Carbon dioxide transformation to fuels or chemicals provides an attractive approach for its utilization as feedstock and its emission reduction. Herein, we report a gas-phase electrocatalytic reduction of CO2 in an el...Carbon dioxide transformation to fuels or chemicals provides an attractive approach for its utilization as feedstock and its emission reduction. Herein, we report a gas-phase electrocatalytic reduction of CO2 in an electrolytic cell, constructed using phosphoric acid-doped polybenz- imidazole (PBI) membrane, which allowed operation at 170 ℃ Pt/C and PtMo/C with variable ratio of Pt/Mo were studied as the cathode catalysts. The results showed that PtMo/C catalysts significantly enhanced CO formation and inhibited CH4 formation compared with Pt/C catalyst. Characterization by X-ray diffraction, X-ray photoelectron spectroscopy and transmission electron microscopy revealed that most Mo species existed as MoO3 in PtMo/C catalysts and the interaction between Pt and MoOx was likely responsible for the enhanced CO formation rate although these bicomponent catalysts in general had a larger particle size than Pt/C catalyst.展开更多
The gas-phase synthesis of dimethyl carbonate (DMC) from methanol, carbon monoxide and oXygen has here Studied in a flow system at atomspheric Pressure. A series of Catalyst used in this reaCtion have been prepared an...The gas-phase synthesis of dimethyl carbonate (DMC) from methanol, carbon monoxide and oXygen has here Studied in a flow system at atomspheric Pressure. A series of Catalyst used in this reaCtion have been prepared and evaluated. The influence of trivared carbon supporters, alkaline metal Promoters and operation conditions on DMC opthesis reaction has been discussed. Under the conditions of 130℃, CO/O2=1 .96, SV=3340h-1, the space-time yield (STY) of DMC over PdCl2-CuCl2-CH3COOK/ac. catalyst is 217g/l-cat h,which is higher than what is published in the literatUre so far.展开更多
Mg-Zn binary alloys fabricated by the gas-phase alloying technique under vacuum condition were investigated in the state of initial state and after heat treatment for the microstructure and electrochemical behaviors.D...Mg-Zn binary alloys fabricated by the gas-phase alloying technique under vacuum condition were investigated in the state of initial state and after heat treatment for the microstructure and electrochemical behaviors.Different from the traditional Mg-Zn alloys preparation methods,alloys prepared by gas-phase alloying have a large number of intermetallic compounds,such as MgZn,Mg7Zn3 and MgZn2.After solution treatment,the boundary of the eutectic disappeared and the size ofα-Mg increased from 100μm to 150μm.At the same time,the value of the resistance of charge transfer increased,which indicates that the resistance of the charge transfer and the corrosion resistance of the alloys increased.After artificial aging treatment,the distribution ofα-Mg was more uniform and its size was reduced to about 50μm,and there was new eutectic structure formed.The newly formed eutectic structure forms galvanic cells with the alloy matrix,which makes the corrosion resistance of the alloy weaken.展开更多
Developing of non-metallic catalyst to replace metal catalyst is a meaningful and challenging direction.In this work,the non-metallic catalyst was synthetized successfully by loading ionic liquid onto the silica surfa...Developing of non-metallic catalyst to replace metal catalyst is a meaningful and challenging direction.In this work,the non-metallic catalyst was synthetized successfully by loading ionic liquid onto the silica surface,which was applied for the gas-phase dehydrochlorination of 1,1,2,2-tetrachloroethane.The 12%TPPC/SiO2(wt%)showed the best results with the conversion of 1,1,2,2-tetrachloroethane reaching 100%.The selectivity of 1,1,2-trichloroethylene was 100%,and no deactivation was found during the evaluation period.The catalytic mechanism was investigated and possible reaction route was given,which was a reference for fabricating and design of solid base catalyst.展开更多
The performance of the single-stage anaerobic digestion of kitchen wastes was investigated in an anaerobic sequencing batch reactor(ASBR) with gas-phased absorb of CO 2. The ASBR was operated at four chemical oxygen ...The performance of the single-stage anaerobic digestion of kitchen wastes was investigated in an anaerobic sequencing batch reactor(ASBR) with gas-phased absorb of CO 2. The ASBR was operated at four chemical oxygen demand(COD) loading rates, 2.8, 5.1, 6.2 and 8.4 g/(L·d) respectively. The COD loading rate was increased with the TS concentration and HRT changing. At maximum COD loading rate of 8.4 g/(L·d), the COD, total solid(TS) removal rate and methane gas yield were 69%, 68% and 2.5 L/(L·d) respectively. The operation of the reactor with gas-phased absorb of CO 2 was stable in spite of the low pH(2.6—3.9) and high concentration of TS(142 g/L) of input mixture. The output volatile fatty acid(VFA) concentration was between 2.7—4.7 g/L and had no inhibition on the methanogenic microorganism. The reactor without gas-phased absorb of CO 2 became acidified when the total COD loading rate was increased to 5.1 g/(L·d). Stoichiometry of the methanogenesis for kitchen wastes showed a considerable amount of alkaline will be required to keep pH in the appropriate range for the methanogenic microorganism based on theoretical calculation. Gas-phased absorb of CO 2 effectively reduced the alkaline consumption, hence avoided excessive cation into the reactor.展开更多
The microscopic heterogeneity of pore-throat structures in tight sandstone is a crucial parameter for understanding the transport mechanism of fluid flow.In this work,we firstly developed the new procedure to characte...The microscopic heterogeneity of pore-throat structures in tight sandstone is a crucial parameter for understanding the transport mechanism of fluid flow.In this work,we firstly developed the new procedure to characterize the pore size distribution(PSD)and throat size distribution(TSD)by combining the nuclear magnetic resonance(NMR),cast thin section(CTS),and constant-rate mercury injection(CRMI)tests,and used the permeability estimated model to verify the full-scale PSD and TSD.Then,we respectively analyzed the fractal feature of the pore and throat,and characterized the heterogeneity of pores and throats.Finally,we elaborated the effect of the pore and throat heterogeneity on the gas-phase seepage capacity base on the analysis of the simple capillary tube model and gas-flooding experiment.The results showed that(1)The PSD and TSD of the tight sandstone sample ranged from 0.01 to 10 mm and from 0.1 to 57 mm,respectively,mainly contributed by the micropores and mesopores.Meanwhile,the permeability estimated by the PSD and TSD was consistent with the experimental permeability,and relative error was lower than 8%.(2)The PSD and TSD exhibited multifractal characteristics,and singularity strength range,Δα,could be used as the indicator for characterizing the heterogeneity of pore and throat.Furthermore,the throat of the sample showed stronger heterogeneity than that the pore.(3)The throats played an important role for the fluid transport in the tight sandstone,and the effect of the throat heterogeneity on the gas-phase seepage capacity was different under the lower and higher injection pressure.The macropores and micropores maybe respectively become the preferential migration pathways at the lower and higher injection pressure.In the end,the identification plate was established in our paper,and could be described the relationship among the throat heterogeneity,injection pressure,permeability and flow path of the gas phase in the tight sandstone.展开更多
In this review,the history and outlook of gas-phase CO_(2)activation using single electrons,metal atoms,clusters(mainly metal hydride clusters),and molecules are discussed on both of the experimental and theoretical f...In this review,the history and outlook of gas-phase CO_(2)activation using single electrons,metal atoms,clusters(mainly metal hydride clusters),and molecules are discussed on both of the experimental and theoretical fronts.Although the development of bulk solid-state materials for the activation and conversion of CO_(2)into value-added products have enjoyed great success in the past several decades,this review focuses only on gas-phase studies,because isolated,well-defined gas-phase systems are ideally suited for high-resolution experiments using state-of-the-art spectrometric and spectroscopic techniques,and for simulations employing modern quantum theoretical methods.The unmatched high complementarity and comparability of experiment and theory in the case of gas-phase investigations bear an enormous potential in providing insights in the reactions of CO_(2)activation at the atomic level.In all of these examples,the reduction and bending of the inert neutral CO_(2)molecule is the critical step determined by the frontier orbitals of reaction participants.Based on the results and outlook summarized in this review,we anticipate that studies of gas-phase CO_(2)activations will be an avenue rich with opportunities for the rational design of novel catalysts based on the knowledge obtained on the atomic level.展开更多
Small-cell HSY-S zeolite prepared by the gas-phase ultra-stable method had been researched and developed,and industrial preparation tests of HSY-S have been successfully carried out for the first time.The acid resista...Small-cell HSY-S zeolite prepared by the gas-phase ultra-stable method had been researched and developed,and industrial preparation tests of HSY-S have been successfully carried out for the first time.The acid resistance of industrially prepared HSY-S was investigated by acid solutions with different pH values.The structures and properties of HSY-S and its acid-treated samples were characterized by XRD,XRF,BET,and IR.Results show that the HSY-S samples have the characteristics of high crystallinity,good stability,large specific surface area,and good acid resistance.展开更多
A gas-phase surface discharge(GSD)was employed to optimize the discharge reactor structure and investigate the dye degradation.A dye mixture of methylene blue,acid orange and methyl orange was used as a model pollut...A gas-phase surface discharge(GSD)was employed to optimize the discharge reactor structure and investigate the dye degradation.A dye mixture of methylene blue,acid orange and methyl orange was used as a model pollutant.The results indicated that the reactor structure of the GSD system with the ratio of tube inner surface area and volume of 2.48,screw pitch between a high-voltage electrode of 9.7 mm,high-voltage electrode wire diameter of 0.8 mm,dielectric tube thickness of2.0 mm and tube inner diameter of 16.13 mm presented a better ozone(O_3)generation efficiency.Furthermore,a larger screw pitch and smaller wire diameter enhanced the O_3generation.After the dye mixture degradation by the optimized GSD system,73.21%and 50.74%of the chemical oxygen demand(COD)and total organic carbon removal rate were achieved within 20 min,respectively,and the biochemical oxygen demand(BOD)and biodegradability(BOD/COD)improved.展开更多
Reactions of C60 with Si(CH_3)_nCl_(4-n) (n=2,3)in the ion source of the mass spectrometer have been studied.The corresponding adduct ions[C60Si(CH_3)_mCl3_(-m)]^+(m=1,2,3),[C60SiCl]^+ and[C60CH_3]^+ were observed and...Reactions of C60 with Si(CH_3)_nCl_(4-n) (n=2,3)in the ion source of the mass spectrometer have been studied.The corresponding adduct ions[C60Si(CH_3)_mCl3_(-m)]^+(m=1,2,3),[C60SiCl]^+ and[C60CH_3]^+ were observed and their possible structures were discussed.The results indicated that C60 is very reactive to electrophiles in the gas phase.展开更多
NO_x-catalyzed oxidation of methane without a solid catalyst wasinvestigated, and a hydrogen selectivity of 27% was obtained with an overall methane conversion of34% and a free O_2 concentration of 1.7% at 700℃.
The reaction of Ca with HN3 has been investigated theoretically by an ah initio MO methodwith electron correlation being taken into account by second-order MLLER-PLESSET(MP2)perturbation theory Two possible product ch...The reaction of Ca with HN3 has been investigated theoretically by an ah initio MO methodwith electron correlation being taken into account by second-order MLLER-PLESSET(MP2)perturbation theory Two possible product channels. CaN3+H. CaNH+N2, on the potential energysurfaces(PESs) have been examined and the reaction mechanism discussed. Values of tile HN-NZ,HN3, Ca-N3 and Ca-AH bond dissociation energy are also calculated, which are in good agreement withexperiment展开更多
Using the 'lumped mechanism' and 'counting species' methods, we developed a condensed gas-phase chemical model based on a simplified one. The modified quasi-steady-state approximation (QSSA) scheme and...Using the 'lumped mechanism' and 'counting species' methods, we developed a condensed gas-phase chemical model based on a simplified one. The modified quasi-steady-state approximation (QSSA) scheme and the error redistribution mass conservation technique are adopted to solve the atmospheric chemistry kinetic equations. Results show that the condensed model can well simulate concentration variations of gas species such as SO2, NOX, O-3, H2O2 and conversion rates of SO2 and NOX transformation to H2SO4 and HNO3. These results are in good agreement with those from the simplified model. The conversion rates of SO2 and NOX under different initial concentrations and meteorological conditions are computed, and the results can be directly applied to regional acid deposition model.展开更多
The gas-phase conversion of U3O8, MoO3, SrO, and their mechanical mixtures, and also of ZrO2 into water-soluble compounds in the atmosphere of (NOx + vapor H2O) or HNO3 (vapor) was studied. In the course of gas-phase ...The gas-phase conversion of U3O8, MoO3, SrO, and their mechanical mixtures, and also of ZrO2 into water-soluble compounds in the atmosphere of (NOx + vapor H2O) or HNO3 (vapor) was studied. In the course of gas-phase conversion, U3O8 and SrO transform into water-soluble compounds (nitrates, hydroxonitrates), whereas MoO3 and ZrO2 undergo no changes. The principal possibility of separating U from Mo and Zr by gas-phase conversion of the oxides in the atmosphere of (NOx + vapor H2O) or HNO3 (vapor) was demonstrated.展开更多
In this work, gas-phase chemistry of ruthenium and rhodium was studied using online isothermal chromatographyapparatus at low temperature coupled to the 252Cf SF source[1] at IMP (Fig. 1). Apart from the interferenceo...In this work, gas-phase chemistry of ruthenium and rhodium was studied using online isothermal chromatographyapparatus at low temperature coupled to the 252Cf SF source[1] at IMP (Fig. 1). Apart from the interferenceof precursor effect[2], 109?110Ru and 111?112Rh were chosen as the representative isotopes for the two elementsrespectively. An improved Monte Carlo molecular simulation program was compiled according to the gas-phasechemistry model[3], and was used in the optimization of the experimental condition. The adsorption enthalpies ofpentacarbonyl ruthenium and tetracarbonyl rhodium on the FEP surface were obtained.展开更多
The gas-phase hydrogenation of furfural to furfuralcohol over Cr-free Cu-based catalysts has attracted increasing attention due to its environmentally friendly nature and mild operating conditions.Although reduced pur...The gas-phase hydrogenation of furfural to furfuralcohol over Cr-free Cu-based catalysts has attracted increasing attention due to its environmentally friendly nature and mild operating conditions.Although reduced pure nano-sized CuO exhibits complete furfural hydrogenation and nearly 100%furfuralcohol selectivity,it suffers from rapid deactivation caused by sintering.In this study,we conducted comparative investigations on the catalytic performance and stability of two Cu-based catalysts:90%CuO-10%SiO_(2) and 90%CuO-5%CaO-5%SiO_(2),in the gas-phase furfural hydrogenation.The reaction is carried out under various conditions,including temperatures ranging from 120 to 170℃,LHSVs of 1 to 2.2 h^(-1),and H_(2) to furfural molar ratios of 3.5 to 12.5.The results indicate that under optimal conditions,the Ca-modified catalyst achieves nearly complete furfural conversion and almost 100%furfuralcohol selectivity for a test duration of 31 h.In contrast,the unmodified catalyst exhibits stable performance for only seven hours despite the similar initial performance.XRD analysis confirms that the gradual deactivation of both catalysts is attributed to the oxidation of reduced metallic Cu sites to Cu oxides.Further characterizations of the two spent catalysts using HRTEM and XPS analyses,along with DFT calculations,suggest that the presence of Ca in Cu lattices prevents the loss of electrons from low-valence Cu sites or the reduced metallic Cu sites,thus inhibiting their oxidation to high-valence Cu oxides.This phenomenon contributes to suppressing the deactivation of Cu-catalysts in the gas-phase furfural hydrogenation process.展开更多
Smog chambers provide a potent approach to explore the secondary organic aerosol formation under varied conditions.This study describes the construction and characterization of a new smog chamber facility for studying...Smog chambers provide a potent approach to explore the secondary organic aerosol formation under varied conditions.This study describes the construction and characterization of a new smog chamber facility for studying the formation mechanisms of gas-phase products and secondary organic aerosol from the photooxidation of volatile organic compounds.The chamber is a 5.4 m^(3) Fluorinated Ethylene Propylene(FEP)Teflon reactor with the potential to perform photooxidation experiments at controlled temperature and relative humidity.Detailed characterizations were conducted for evaluation of stability of environmental parameters,mixing time,background contamination,light intensity,and wall losses of gases and particles.The photolysis rate of NO_(2)(J_(NO2))ranged from(1.02-3.32)×10^(-3)sec^(-1),comparable to the average J_(NO2)in ambient environment.The wall loss rates for NO,NO_(2),and O_(3)were 0.47×10^(-4),0.37×10^(-4),and 1.17×10^(-4)min^(-1),while wall loss of toluene was obsoletely found in a 6 hr test.The particle number wall loss rates are(0.01-2.46)×10^(-3)min^(-1)for 40-350 nm with an average lifetime of more than one day.A series of toluene photooxidation experiments were carried out in absence of NO_xunder dry conditions.The results of the simulation experiments demonstrated that the chamber is well designed to simulate photolysis progress in the atmosphere.展开更多
Carbon nanotubes(CNTs)as superior support materials for functional nanoparticles(NPs)have been widely demonstrated.Nevertheless,the homogeneous loading of these NPs is still frustrated due to the inert surface of CNTs...Carbon nanotubes(CNTs)as superior support materials for functional nanoparticles(NPs)have been widely demonstrated.Nevertheless,the homogeneous loading of these NPs is still frustrated due to the inert surface of CNTs.In this work,a facile gas-phase pyrolysis strategy that the mixture of ferrocene and CNTs are confined in an isolated reactor with rising temperature is developed to fabricate a carbon-coated Fe3O4 nanoparticle/carbon nanotube(Fe3O4@C/CNT)composite.It is found the ultra-small Fe3O4 NPs(<10 nm)enclosed in a thin carbon layer are uniformly anchored on the surface of CNTs.These structural benefits result in the excellent lithium-ion storage performances of the Fe3O4@C/CNT composite.It delivers a stable reversible capacity of 861 mA·h·g^-1 at the current density of 100 mA·g^-1 after 100 cycles.The capacity retention reaches as high as 54.5%even at 6000 mA·g^-1.The kinetic analysis indicates that the featured structural modification improves the surface condition of the CNT matrix,and contributes to greatly decreased interface impendence and faster charge transfer.In addition,the post-morphology observation of the tested sample further confirms the robustness of the Fe3O4@C/CNT configuration.展开更多
Based on previous research, the sampling and analysis methods for phthalate esters (PAEs) were improved by increasing the sampling flow of indoor air from 1 to 4 L/min, shortening the sampling duration from 8 to 2 h...Based on previous research, the sampling and analysis methods for phthalate esters (PAEs) were improved by increasing the sampling flow of indoor air from 1 to 4 L/min, shortening the sampling duration from 8 to 2 hr. Meanwhile, through the optimization of chromatographic conditions, the concentrations of 9 additional PAE pollutants in indoor air were measured. The optimized chromatographic conditions required a similar amount of time for analysis as before, but gave high responsivity, the capability of simultaneously distinguishing 15 kinds of PAEs, and a high level of discrimination between individual sample peaks, as well as stable peak generation. The recovery rate of all gas-phase and particle-phase samples of the 15 kinds of PAEs ranged from 91.26% to 109.42%, meeting the quantitative analysis requirements for indoor and outdoor air sampling and analysis. For the first time, investigation of the concentration levels as well as characteristics of 15 kinds of PAEs in the indoor air from four different traffic micro-environments (private vehicles, busses, taxis and subways) was carried out, along with validation of the optimized sampling and analytical method. The results show that all the 9 additional PAEs could be detected at relatively high pollution levels in the indoor air from the four traffic micro-environments. As none of the pollution levels of the 15 kinds of PAEs in the indoor air from the 4 traffic micro-environments should be neglected, it is of great significance to increase the types of PAEs able to be detected in indoor air.展开更多
Although the gas-phase production of nanostructured solids has already been carried out in industry for decades, only in recentyears has research interest in this topic begun to increase. Nevertheless, despite the rem...Although the gas-phase production of nanostructured solids has already been carried out in industry for decades, only in recentyears has research interest in this topic begun to increase. Nevertheless, despite the remarkable scientific progress made recently, many long-established processes are still used in industry. Scientific advancements can potentially lead to the improvement of existing industrial processes, but also to the development of completely new routes. This paper aims to review state-of-the-art synthesis and processing technologies, as well as the recent developments in academic research. Flame reactors that produce inorganic nanoparticles on industrial- and lab-scales are described, alongside a detailed overview of the different systems used for the production of carbon nanotubes and graphene. We discuss the problems of agglomeration and mixing of nanoparticles, which are strongly related to synthesis and processing. Finally, we focus on two promising processing techniques, namely nanoparticle fluidization and atomic layer deposition.展开更多
基金supported by the Ministry of Science and Technology of China(Grant No:2012CB215500 and 2013CB933100)the National Natural Science Foundation of China(Grant No:21103178 and 21033009)
文摘Carbon dioxide transformation to fuels or chemicals provides an attractive approach for its utilization as feedstock and its emission reduction. Herein, we report a gas-phase electrocatalytic reduction of CO2 in an electrolytic cell, constructed using phosphoric acid-doped polybenz- imidazole (PBI) membrane, which allowed operation at 170 ℃ Pt/C and PtMo/C with variable ratio of Pt/Mo were studied as the cathode catalysts. The results showed that PtMo/C catalysts significantly enhanced CO formation and inhibited CH4 formation compared with Pt/C catalyst. Characterization by X-ray diffraction, X-ray photoelectron spectroscopy and transmission electron microscopy revealed that most Mo species existed as MoO3 in PtMo/C catalysts and the interaction between Pt and MoOx was likely responsible for the enhanced CO formation rate although these bicomponent catalysts in general had a larger particle size than Pt/C catalyst.
文摘The gas-phase synthesis of dimethyl carbonate (DMC) from methanol, carbon monoxide and oXygen has here Studied in a flow system at atomspheric Pressure. A series of Catalyst used in this reaCtion have been prepared and evaluated. The influence of trivared carbon supporters, alkaline metal Promoters and operation conditions on DMC opthesis reaction has been discussed. Under the conditions of 130℃, CO/O2=1 .96, SV=3340h-1, the space-time yield (STY) of DMC over PdCl2-CuCl2-CH3COOK/ac. catalyst is 217g/l-cat h,which is higher than what is published in the literatUre so far.
基金Project(2015DFR50990-01)supported by the International Cooperation Project of Ministry of Science and Technology of ChinaProject(2016KF-01)supported by the Shaanxi Key Laboratory of Nano-materials and Technology,ChinaProject(2015CXY-01)supported by the Cooperation Project on the Integration of Industry,Education and Research of Yulin Science and Technology Bureau,China。
文摘Mg-Zn binary alloys fabricated by the gas-phase alloying technique under vacuum condition were investigated in the state of initial state and after heat treatment for the microstructure and electrochemical behaviors.Different from the traditional Mg-Zn alloys preparation methods,alloys prepared by gas-phase alloying have a large number of intermetallic compounds,such as MgZn,Mg7Zn3 and MgZn2.After solution treatment,the boundary of the eutectic disappeared and the size ofα-Mg increased from 100μm to 150μm.At the same time,the value of the resistance of charge transfer increased,which indicates that the resistance of the charge transfer and the corrosion resistance of the alloys increased.After artificial aging treatment,the distribution ofα-Mg was more uniform and its size was reduced to about 50μm,and there was new eutectic structure formed.The newly formed eutectic structure forms galvanic cells with the alloy matrix,which makes the corrosion resistance of the alloy weaken.
基金financed by the National Natural Science Foundation of China(NSFC-21476207,91534114,21776256)。
文摘Developing of non-metallic catalyst to replace metal catalyst is a meaningful and challenging direction.In this work,the non-metallic catalyst was synthetized successfully by loading ionic liquid onto the silica surface,which was applied for the gas-phase dehydrochlorination of 1,1,2,2-tetrachloroethane.The 12%TPPC/SiO2(wt%)showed the best results with the conversion of 1,1,2,2-tetrachloroethane reaching 100%.The selectivity of 1,1,2-trichloroethylene was 100%,and no deactivation was found during the evaluation period.The catalytic mechanism was investigated and possible reaction route was given,which was a reference for fabricating and design of solid base catalyst.
文摘The performance of the single-stage anaerobic digestion of kitchen wastes was investigated in an anaerobic sequencing batch reactor(ASBR) with gas-phased absorb of CO 2. The ASBR was operated at four chemical oxygen demand(COD) loading rates, 2.8, 5.1, 6.2 and 8.4 g/(L·d) respectively. The COD loading rate was increased with the TS concentration and HRT changing. At maximum COD loading rate of 8.4 g/(L·d), the COD, total solid(TS) removal rate and methane gas yield were 69%, 68% and 2.5 L/(L·d) respectively. The operation of the reactor with gas-phased absorb of CO 2 was stable in spite of the low pH(2.6—3.9) and high concentration of TS(142 g/L) of input mixture. The output volatile fatty acid(VFA) concentration was between 2.7—4.7 g/L and had no inhibition on the methanogenic microorganism. The reactor without gas-phased absorb of CO 2 became acidified when the total COD loading rate was increased to 5.1 g/(L·d). Stoichiometry of the methanogenesis for kitchen wastes showed a considerable amount of alkaline will be required to keep pH in the appropriate range for the methanogenic microorganism based on theoretical calculation. Gas-phased absorb of CO 2 effectively reduced the alkaline consumption, hence avoided excessive cation into the reactor.
基金financial support from the Youth Science and Technology Innovation Team of Southwest Petroleum University(No.2018CXTD10)the National Natural Science Foundation Project of China(No.51874248 and No.U19B2010).
文摘The microscopic heterogeneity of pore-throat structures in tight sandstone is a crucial parameter for understanding the transport mechanism of fluid flow.In this work,we firstly developed the new procedure to characterize the pore size distribution(PSD)and throat size distribution(TSD)by combining the nuclear magnetic resonance(NMR),cast thin section(CTS),and constant-rate mercury injection(CRMI)tests,and used the permeability estimated model to verify the full-scale PSD and TSD.Then,we respectively analyzed the fractal feature of the pore and throat,and characterized the heterogeneity of pores and throats.Finally,we elaborated the effect of the pore and throat heterogeneity on the gas-phase seepage capacity base on the analysis of the simple capillary tube model and gas-flooding experiment.The results showed that(1)The PSD and TSD of the tight sandstone sample ranged from 0.01 to 10 mm and from 0.1 to 57 mm,respectively,mainly contributed by the micropores and mesopores.Meanwhile,the permeability estimated by the PSD and TSD was consistent with the experimental permeability,and relative error was lower than 8%.(2)The PSD and TSD exhibited multifractal characteristics,and singularity strength range,Δα,could be used as the indicator for characterizing the heterogeneity of pore and throat.Furthermore,the throat of the sample showed stronger heterogeneity than that the pore.(3)The throats played an important role for the fluid transport in the tight sandstone,and the effect of the throat heterogeneity on the gas-phase seepage capacity was different under the lower and higher injection pressure.The macropores and micropores maybe respectively become the preferential migration pathways at the lower and higher injection pressure.In the end,the identification plate was established in our paper,and could be described the relationship among the throat heterogeneity,injection pressure,permeability and flow path of the gas phase in the tight sandstone.
基金National Key R&D Program of China(2018YFE0115000)the National Natural Science Foundation of China(22003027 and 22174073)+2 种基金the NSF of Tianjin City(19JCYBJC19600)the Frontiers Science Center for New Organic Matter of Nankai University(63181206)supported by the Air Force Office of Scientific Research(AFOSR)under grant number,FA9550-19-1-0077(KHB)。
文摘In this review,the history and outlook of gas-phase CO_(2)activation using single electrons,metal atoms,clusters(mainly metal hydride clusters),and molecules are discussed on both of the experimental and theoretical fronts.Although the development of bulk solid-state materials for the activation and conversion of CO_(2)into value-added products have enjoyed great success in the past several decades,this review focuses only on gas-phase studies,because isolated,well-defined gas-phase systems are ideally suited for high-resolution experiments using state-of-the-art spectrometric and spectroscopic techniques,and for simulations employing modern quantum theoretical methods.The unmatched high complementarity and comparability of experiment and theory in the case of gas-phase investigations bear an enormous potential in providing insights in the reactions of CO_(2)activation at the atomic level.In all of these examples,the reduction and bending of the inert neutral CO_(2)molecule is the critical step determined by the frontier orbitals of reaction participants.Based on the results and outlook summarized in this review,we anticipate that studies of gas-phase CO_(2)activations will be an avenue rich with opportunities for the rational design of novel catalysts based on the knowledge obtained on the atomic level.
基金The authors gratefully acknowledge the funding of the project by SINOPEC(No.118001-6).
文摘Small-cell HSY-S zeolite prepared by the gas-phase ultra-stable method had been researched and developed,and industrial preparation tests of HSY-S have been successfully carried out for the first time.The acid resistance of industrially prepared HSY-S was investigated by acid solutions with different pH values.The structures and properties of HSY-S and its acid-treated samples were characterized by XRD,XRF,BET,and IR.Results show that the HSY-S samples have the characteristics of high crystallinity,good stability,large specific surface area,and good acid resistance.
基金National Natural Science Foundation of China(No.51477025)
文摘A gas-phase surface discharge(GSD)was employed to optimize the discharge reactor structure and investigate the dye degradation.A dye mixture of methylene blue,acid orange and methyl orange was used as a model pollutant.The results indicated that the reactor structure of the GSD system with the ratio of tube inner surface area and volume of 2.48,screw pitch between a high-voltage electrode of 9.7 mm,high-voltage electrode wire diameter of 0.8 mm,dielectric tube thickness of2.0 mm and tube inner diameter of 16.13 mm presented a better ozone(O_3)generation efficiency.Furthermore,a larger screw pitch and smaller wire diameter enhanced the O_3generation.After the dye mixture degradation by the optimized GSD system,73.21%and 50.74%of the chemical oxygen demand(COD)and total organic carbon removal rate were achieved within 20 min,respectively,and the biochemical oxygen demand(BOD)and biodegradability(BOD/COD)improved.
文摘Reactions of C60 with Si(CH_3)_nCl_(4-n) (n=2,3)in the ion source of the mass spectrometer have been studied.The corresponding adduct ions[C60Si(CH_3)_mCl3_(-m)]^+(m=1,2,3),[C60SiCl]^+ and[C60CH_3]^+ were observed and their possible structures were discussed.The results indicated that C60 is very reactive to electrophiles in the gas phase.
基金The project supported by the Ministry of Science and Technology China(G1999022202).
文摘NO_x-catalyzed oxidation of methane without a solid catalyst wasinvestigated, and a hydrogen selectivity of 27% was obtained with an overall methane conversion of34% and a free O_2 concentration of 1.7% at 700℃.
文摘The reaction of Ca with HN3 has been investigated theoretically by an ah initio MO methodwith electron correlation being taken into account by second-order MLLER-PLESSET(MP2)perturbation theory Two possible product channels. CaN3+H. CaNH+N2, on the potential energysurfaces(PESs) have been examined and the reaction mechanism discussed. Values of tile HN-NZ,HN3, Ca-N3 and Ca-AH bond dissociation energy are also calculated, which are in good agreement withexperiment
文摘Using the 'lumped mechanism' and 'counting species' methods, we developed a condensed gas-phase chemical model based on a simplified one. The modified quasi-steady-state approximation (QSSA) scheme and the error redistribution mass conservation technique are adopted to solve the atmospheric chemistry kinetic equations. Results show that the condensed model can well simulate concentration variations of gas species such as SO2, NOX, O-3, H2O2 and conversion rates of SO2 and NOX transformation to H2SO4 and HNO3. These results are in good agreement with those from the simplified model. The conversion rates of SO2 and NOX under different initial concentrations and meteorological conditions are computed, and the results can be directly applied to regional acid deposition model.
文摘The gas-phase conversion of U3O8, MoO3, SrO, and their mechanical mixtures, and also of ZrO2 into water-soluble compounds in the atmosphere of (NOx + vapor H2O) or HNO3 (vapor) was studied. In the course of gas-phase conversion, U3O8 and SrO transform into water-soluble compounds (nitrates, hydroxonitrates), whereas MoO3 and ZrO2 undergo no changes. The principal possibility of separating U from Mo and Zr by gas-phase conversion of the oxides in the atmosphere of (NOx + vapor H2O) or HNO3 (vapor) was demonstrated.
文摘In this work, gas-phase chemistry of ruthenium and rhodium was studied using online isothermal chromatographyapparatus at low temperature coupled to the 252Cf SF source[1] at IMP (Fig. 1). Apart from the interferenceof precursor effect[2], 109?110Ru and 111?112Rh were chosen as the representative isotopes for the two elementsrespectively. An improved Monte Carlo molecular simulation program was compiled according to the gas-phasechemistry model[3], and was used in the optimization of the experimental condition. The adsorption enthalpies ofpentacarbonyl ruthenium and tetracarbonyl rhodium on the FEP surface were obtained.
基金financially supported by Youth Fund of National Natural Science Foundation of China(NO.22108175)National Natural Science Foundation of China(U190310)+3 种基金Natural Science Foundation of Liaoning province(2021-NLTS-12-09)Liaoning Innovation Talents Program in University(Liao[2020]389)Liaoning Revitalization Talents Program(XLYC1907029)Shenyang Young and Middle-aged Science&Technology Talents Program(RC210365).
文摘The gas-phase hydrogenation of furfural to furfuralcohol over Cr-free Cu-based catalysts has attracted increasing attention due to its environmentally friendly nature and mild operating conditions.Although reduced pure nano-sized CuO exhibits complete furfural hydrogenation and nearly 100%furfuralcohol selectivity,it suffers from rapid deactivation caused by sintering.In this study,we conducted comparative investigations on the catalytic performance and stability of two Cu-based catalysts:90%CuO-10%SiO_(2) and 90%CuO-5%CaO-5%SiO_(2),in the gas-phase furfural hydrogenation.The reaction is carried out under various conditions,including temperatures ranging from 120 to 170℃,LHSVs of 1 to 2.2 h^(-1),and H_(2) to furfural molar ratios of 3.5 to 12.5.The results indicate that under optimal conditions,the Ca-modified catalyst achieves nearly complete furfural conversion and almost 100%furfuralcohol selectivity for a test duration of 31 h.In contrast,the unmodified catalyst exhibits stable performance for only seven hours despite the similar initial performance.XRD analysis confirms that the gradual deactivation of both catalysts is attributed to the oxidation of reduced metallic Cu sites to Cu oxides.Further characterizations of the two spent catalysts using HRTEM and XPS analyses,along with DFT calculations,suggest that the presence of Ca in Cu lattices prevents the loss of electrons from low-valence Cu sites or the reduced metallic Cu sites,thus inhibiting their oxidation to high-valence Cu oxides.This phenomenon contributes to suppressing the deactivation of Cu-catalysts in the gas-phase furfural hydrogenation process.
基金financially supported by the Research Grants Council (RGC)of Hong Kong Special Administrative Region,China (No.T24-504/17-N)。
文摘Smog chambers provide a potent approach to explore the secondary organic aerosol formation under varied conditions.This study describes the construction and characterization of a new smog chamber facility for studying the formation mechanisms of gas-phase products and secondary organic aerosol from the photooxidation of volatile organic compounds.The chamber is a 5.4 m^(3) Fluorinated Ethylene Propylene(FEP)Teflon reactor with the potential to perform photooxidation experiments at controlled temperature and relative humidity.Detailed characterizations were conducted for evaluation of stability of environmental parameters,mixing time,background contamination,light intensity,and wall losses of gases and particles.The photolysis rate of NO_(2)(J_(NO2))ranged from(1.02-3.32)×10^(-3)sec^(-1),comparable to the average J_(NO2)in ambient environment.The wall loss rates for NO,NO_(2),and O_(3)were 0.47×10^(-4),0.37×10^(-4),and 1.17×10^(-4)min^(-1),while wall loss of toluene was obsoletely found in a 6 hr test.The particle number wall loss rates are(0.01-2.46)×10^(-3)min^(-1)for 40-350 nm with an average lifetime of more than one day.A series of toluene photooxidation experiments were carried out in absence of NO_xunder dry conditions.The results of the simulation experiments demonstrated that the chamber is well designed to simulate photolysis progress in the atmosphere.
基金supported by the National Natural Science Foundation of China(Grant No.51702191)the Natural Science Foundation of Shanxi Province(Grant No.201701D221062)+1 种基金the Scientific and Technological Innovation Programs of High Education Institutions in Shanxi(Grant No.2017110)the Shanxi“1331 Project"Key Innovative Rescarch Team.
文摘Carbon nanotubes(CNTs)as superior support materials for functional nanoparticles(NPs)have been widely demonstrated.Nevertheless,the homogeneous loading of these NPs is still frustrated due to the inert surface of CNTs.In this work,a facile gas-phase pyrolysis strategy that the mixture of ferrocene and CNTs are confined in an isolated reactor with rising temperature is developed to fabricate a carbon-coated Fe3O4 nanoparticle/carbon nanotube(Fe3O4@C/CNT)composite.It is found the ultra-small Fe3O4 NPs(<10 nm)enclosed in a thin carbon layer are uniformly anchored on the surface of CNTs.These structural benefits result in the excellent lithium-ion storage performances of the Fe3O4@C/CNT composite.It delivers a stable reversible capacity of 861 mA·h·g^-1 at the current density of 100 mA·g^-1 after 100 cycles.The capacity retention reaches as high as 54.5%even at 6000 mA·g^-1.The kinetic analysis indicates that the featured structural modification improves the surface condition of the CNT matrix,and contributes to greatly decreased interface impendence and faster charge transfer.In addition,the post-morphology observation of the tested sample further confirms the robustness of the Fe3O4@C/CNT configuration.
基金support by the Hi-Tech Research and Development Program(863) of China(No.2010AA064902)the National Key Technologies R&D Program(No.2016YFC0207100)+1 种基金the National Natural Science Foundation of China(No.21207116)the Brain Bridge project with Philips(No.BB3-2016-01)
文摘Based on previous research, the sampling and analysis methods for phthalate esters (PAEs) were improved by increasing the sampling flow of indoor air from 1 to 4 L/min, shortening the sampling duration from 8 to 2 hr. Meanwhile, through the optimization of chromatographic conditions, the concentrations of 9 additional PAE pollutants in indoor air were measured. The optimized chromatographic conditions required a similar amount of time for analysis as before, but gave high responsivity, the capability of simultaneously distinguishing 15 kinds of PAEs, and a high level of discrimination between individual sample peaks, as well as stable peak generation. The recovery rate of all gas-phase and particle-phase samples of the 15 kinds of PAEs ranged from 91.26% to 109.42%, meeting the quantitative analysis requirements for indoor and outdoor air sampling and analysis. For the first time, investigation of the concentration levels as well as characteristics of 15 kinds of PAEs in the indoor air from four different traffic micro-environments (private vehicles, busses, taxis and subways) was carried out, along with validation of the optimized sampling and analytical method. The results show that all the 9 additional PAEs could be detected at relatively high pollution levels in the indoor air from the four traffic micro-environments. As none of the pollution levels of the 15 kinds of PAEs in the indoor air from the 4 traffic micro-environments should be neglected, it is of great significance to increase the types of PAEs able to be detected in indoor air.
文摘Although the gas-phase production of nanostructured solids has already been carried out in industry for decades, only in recentyears has research interest in this topic begun to increase. Nevertheless, despite the remarkable scientific progress made recently, many long-established processes are still used in industry. Scientific advancements can potentially lead to the improvement of existing industrial processes, but also to the development of completely new routes. This paper aims to review state-of-the-art synthesis and processing technologies, as well as the recent developments in academic research. Flame reactors that produce inorganic nanoparticles on industrial- and lab-scales are described, alongside a detailed overview of the different systems used for the production of carbon nanotubes and graphene. We discuss the problems of agglomeration and mixing of nanoparticles, which are strongly related to synthesis and processing. Finally, we focus on two promising processing techniques, namely nanoparticle fluidization and atomic layer deposition.