formations, and pseudo-well constrained impedance inversion. We used an optimal integration of geophysical techniques results in a set of reliable and effective workflows to predict gas hydrates. The results show that the integrated analysis of the combination of reflectivity amplitude, instantaneous phase, interval velocity, relative impedance, absolute impedance, and AVO intercept is a valid combination of techniques for identifying the BSR (Bottom Simulated Reflector) from the lower boundary of the gas hydrates. Integration of seismic sections, relative and absolute impedance sections, and interval velocity sections can improve the validity of gas hydrates determination. The combination of instantaneous frequency, energy half attenuation time, interval velocity, AVO intercept, AVO product, and AVO fluid factor accurately locates the escaped gas beneath the BSR. With these conclusions, the combined techniques have been used to successfully predict the gas hydrates in the Dongsha Sea area.展开更多
Bottom-simulating reflectors (BSRs) in seismic profile always indicate the bottom of gas hydrate stability zone, but is difficult to determine the distribution and features of gas hydrate sediments (GHS). In this stud...Bottom-simulating reflectors (BSRs) in seismic profile always indicate the bottom of gas hydrate stability zone, but is difficult to determine the distribution and features of gas hydrate sediments (GHS). In this study, based on AVA forward modeling and angle-domain common-image gathers we use prestack AVA parameters consistency inversion in predicting gas hydrate sediments in the Shenhu area at northern slope of South China Sea, and obtain the vertical and lateral features and saturation of GHS.展开更多
The sulfate-methane interface is an important biogeochemical identification interface for the areas with high methane flux and containing gas hydrate. Above the sulfate-methane interface, the sulfate concentration in ...The sulfate-methane interface is an important biogeochemical identification interface for the areas with high methane flux and containing gas hydrate. Above the sulfate-methane interface, the sulfate concentration in the sediment is consumed progressively for the decomposition of the organic matter and anaerobic methane oxidation. Below the sulfate-methane interface, the methane concentration increases continuously with the depth. Based on the variation characters of the sulfate and methane concentration around the sulfate-methane interface, it is feasible to estimate the intensity of the methane flux, and thereafter to infer the possible occurrence of gas hydrate. The geochemical data of the pore water taken from the northern slope of the South China Sea show the sulfate-methane interface is relatively shallow, which indicates that this area has the high methane flux. It is considered that the high methane flux is most probably caused by the occurrence of underlying gas hydrate in the northern slope of the South China Sea.展开更多
According to the processing and interpretation of multichannel seismic reflection data in the area of Okinawa Trough, the BSR (bottom simulating reflector) was identified in 16 seismic profiles. By means of special ...According to the processing and interpretation of multichannel seismic reflection data in the area of Okinawa Trough, the BSR (bottom simulating reflector) was identified in 16 seismic profiles. By means of special processing technologies such as AVO and waveform inversion, the authors, for the first time, directly used the BSR to outline the distribution tendency of thickness of gas hydrate stability zone in the Trough and thought that the largest stability zone thickness was in the south and the smallest in the north. Then through calculation the authors got the thickness of hydrate stability zone and resource of the hydrate. This would be useful to the future hydrate exploration and resource evaluation in the Okinawa Trough.展开更多
Natural gas hydrate(NGH)has been widely considered as an alternative to conventional oil and gas resources in the future energy resource supply since Trofimuk’s first resource assessment in 1973.At least 29 global es...Natural gas hydrate(NGH)has been widely considered as an alternative to conventional oil and gas resources in the future energy resource supply since Trofimuk’s first resource assessment in 1973.At least 29 global estimates have been published from various studies so far,among which 24 estimates are greater than the total conventional gas resources.If drawn in chronological order,the 29 historical resource estimates show a clear downward trend,reflecting the changes in our perception with respect to its resource potential with increasing our knowledge on the NGH with time.A time series of the 29 estimates was used to establish a statistical model for predict the future trend.The model produces an expected resource value of 41.46×1012 m3 at the year of 2050.The statistical trend projected future gas hydrate resource is only about 10%of total natural gas resource in conventional reservoir,consistent with estimates of global technically recoverable resources(TRR)in gas hydrate from Monte Carlo technique based on volumetric and material balance approaches.Considering the technical challenges and high cost in commercial production and the lack of competitive advantages compared with rapid growing unconventional and renewable resources,only those on the very top of the gas hydrate resource pyramid will be added to future energy supply.It is unlikely that the NGH will be the major energy source in the future.展开更多
By analyzing and interpreting the newly acquired seismic profile supported by the national 973 Program and synthesizing the data with other geologic & geographic information, we draw conclusions as follows, a) Two s...By analyzing and interpreting the newly acquired seismic profile supported by the national 973 Program and synthesizing the data with other geologic & geographic information, we draw conclusions as follows, a) Two seismic reflections located at the northeast South China Sea (SCS) slope and the Hengchun ridge are the Bottom Simulated Reflections (BSRs). Yet, the genesis and process of the gas hydrate in these two areas are different because of different regional tectonics and geological environments; b) The genesis of gas hydrate located at the northeast SCS slope area is related to the broadly existing fracture zones, slumping tectosomes, and the distinctive shielding environment of pressure masking field formed by them. But the genesis of the gas hydrate at the Hengchun ridge is associated with the thrust nappe structures and accretionary wedges formed along the Manila subduction zone and the related sub-floor fluid channel system built by them; c) Since the analogous geologic bodies are broadly distributed at slope areas around SCS and the temperature-press environment is very suitable to the formation and conservation of the gas hydrate, we suggest that much more of this resource should be stored in these areas.展开更多
Natural gas hydrate(NGH)has attracted much attention as a new alternative energy globally.However,evaluations of global NGH resources in the past few decades have casted a decreasing trend,where the estimate as of tod...Natural gas hydrate(NGH)has attracted much attention as a new alternative energy globally.However,evaluations of global NGH resources in the past few decades have casted a decreasing trend,where the estimate as of today is less than one ten-thousandth of the estimate forty years ago.The NGH researches in China started relatively late,but achievements have been made in the South China Sea(SCS)in the past two decades.Thirty-five studies had been carried out to evaluate NGH resource,and results showed a flat trend,ranging from 60 to 90 billion tons of oil equivalent,which was 2-3 times of the evaluation results of technical recoverable oil and gas resources in the SCS.The big difference is that the previous 35 group of NGH resource evaluations for the SCS only refers to the prospective gas resource with low grade level and high uncertainty,which cannot be used to guide exploration or researches on development strategies.Based on the analogy with the genetic mechanism of conventional oil and gas resources,this study adopts the newly proposed genetic method and geological analogy method to evaluate the NGH resource.Results show that the conventional oil and gas resources are 346.29×10^(8)t,the volume of NGH and free dynamic field are 25.19×10^(4)km^(3) and(2.05-2.48)×10^(6)km^(3),and the total amount of in-situ NGH resources in the SCS is about(4.47-6.02)×10^(12)m^(3).It is considered that the resource of hydrate should not exceed that of conventional oil and gas,so it is 30 times lower than the previous estimate.This study provides a more reliable geological basis for further NGH exploration and development.展开更多
文摘During the Indian National Gas Hydrate Program(NGHP)Expedition 02,Logging-while-drilling(LWD)logs were acquired at three sites(NGHP-02-11,NGHP-02-12,and NGHP-02-13)across the Mahanadi Basin in area A.We applied rock physics theory to available sonic velocity logs to know the distribution of gas hydrate at site NGHP-02-11 and NGHP-02-13.Rock physics modeling using sonic velocity at well location shows that gas hydrate is distributed mainly within the depth intervals of 150-265 m and 100 -215 mbsf at site NGHP-02-11 and NGHP-02-13,respectively,with an average saturation of about 4%of the pore space and the maximum concentration of about 40%of the pore space at 250 m depth at site NGHP-02-11,and at site NGHP-02-13 an average saturation of about 2%of the pore space and the maximum concentration of about 20%of the pore space at 246 m depth,as gas hydrate is distributed mainly within 100-246 mbsf at this site.Saturation of gas hydrate estimated from the electrical resistivity method using density derived porosity and electrical resistivity logs from Archie's empirical formula shows high saturation compared to that from the sonic log.However,estimates of hydrate saturation based on sonic P-wave velocity may differ significantly from that based on resistivity,because gas and hydrate have higher resistivity than conductive pore fluid and sonic P-wave velocity shows strong effect on gas hydrate as a small amount of gas reduces the velocity significantly while increasing velocity due to the presence of hydrate.At site NGHP-02-11,gas hydrate saturation is in the range of 15%e30%,in two zones between 150-180 and 245-265 mbsf.Site NGHP-02-012 shows a gas hydrate saturation of 20%e30%in the zone between 100 and 207 mbsf.Site NGHP-02-13 shows a gas hydrate saturation up to 30%in the zone between 215 and 246 mbsf.Combined observations from rock physics modeling and Archie’s approximation show the gas hydrate concentrations are relatively low(<4%of the pore space)at the sites of the Mahanadi Basin in the turbidite channel system.
基金supported by the National Natural Science Foundation of China(42376221,42276083)Director Research Fund Project of Guangzhou Marine Geological Survey(2023GMGSJZJJ00030)+2 种基金National Key Research and Development Program of China(2021YFC2800901)Guangdong Major Project of Basic and Applied Basic Research(2020B030103003)the project of the China Geological Survey(DD20230064).
文摘Many locations with concentrated hydrates at vents have confirmed the presence of abundant thermogenic gas in the middle of the Qiongdongnan Basin(QDNB).However,the impact of deep structures on gasbearing fluids migration and gas hydrates distribution in tectonically inactive regions is still unclear.In this study,the authors apply high-resolution 3D seismic and logging while drilling(LWD)data from the middle of the QDNB to investigate the influence of deep-large faults on gas chimneys and preferred gasescape pipes.The findings reveal the following:(1)Two significant deep-large faults,F1 and F2,developed on the edge of the Songnan Low Uplift,control the dominant migration of thermogenic hydrocarbons and determine the initial locations of gas chimneys.(2)The formation of gas chimneys is likely related to fault activation and reactivation.Gas chimney 1 is primarily arises from convergent fluid migration resulting from the intersection of the two faults,while the gas chimney 2 benefits from a steeper fault plane and shorter migration distance of fault F2.(3)Most gas-escape pipes are situated near the apex of the two faults.Their reactivations facilitate free gas flow into the GHSZ and contribute to the formation of fracture‐filling hydrates.
基金supported by the State Key Laboratory of Natural Gas Hydrate(No.2022-KFJJ-SHW)the National Natural Science Foundation of China(No.42376058)+2 种基金the International Science&Technology Cooperation Program of China(No.2023YFE0119900)the Hainan Province Key Research and Development Project(No.ZDYF2024GXJS002)the Research Start-Up Funds of Zhufeng Scholars Program.
文摘Gas hydrate drilling expeditions in the Pearl River Mouth Basin,South China Sea,have identified concentrated gas hydrates with variable thickness.Moreover,free gas and the coexistence of gas hydrate and free gas have been confirmed by logging,coring,and production tests in the foraminifera-rich silty sediments with complex bottom-simulating reflectors(BSRs).The broad-band processing is conducted on conventional three-dimensional(3D)seismic data to improve the image and detection accuracy of gas hydratebearing layers and delineate the saturation and thickness of gas hydrate-and free gas-bearing sediments.Several geophysical attributes extracted along the base of the gas hydrate stability zone are used to demonstrate the variable distribution and the controlling factors for the differential enrichment of gas hydrate.The inverted gas hydrate saturation at the production zone is over 40% with a thickness of 90 m,showing the interbedded distribution with different boundaries between gas hydrate-and free gas-bearing layers.However,the gas hydrate saturation value at the adjacent canyon is 70%,with 30-m-thick patches and linear features.The lithological and fault controls on gas hydrate and free gas distributions are demonstrated by tracing each gas hydrate-bearing layer.Moreover,the BSR depths based on broad-band reprocessed 3D seismic data not only exhibit variations due to small-scale topographic changes caused by seafloor sedimentation and erosion but also show the upward shift of BSR and the blocky distribution of the coexistence of gas hydrate and free gas in the Pearl River Mouth Basin.
基金This work was supported by the National Natural Science Foundation of China(51874332,51991363)the CNPC's Major Science and Technology Projects(ZD2019-184-003)+1 种基金the Fundamental Research Funds for Central Universities(20CX05008A)“14th Five-Year plan”forward-looking basic major science and technology project of CNPC(2021DJ4901).
文摘Natural gas hydrate(NGH)can cause pipeline blockages during the transportation of oil and gas under high pressures and low temperatures.Reducing hydrate adhesion on pipelines is viewed as an efficient way to prevent NGH blockages.Previous studies suggested the water film can greatly increase hydrate adhesion in gas-dominant system.Herein,by performing the molecular dynamics simulations,we find in water-dominant system,the water film plays different roles in hydrate deposition on Fe and its corrosion surfaces.Specifically,due to the strong affinity of water on Fe surface,the deposited hydrate cannot convert the adsorbed water into hydrate,thus,a water film exists.As water affinities decrease(Fe>Fe_(2)O_(3)>FeO>Fe_(3)O_(4)),adsorbed water would convert to amorphous hydrate on Fe_(2)O_(3)and form the ordered hydrate on FeO and Fe_(3)O_(4)after hydrate deposition.While absorbed water film converts to amorphous or to hydrate,the adhesion strength of hydrate continuously increases(Fe<Fe_(2)O_(3)<FeO<Fe_(3)O_(4)).This is because the detachment of deposited hydrate prefers to occur at soft region of liquid layer,the process of which becomes harder as liquid layer vanishes.As a result,contrary to gas-dominant system,the water film plays the weakening roles on hydrate adhesion in water-dominant system.Overall,our results can help to better understand the hydrate deposition mechanisms on Fe and its corrosion surfaces and suggest hydrate deposition can be adjusted by changing water affinities on pipeline surfaces.
基金supported by the National Natural Science Foundation of China(52104069,U20B6005)Beijing Municipal Natural Science Foundation(3232030)Science Foundation of China University of Petroleum,Beijing(2462023BJRC018,2462020YXZZ045).
文摘Natural gas hydrates,intricate crystalline structures formed by water molecules and small gas molecules,have emerged as a significant and globally impactful clean energy resource.However,their commercial exploitation faces challenges,particularly operational disruptions caused by sand-related blockages.Understanding the rheological properties of hydrate slurry,especially in the presence of micron-sized sand particles,is imperative for ensuring the flow assurance of subsea hydrate exploitation.This study extensively investigates the rheological properties of sand-containing hydrate slurries.The findings reveal that these slurries exhibit non-Newtonian fluid characteristics,including yield stress,thixotropy,and shear-thinning behavior.Solid-like elastic features are observed in sand-containing hydrate slurries before yielding,transitioning to viscous behavior after yielding.Even with a minimal amount of sand,both static yield stress and yield strain experience substantial changes,correlating with the increase in sand concentration.The research conclusively establishes the thixotropic nature of sand-hydrate slurries,where the viscosity decay rate is directly influenced by the shear rate.These insights aim to contribute comprehensively to the development of effective flow assurance strategies,ensuring the safe and stable operation of subsea hydrate exploitation.
基金financially supported by the Marine Economy Development Foundation of Guangdong Province(No.GDNRC[2022]44).
文摘Natural gas hydrate is prospected as a new and promising,highly clean energy resource that mainly occurs in perma-frost or at continental margins.Its formation is subject to many soil conditions,such as grain size,matrix materials,pore morphology,and permeability.In this study,we propose that grain size is the most decisive parameter that affects the saturation of gas hydrate in sediments based on data from Ocean Drilling Program Leg 164 and Mallik 5L-38,which represent marine sediments and terrestrial sediments,respectively.Our study reveals that high gas hydrate saturation generally occurs in coarse-grained sand,regardless of whether sediment formation is homogeneous or inhomogeneous,and the sorting of sediments may affect the hydrate saturation to a certain degree.Using grain size and sorting of sediments may be the most intuitive proxy method for a rough estimation of hydrate saturation.Further study is necessary to fully understand the relationship between hydrate morphology and sediment grain size,even though massive hydrates are typically found in fine clayey-rich sediments.
基金jointly supported by the National Natural Science Foundation of China(42376222,U22A20581,and 42076069)Key Research and Development Program of Hainan Province(ZDYF2024GXJS002)China Geological Survey(DD20230402)。
文摘A detailed understanding of the distribution and potential of natural gas hydrate(NGHs)resources is crucial to fostering the industrialization of those resources in the South China Sea,where NGHs are abundant.In this study,this study analyzed the applicability of resource evaluation methods,including the volumetric,genesis,and analogy methods,and estimated NGHs resource potential in the South China Sea by using scientific resource evaluation methods based on the factors controlling the geological accumulation and the reservoir characteristics of NGHs.Furthermore,this study compared the evaluation results of NGHs resource evaluations in representative worldwise sea areas via rational analysis.The results of this study are as follows:(1)The gas hydrate accumulation in the South China Sea is characterized by multiple sources of gas supply,multi-channel migration,and extensive accumulation,which are significantly different from those of oil and gas and other unconventional resources.(2)The evaluation of gas hydrate resources in the South China Sea is a highly targeted,stratified,and multidisciplinary evaluation of geological resources under the framework of a multi-type gas hydrate resource evaluation system and focuses on the comprehensive utilization of multi-source heterogeneous data.(3)Global NGHs resources is n×10^(15)m^(3),while the NGHs resources in the South China Sea are estimated to be 10^(13)m^(3),which is comparable to the abundance of typical marine NGHs deposits in other parts of the world.In the South China Sea,the NGHs resources have a broad prospect and provide a substantial resource base for production tests and industrialization of NGHs.
基金National Natural Science Foundation Joint Fund Project(U21A20111)National Natural Science Foundation of China(51974112,51674108).
文摘To analyze the relationship between macro and meso parameters of the gas hydrate bearing coal(GHBC)and to calibrate the meso-parameters,the numerical tests were conducted to simulate the laboratory triaxial compression tests by PFC3D,with the parallel bond model employed as the particle contact constitutive model.First,twenty simulation tests were conducted to quantify the relationship between the macro–meso parameters.Then,nine orthogonal simulation tests were performed using four meso-mechanical parameters in a three-level to evaluate the sensitivity of the meso-mechanical parameters.Furthermore,the calibration method of the meso-parameters were then proposed.Finally,the contact force chain,the contact force and the contact number were examined to investigate the saturation effect on the meso-mechanical behavior of GHBC.The results show that:(1)The elastic modulus linearly increases with the bonding stiffness ratio and the friction coefficient while exponentially increasing with the normal bonding strength and the bonding radius coefficient.The failure strength increases exponentially with the increase of the friction coefficient,the normal bonding strength and the bonding radius coefficient,and remains constant with the increase of bond stiffness ratio;(2)The friction coefficient and the bond radius coefficient are most sensitive to the elastic modulus and the failure strength;(3)The number of the force chains,the contact force,and the bond strength between particles will increase with the increase of the hydrate saturation,which leads to the larger failure strength.
基金financially supported by the Natural Science Foundation of Shandong Province(No.ZR202011030013)the National Natural Science Foundation of China(No.41976205)+1 种基金the Marine S&T Fund of Shandong Province for Pilot National Laboratory for Marine Science and Technology(Qingdao)(No.2021QNLM020002)the China Geological Survey Program(No.DD20221704).
文摘It has been evidenced that shallow gas hydrate resources are abundant in deep oceans worldwide.Their geological back-ground,occurrence,and other characteristics differ significantly from deep-seated hydrates.Because of the high risk of well construction and low production efficiency,they are difficult to be recovered by using conventional oil production methods.As a result,this paper proposes an alternative design based on a combination of radial drilling,heat injection,and backfilling methods.Multi-branch holes are used to penetrate shallow gas hydrate reservoirs to expand the depressurization area,and heat injection is utilized as a supplement to improve gas production.Geotechnical information collected from an investigation site close to the offshore production well in the South China Sea is used to assess the essential components of this plan,including well construction stability and gas production behavior.It demonstrates that the hydraulic fracturing of the 60mbsf overburden layer can be prevented by regulating the drilling fluid densities.However,the traditional well structure is unstable,and the suction anchor is advised for better mechanical performance.The gas produc-tion rate can be significantly increased by combining hot water injection and depressurization methods.Additionally,the suitable produc-tion equipment already in use is discussed.
基金supported by the National Natural Science Foundation of China (Nos.52074334,51991365)the National Key R&D Program of China (2021YFC2800903),which are gratefully acknowledged.
文摘Natural gas hydrate(NGH)is generally produced and accumulated together with the underlying conventional gas.Therefore,optimizing the production technology of these two gases should be seen as a relevant way to effectively reduce the exploitation cost of the gas hydrate.In this study,three types of models accounting for the coexistence of these gases are considered.Type A considers the upper hydrate-bearing layer(HBL)adjacent to the lower conventional gas layer(CGL);with the Type B a permeable interlayer exists between the upper HBL and the lower CGL;with the type C there is an impermeable interlayer between the upper HBL and the lower CGL.The production performances associated with the above three models are calculated under different conditions,including only a depressurized HBL(only HBL DP);only a depressurized CGL(only CGL DP);and both the HBL and the CGL being depressurized(HBL+CGL DP).The results show that for Type A and Type B coexistence accumulation models,when only HBL or CGL is depressurized,the gas from the other layer will flow into the production layer due to the pressure difference between the two layers.In the coexistence accumulation model of type C,the cumulative gas production is much lower than that of Type A and Type B,regardless of whether only HBL DP,only CGL DP,or HBL+CGL DP are considered.This indicates that the impermeable interlayer restricts the cross-flow of gas between HBL and CGL.For three different coexistence accumulation models,CGL DP has the largest gas-to-water ratio.
文摘Methane gas hydrate related bottom-simulating reflectors(BSRs)are imaged based on the in-line and cross-line multi-channel seismic(MCS)data from the Andaman Forearc Basin.The depth of the BSR depends on pressure and temperature and pore water salinity.With these assumptions,the BSR depth can be used to estimate the geothermal gradient(GTG)based on the availability of in-situ temperature measurements.This calculation is done assuming a 1D conductive model based on available in-situ temperature measurement at site NGHP-01-17 in the study area.However,in the presence of seafloor topography,the conductive temperature field in the subsurface is affected by lateral refraction of heat,which focuses heat in topographic lows and away from topographic highs.The 1D estimate of GTG in the Andaman Forearc Basin has been validated by drilling results from the NGHP-01 expedition.2D analytic modeling to estimate the effects of topography is performed earlier along selected seismic profiles in the study area.The study extended to estimate the effect of topography in 3D using a numerical model.The corrected GTG data allow us to determine GTG values free of topographic effect.The difference between the estimated GTG and values corrected for the 3D topographic effect varies up to~5℃/km.These conclude that the topographic correction is relatively small compared to other uncertainties in the 1D model and that apparent GTG determined with the 1D model captures the major features,although the correction is needed prior to interpreting subtle features of the derived GTG maps.
基金supported by the National Hi-tech Research and Development Program of China(863 Program)(Grant No.2013AA092501)the China Geological Survey Projects(Grant Nos.GZH201100303 and GZH201100305)
文摘To investigate the distribution and velocity attributes of gas hydrates in the northern continental slope of South China Sea, Guangzhou Marine Geological Survey conducted four-component (4C) ocean-bottom seismometer (OBS) surveys. A case study is presented to show the results of acquiring and processing OBS data for detecting gas hydrates. Key processing steps such as repositioning, reorientation, PZ summation, and mirror imaging are discussed. Repositioning and reorientation find the correct location and direction of nodes. PZ summation matches P- and Z-components and sums them to separate upgoing and downgoing waves. Upgoing waves are used in conventional imaging, whereas downgoing waves are used in mirror imaging. Mirror imaging uses the energy of the receiver ghost reflection to improve the illumination of shallow structures, where gas hydrates and the associated bottom-simulating reflections (BSRs) are located. We developed a new method of velocity analysis using mirror imaging. The proposed method is based on velocity scanning and iterative prestack time migration. The final imaging results are promising. When combined with the derived velocity field, we can characterize the BSR and shallow structures; hence, we conclude that using 4C OBS can reveal the distribution and velocity attributes of gas hydrates.
基金supported by the National Natural Science Foundation of China(No.41174087,41204089)the National Oil and Gas Major Project(No.2011ZX05005-005)
文摘We investigated the effect of microscopic distribution modes of hydrates in porous sediments, and the saturation of hydrates and free gas on the elastic properties of saturated sediments. We simulated the propagation of seismic waves in gas hydrate-bearing sediments beneath the seafloor, and obtained the common receiver gathers of compressional waves(P-waves) and shear waves(S-waves). The numerical results suggest that the interface between sediments containing gas hydrates and free gas produces a large-amplitude bottomsimulating reflector. The analysis of multicomponent common receiver data suggests that ocean-bottom seismometers receive the converted waves of upgoing P- and S-waves, which increases the complexity of the wavefield record.
基金National Gas Hydrates Integral Appraisal Project (GZH200200203-05).
文摘Based on the sensitivity of geophysical response to gas hydrates contained in sediments, we studied the prediction of gas hydrates with seismic techniques, including seismic attributes analysis, AVO, inverted velocity field construction for dipping formations, and pseudo-well constrained impedance inversion. We used an optimal integration of geophysical techniques results in a set of reliable and effective workflows to predict gas hydrates. The results show that the integrated analysis of the combination of reflectivity amplitude, instantaneous phase, interval velocity, relative impedance, absolute impedance, and AVO intercept is a valid combination of techniques for identifying the BSR (Bottom Simulated Reflector) from the lower boundary of the gas hydrates. Integration of seismic sections, relative and absolute impedance sections, and interval velocity sections can improve the validity of gas hydrates determination. The combination of instantaneous frequency, energy half attenuation time, interval velocity, AVO intercept, AVO product, and AVO fluid factor accurately locates the escaped gas beneath the BSR. With these conclusions, the combined techniques have been used to successfully predict the gas hydrates in the Dongsha Sea area.
文摘Bottom-simulating reflectors (BSRs) in seismic profile always indicate the bottom of gas hydrate stability zone, but is difficult to determine the distribution and features of gas hydrate sediments (GHS). In this study, based on AVA forward modeling and angle-domain common-image gathers we use prestack AVA parameters consistency inversion in predicting gas hydrate sediments in the Shenhu area at northern slope of South China Sea, and obtain the vertical and lateral features and saturation of GHS.
文摘The sulfate-methane interface is an important biogeochemical identification interface for the areas with high methane flux and containing gas hydrate. Above the sulfate-methane interface, the sulfate concentration in the sediment is consumed progressively for the decomposition of the organic matter and anaerobic methane oxidation. Below the sulfate-methane interface, the methane concentration increases continuously with the depth. Based on the variation characters of the sulfate and methane concentration around the sulfate-methane interface, it is feasible to estimate the intensity of the methane flux, and thereafter to infer the possible occurrence of gas hydrate. The geochemical data of the pore water taken from the northern slope of the South China Sea show the sulfate-methane interface is relatively shallow, which indicates that this area has the high methane flux. It is considered that the high methane flux is most probably caused by the occurrence of underlying gas hydrate in the northern slope of the South China Sea.
文摘According to the processing and interpretation of multichannel seismic reflection data in the area of Okinawa Trough, the BSR (bottom simulating reflector) was identified in 16 seismic profiles. By means of special processing technologies such as AVO and waveform inversion, the authors, for the first time, directly used the BSR to outline the distribution tendency of thickness of gas hydrate stability zone in the Trough and thought that the largest stability zone thickness was in the south and the smallest in the north. Then through calculation the authors got the thickness of hydrate stability zone and resource of the hydrate. This would be useful to the future hydrate exploration and resource evaluation in the Okinawa Trough.
基金This research was financially supported by the CAS consultation project(Grant number-2019-ZW11-Z-035)the National Basic Research Program of China(973)(Projects:2006CB202300,2011CB201100)+1 种基金China High-Tech R&D(863)Program Project(2013AA092600)We would like to thank Gao Deli,Academician of Chinese Academy of Sciences,for his comments and recommendation in publishing this paper in Petroleum Science.
文摘Natural gas hydrate(NGH)has been widely considered as an alternative to conventional oil and gas resources in the future energy resource supply since Trofimuk’s first resource assessment in 1973.At least 29 global estimates have been published from various studies so far,among which 24 estimates are greater than the total conventional gas resources.If drawn in chronological order,the 29 historical resource estimates show a clear downward trend,reflecting the changes in our perception with respect to its resource potential with increasing our knowledge on the NGH with time.A time series of the 29 estimates was used to establish a statistical model for predict the future trend.The model produces an expected resource value of 41.46×1012 m3 at the year of 2050.The statistical trend projected future gas hydrate resource is only about 10%of total natural gas resource in conventional reservoir,consistent with estimates of global technically recoverable resources(TRR)in gas hydrate from Monte Carlo technique based on volumetric and material balance approaches.Considering the technical challenges and high cost in commercial production and the lack of competitive advantages compared with rapid growing unconventional and renewable resources,only those on the very top of the gas hydrate resource pyramid will be added to future energy supply.It is unlikely that the NGH will be the major energy source in the future.
文摘By analyzing and interpreting the newly acquired seismic profile supported by the national 973 Program and synthesizing the data with other geologic & geographic information, we draw conclusions as follows, a) Two seismic reflections located at the northeast South China Sea (SCS) slope and the Hengchun ridge are the Bottom Simulated Reflections (BSRs). Yet, the genesis and process of the gas hydrate in these two areas are different because of different regional tectonics and geological environments; b) The genesis of gas hydrate located at the northeast SCS slope area is related to the broadly existing fracture zones, slumping tectosomes, and the distinctive shielding environment of pressure masking field formed by them. But the genesis of the gas hydrate at the Hengchun ridge is associated with the thrust nappe structures and accretionary wedges formed along the Manila subduction zone and the related sub-floor fluid channel system built by them; c) Since the analogous geologic bodies are broadly distributed at slope areas around SCS and the temperature-press environment is very suitable to the formation and conservation of the gas hydrate, we suggest that much more of this resource should be stored in these areas.
基金supported by a major consulting project of"South China Sea Oil and Gas Comprehensive Development Strategy Research"led by Academician Gao Deli and the Faculty of Chinese Academy of SciencesCounsulting Project of Chinese Academy of Science(Approval Number:2019-ZW11-Z-035)+1 种基金National Key Basic Research and Development Program(973)(Nos:2006CB202300,2011CB201100)China High-tech R&D Program(863)(2013AA092600)。
文摘Natural gas hydrate(NGH)has attracted much attention as a new alternative energy globally.However,evaluations of global NGH resources in the past few decades have casted a decreasing trend,where the estimate as of today is less than one ten-thousandth of the estimate forty years ago.The NGH researches in China started relatively late,but achievements have been made in the South China Sea(SCS)in the past two decades.Thirty-five studies had been carried out to evaluate NGH resource,and results showed a flat trend,ranging from 60 to 90 billion tons of oil equivalent,which was 2-3 times of the evaluation results of technical recoverable oil and gas resources in the SCS.The big difference is that the previous 35 group of NGH resource evaluations for the SCS only refers to the prospective gas resource with low grade level and high uncertainty,which cannot be used to guide exploration or researches on development strategies.Based on the analogy with the genetic mechanism of conventional oil and gas resources,this study adopts the newly proposed genetic method and geological analogy method to evaluate the NGH resource.Results show that the conventional oil and gas resources are 346.29×10^(8)t,the volume of NGH and free dynamic field are 25.19×10^(4)km^(3) and(2.05-2.48)×10^(6)km^(3),and the total amount of in-situ NGH resources in the SCS is about(4.47-6.02)×10^(12)m^(3).It is considered that the resource of hydrate should not exceed that of conventional oil and gas,so it is 30 times lower than the previous estimate.This study provides a more reliable geological basis for further NGH exploration and development.