In this paper,we analyze the spectral energy distributions of 17 powerful(with a spin-down luminosity greater than10~(35)erg s~(-1))young(with an age less than 15,000 yr)pulsar wind nebulae(PWNe)using a simple timein-...In this paper,we analyze the spectral energy distributions of 17 powerful(with a spin-down luminosity greater than10~(35)erg s~(-1))young(with an age less than 15,000 yr)pulsar wind nebulae(PWNe)using a simple timein-dependent one-zone emission model.Our aim is to investigate correlations between model parameters and the ages of the corresponding PWNe,thereby revealing the evolution of high-energy electron distributions within PWNe.Our findings are as follows:(1)The electron distributions in PWNe can be characterized by a double power-law with a super-exponential cutoff.(2)As PWNe evolve,the high-energy end of the electron distribution spectrum becomes harder with the index decreasing from approximately 3.5 to 2.5,while the low-energy end spectrum index remains constant near 1.5.(3)There is no apparent correlation between the break energy or cutoff energy and the age of PWNe.(4)The average magnetic field within PWNe decreases with age,leading to a positive correlation between the energy loss timescale of electrons at the break energy or the high-energy cutoff and the age of the PWN.(5)The total electron energy within PWNe remains constant near 2×10~(48)erg,while the total magnetic energy decreases with age.展开更多
Strangeon stars,which are proposed to describe the nature of pulsar-like compact stars,have passed various observational tests.The maximum mass of a non-rotating strangeon star could be high,which implies that the rem...Strangeon stars,which are proposed to describe the nature of pulsar-like compact stars,have passed various observational tests.The maximum mass of a non-rotating strangeon star could be high,which implies that the remnants of binary strangeon star mergers could even be long-lived massive strangeon stars.We study rigidly rotating strangeon stars in the slowly rotating approximation,using the Lennard-Jones model for the equation of state.Rotation can significantly increase the maximum mass of strangeon stars with unchanged baryon numbers,enlarging the mass-range of long-lived strangeon stars.During spin-down after merger,the decrease of radius of the remnant will lead to the release of gravitational energy.Taking into account the efficiency of converting the gravitational energy luminosity to the observed X-ray luminosity,we find that the gravitational energy could provide an alternative energy source for the plateau emission of X-ray afterglow.The fitting results of X-ray plateau emission of some short gamma-ray bursts suggest that the magnetic dipole field strength of the remnants can be much smaller than that of expected when the plateau emission is powered only by spin-down luminosity of magnetars.展开更多
Using archival Fermi-LAT data with a time span of~12 yr,we study the population of Millisecond Pulsars(MSPs)in Globular Clusters(GlCs)and investigate their dependence on cluster dynamical evolution in the Milky Way.We...Using archival Fermi-LAT data with a time span of~12 yr,we study the population of Millisecond Pulsars(MSPs)in Globular Clusters(GlCs)and investigate their dependence on cluster dynamical evolution in the Milky Way.We show that theγ-ray luminosity(L_(γ))and emissivity(i.e.,ε_(γ)=L_(γ)/M,with M the cluster mass)are good indicators of the population and abundance of MSPs in GlCs,and they are highly dependent on the dynamical evolution history of the host clusters.Specifically speaking,the dynamically older GlCs with more compact structures are more likely to have larger L_(γ)andε_(γ),and these trends can be summarized as strong correlations with cluster stellar encounter rateΓand the specific encounter rate(Λ=Γ/M),with L_(γ)∝Γ^(0.7±0.11)andε_(γ)∝Λ^(0.73±0.13)for dynamically normal GlCs.However,as GlCs evolve into deep core collapse,these trends are found to be reversed,implying that strong encounters may have lead to the disruption of Low-Mass X-ray Binaries and ejection of MSPs from core-collapsed systems.Besides,the GlCs are found to exhibit largerε_(γ)with increasing stellar mass function slope(ε_(γ)∝10^((0.52±0.1)α)),decreasing tidal radius(ε_(γ)∝R_(t)^(-10±0.22))and distances from the Galactic Center(GC,ε_(γ)∝R_(gc)^(-1.13±0.21)).These correlations indicate that,as GlCs losing kinetic energy and spiral in toward the GC,tidal stripping and mass segregation have a preference in leading to the loss of normal stars from GlCs,while MSPs are more likely to concentrate to cluster center and be deposited into the GC.Moreover,we gaugeε_(γ)of GlCs is~10-1000 times larger than the Galactic bulge,the latter is thought to reside thousands of unresolved MSPs and may be responsible for the GC 7-ray excess,which supports that GlCs are generous contributors to the population of MSPs in the GC.展开更多
I further study the manner by which a pair of opposite jets shape the“keyhole”morphological structure of the core-collapse supernova(CCSN)SN 1997A,now the CCSN remnant(CCSNR)1987A.By doing so,I strengthen the claim ...I further study the manner by which a pair of opposite jets shape the“keyhole”morphological structure of the core-collapse supernova(CCSN)SN 1997A,now the CCSN remnant(CCSNR)1987A.By doing so,I strengthen the claim that the jittering-jet explosion mechanism accounts for most,likely all,CCSNe.The“keyhole”structure comprises a northern low-intensity zone closed with a bright rim on its front and an elongated low-intensity nozzle in the south.This rim-nozzle asymmetry is observed in some cooling flow clusters and planetary nebulae that are observed to be shaped by jets.I build a toy model that uses the planar jittering jets pattern,where consecutive pairs of jets tend to jitter in a common plane,implying that the accreted gas onto the newly born neutron star at the late explosion phase flows perpendicular to that plane.This allows for a long-lived jet-launching episode.This long-lasting jet-launching episode launches more mass into the jets that can inflate larger pairs of ears or bubbles,forming the main jets'axis of the CCSNR that is not necessarily related to a possible pre-collapse core rotation.I discuss the relation of the main jets'axis to the neutron star's natal kick velocity.展开更多
We report our identification of three gigaelectronvoltγ-ray sources,4FGL J0502.6+0036,4FGL J1055.9+6507,and 4FGL J1708.2+5519,as Active Galactic Nuclei(AGNs).They are listed in the latest Fermi-Large Area Telescope s...We report our identification of three gigaelectronvoltγ-ray sources,4FGL J0502.6+0036,4FGL J1055.9+6507,and 4FGL J1708.2+5519,as Active Galactic Nuclei(AGNs).They are listed in the latest Fermi-Large Area Telescope source catalog as unidentified ones.We find that the sources all showedγ-ray flux variations in recent years.Using different survey catalogs,we are able to find a radio source within the error circle of each source's position.Further analysis of optical sources in the fields allows us to determine the optical counterparts,which showed similar variation patterns to those seen inγ-rays.The optical counterparts have reported redshifts of 0.6,1.5,and 2.3,respectively,estimated from photometric measurements.In addition,we also obtain an X-ray spectrum of 4FGL J0502.6+0036 and a flux upper limit on the X-ray emission of 4FGL J1055.9+6507 by analyzing the archival data.The broadband spectral energy distributions of the three sources from radio toγ-rays are constructed.Comparing mainly theγ-ray properties of the three sources with those of different sub-classes of AGNs,we tentatively identify them as blazars.Followup optical spectroscopy is highly warranted for obtaining their spectral features and thus verifying the identification.展开更多
Theoretically,a supra-massive neutron star or magnetar may be formed after the merger of binary neutron stars.GRB210323A is a short-duration gamma-ray burst(GRB)with a duration of lasting~1 s.The light curve of the pr...Theoretically,a supra-massive neutron star or magnetar may be formed after the merger of binary neutron stars.GRB210323A is a short-duration gamma-ray burst(GRB)with a duration of lasting~1 s.The light curve of the prompt emission of GRB 210323A shows a signal-peaked structure and a cutoff power-law model can adequately fit the spectra with E_p=1826±747.More interestingly,it has an extremely long-lasting plateau emission in the X-ray afterglow with a duration of~10^(4)s,and then follows a rapid decay with a decay slope~3.2.This temporal feature is challenging by invoking the external shock mode.In this paper,we suggest that the observed long-lasting X-ray plateau emission is caused by the energy injection of dipole radiation from supra-massive magnetar,and the abrupt decay following the longlasting X-ray plateau emission is explained by supra-massive magnetar collapsing into a black hole.It is the short GRB(SGRB)with the longest X-ray internal plateau emission powered by a supra-massive neutron star.If this is the case,one can estimate the physical parameters of a supra-massive magnetar,and compare with other SGRBs.We also discuss the possible gravitational-wave emission,which is powered by a supra-massive magnetar and its detectability,and the possible kilonova emission,which is powered by r-process and magnetar spin-down to compare with the observed data.展开更多
Open clusters are the basic building blocks that serve as a laboratory for the study of young stellar populations in the Milky Way.Variable stars in open clusters provide a unique way to accurately probe the internal ...Open clusters are the basic building blocks that serve as a laboratory for the study of young stellar populations in the Milky Way.Variable stars in open clusters provide a unique way to accurately probe the internal structure,temporal and dynamical evolutionary stages of individual stars and the host cluster.The most powerful tool for such studies is time-domain photometric observations.This paper follows the route of our previous work,concentrating on a photometric search for variable stars in NGC 884.The target cluster is the companion of NGC869,forming the well-known double cluster system that is gravitationally bound.From the observation run in 2016 November,a total of 9247 B-band CCD images and 8218Ⅴ-band CCD images were obtained.We detected a total of 15 stars with variability in visual brightness,including five Be stars,three eclipsing binaries,and seven of unknown types.Two new variable stars were discovered in this work.We also compared the variable star content of NGC 884 with its companion NGC 869.展开更多
I present the effervescent zone model to account for the compact dense circumstellar material(CSM)around the progenitor of the core collapse supernova(CCSN)SN 2023ixf.The effervescent zone is composed of bound dense c...I present the effervescent zone model to account for the compact dense circumstellar material(CSM)around the progenitor of the core collapse supernova(CCSN)SN 2023ixf.The effervescent zone is composed of bound dense clumps that are lifted by stellar pulsation and envelope convection to distances of≈tens×au,and then fall back.The dense clumps provide most of the compact CSM mass and exist alongside the regular(escaping)wind.I crudely estimate that for a compact CSM within R_(CSM)≈30 au that contains M_(CSM)≈0.01 M_(⊙),the density of each clump is k_(b)≳3000 times the density of the regular wind at the same radius and that the total volume filling factor of the clumps is several percent.The clumps might cover only a small fraction of the CCSN photosphere in the first days post-explosion,accounting for the lack of strong narrow absorption lines.The long-lived effervescent zone is compatible with no evidence for outbursts in the years prior to the SN 2023ixf explosion and the large-amplitude pulsations of its progenitor,and it is an alternative to the CSM scenario of several-years-long high mass loss rate wind.展开更多
We address the physical and kinematical properties of Wolf–Rayet[WR]central stars(CSs)and their host planetary nebulae(PNe).The studied sample comprises all[WR]CSs that are currently known.The analysis is based on re...We address the physical and kinematical properties of Wolf–Rayet[WR]central stars(CSs)and their host planetary nebulae(PNe).The studied sample comprises all[WR]CSs that are currently known.The analysis is based on recent observations of the parallax,proper motion,and color index of[WR]CSs from the Gaia space mission’s early third release(eDR3)catalog,as well as common nebular characteristics.The results revealed an evolutionary sequence,in terms of decreasing Teff,from the early hot[WO 1]to the late cold[WC 12]stars.This evolutionary sequence extends beyond[WR]CS temperature and luminosity to additional CS and nebular characteristics.The statistical analysis shows that the mean final stellar mass and evolutionary age of the[WR]CS sample are 0.595±0.13M⊙and 9449±2437 yr,respectively,with a mean nebular dynamical age of 7270±1380 yr.In addition,we recognize that the color of the majority(∼85%)of[WR]CSs tends to be red rather than their genuine blue color.The analysis indicates that two-thirds of the apparent red color of most[WR]s is attributed to the interstellar extinction whereas the other one-third is due to the PN self-extinction effect.展开更多
This work presents the charge-coupled device(CCD)photometric survey of the old open cluster NGC 188.Timeseries V-band photometric observations were conducted for ten nights in 2017 January using the Nanshan Onemeter W...This work presents the charge-coupled device(CCD)photometric survey of the old open cluster NGC 188.Timeseries V-band photometric observations were conducted for ten nights in 2017 January using the Nanshan Onemeter Wide-field Telescope to search for variable stars in the field of the cluster.A total of 25 variable stars,including one new variable star,were detected in the target field.Among the detected variables,16 are cluster member stars,and the others are identified as field stars.The periods,radial velocities,effective temperatures,and classifications of the detected variables are discussed in this work.Most of the stars’effective temperatures are between 4200 and 6600 K,indicating their spectral types are G or K.The newly discovered variable is probably a W UMa system.In this study,a known cluster variable star(V21=V0769 Cep)is classified as an EA-type variable star based on the presence of an 0.5 mag eclipse in its light curve.展开更多
The extremely accurate estimates of stellar variability and radial velocity in the Gaia Data Release 3(Gaia DR3)have enabled us to examine the close binarity and radial velocity(RV)of central stars(CSs)of planetary ne...The extremely accurate estimates of stellar variability and radial velocity in the Gaia Data Release 3(Gaia DR3)have enabled us to examine the close binarity and radial velocity(RV)of central stars(CSs)of planetary nebulae(PNe).This study is twofold:(1)searching for new close binary CS candidates to better understand how binarity affects the formation and evolution of PNe;and(2)extending the sample size of known RVs of PNe in order to understand their kinematics and the dynamics of the Milky Way.As a target sample,we used all true,possible,and likely PNe available in the literature.Then,we looked for their matched Gaia DR3 sources that provide measurements of variability and RV.As a result,we detected the first large collection of trustworthy photometric variability of 26 symbiotic stars and 82 CSs.In this CS group,there are 24 sources already classified as true close binary CSs in the literature.Hence,we discovered 58 new close binary CS candidates.This close binary(CB)sample represents more than half of what is currently available in the literature.In addition,we identified the radial velocities for 51 PNe.To our knowledge,24 of these were measured for the first time.The RV measurements predicted by Gaia,based on the Doppler shift of the CS absorption lines,and those derived from nebular emission lines,show satisfactory agreement except for a few extremely high-velocity PNe.展开更多
We have completed our observational program to search for wide binary systems with non-coeval components in the southern sky and report our results here.The final set of four systems was spectroscopically investigated...We have completed our observational program to search for wide binary systems with non-coeval components in the southern sky and report our results here.The final set of four systems was spectroscopically investigated in this paper.No binary systems with components of different ages were found among them.Taking into account our previous studies,we estimate the fraction of such binaries(i.e.,binaries formed,presumably,by capture)to be not higher than 0.06%.The study will be continued on the northern sky.展开更多
It seems that the wealth of information revealed by the multi-messenger observations of the binary neutron star(NS)merger event,GW170817/GRB 170817A/kilonova AT2017gfo,places irreconcilable constraints to models of th...It seems that the wealth of information revealed by the multi-messenger observations of the binary neutron star(NS)merger event,GW170817/GRB 170817A/kilonova AT2017gfo,places irreconcilable constraints to models of the prompt emission of this gamma-ray burst(GRB).The observed time delay between the merger of the two NSs and the trigger of the GRB and the thermal tail of the prompt emission can hardly be reproduced by these models simultaneously.We argue that the merger remnant should be an NS(last for,at least,a large fraction of 1 s),and that the difficulty can be alleviated by the delayed formation of the accretion disk due to the absorption of high-energy neutrinos emitted by the NS and the delayed emergence of effective viscosity in the disk.Further,we extend the consideration of the effect of the energy deposition of neutrinos emitted from the NS.If the NS is the central object of a GRB with a distance and duration similar to that of GRB 170817A,thermal emission of the thermal bubble inflated by the NS after the termination of accretion may be detectable.If our scenario is verified,it would be of interest to investigate the cooling of nascent NSs.展开更多
Up to 2022 November,267 pulsars had been discovered in 36 globular clusters(GCs).In this paper,we present our studies on the distribution of GC pulsar parameters and the detection efficiency.The power law relation bet...Up to 2022 November,267 pulsars had been discovered in 36 globular clusters(GCs).In this paper,we present our studies on the distribution of GC pulsar parameters and the detection efficiency.The power law relation between average dispersion measure(■)and dispersion measure difference(ΔDM)of known pulsars in GCs is lgΔDM∝1.52lg■.The sensitivity could be the key to finding more pulsars.As a result,several years after the construction of a large radio telescope facility,the number of known GC pulsars will likely be increased accordingly.We suggest that currently GCs in the southern hemisphere could have higher possibilities for finding new pulsars.展开更多
The magnetar SGR 1935+2154 is reported to have an anti-glitch,accompanied by fast radio bursts,and transient pulsed radio emission.In the wind braking model,this triplet event tells people that(1) SGR 1935+2154 does n...The magnetar SGR 1935+2154 is reported to have an anti-glitch,accompanied by fast radio bursts,and transient pulsed radio emission.In the wind braking model,this triplet event tells people that(1) SGR 1935+2154 does not have a strong particle wind and can be approximated by magnetic dipole braking in the persistent state;(2) its antiglitch is due to an enhanced particle wind,similar to the first anti-glitch in magnetars;(3) its transient pulsed radio emission may be due to a decreasing emission beam during the outburst;(4) the enhanced particle acceleration potential and pulsar death line may not be the dominate factor.展开更多
We present periodicity search analyses on long-term radio light curves at 4.8,8,and 14.5 GHz of blazar PKS 0607–157 observed by the University of Michigan Radio Astronomical Observatory telescope.The highly variable ...We present periodicity search analyses on long-term radio light curves at 4.8,8,and 14.5 GHz of blazar PKS 0607–157 observed by the University of Michigan Radio Astronomical Observatory telescope.The highly variable radio emissions are approximately distributed as a log-normal probability distribution function.The Power Spectral Density for the radio light curves can be well characterized by a power-law model.Using the Weighted Wavelet Z-transform and Lomb-Scargle periodogram methods,significant Quasi-periodic Oscillation(QPO)of∼4.6 yr in the radio light curve has been observed above the 3σconfidence level,which presents an interesting case among blazar QPO phenomena.We explore three plausible physical models to explain the observed QPOs:a supermassive binary black hole system,Lense-Thirring precession of the disk,and helical motion of plasma blobs within the jet.展开更多
We study the potential of the galaxy cluster sample expected from the Chinese Space Station Telescope(CSST)survey to constrain dark energy properties.By modeling the distribution of observed cluster mass for a given t...We study the potential of the galaxy cluster sample expected from the Chinese Space Station Telescope(CSST)survey to constrain dark energy properties.By modeling the distribution of observed cluster mass for a given true mass to be log-normal and adopting a selection threshold in the observed mass M_(200m)≥0.836×10^(14)h^(-1)M_(⊙),we find about 4.1×10^(5)clusters in the redshift range 0≤z≤1.5 can be detected by the CSST.We construct the Fisher matrix for the cluster number counts from CSST,and forecast constraints on dark energy parameters for models with constant(w_(0)CDM)and time dependent(w_(0)w_(a)CDM)equation of state.In the self-calibration scheme,the dark energy equation of state parameter w_(0)of the w_(0)CDM model can be constrained toΔw_(0)=0.036.If w_(a)is added as a free parameter,we obtainΔw_(0)=0.077 andΔw_(a)=0.39 for the w_(0)w_(a)CDM model,with a Figure of Merit for(w_(0),w_(a))of 68.99.Should we have perfect knowledge of the observable-mass scaling relation("known SR"scheme),we would obtainΔw_(0)=0.012 for the w_(0)CDM model,andΔw_(0)=0.062 andΔw_(a)=0.24 for the w_(0)w_(a)CDM model.The dark energy Figure of Merit of(w_(0),w_(a))increases to 343.25.This indicates again the importance of calibrating the observable-mass scaling relation for optically selected galaxy clusters.By extending the_(max)imum redshift of the clusters from z_(max)~1.5 to Z_(max)~2,the dark energy Figure of Merit for(w_(0),w_(a))increases to 89.72(self-calibration scheme)and 610.97("known SR"scheme),improved by a factor of~1.30 and~1.78,respectively.We find that the impact of clusters’redshift uncertainty on the dark energy constraints is negligible as long as the redshift error of clusters is smaller than 0.01,achievable by CSST.We also find that the bias in logarithm mass must be calibrated to be 0.30 or better to avoid significant dark energy parameter bias.展开更多
Recently another long period radio pulsar GPM J1839-10 has been reported,similar to GLEAM-X J162759.5-523504.3.Previously,the energy budget and rotational evolution of long period radio pulsars had been considered.Thi...Recently another long period radio pulsar GPM J1839-10 has been reported,similar to GLEAM-X J162759.5-523504.3.Previously,the energy budget and rotational evolution of long period radio pulsars had been considered.This time,the death line and pulse width for neutron star and white dwarf pulsars are investigated.The pulse width is included as the second criterion for neutron star and white dwarf pulsars.It is found that:(1)PSR J0250+5854 and PSR J0901-4046 etc.should be normal radio pulsars.They have narrow pulse width and they lie near the radio emission death line.(2)The two long period radio pulsars GLEAM-X J162759.5-523504.3 and GPM J1839-10 are unlikely to be normal radio pulsars.Their possible pulse width is relatively large.They lie far below the fiducial death line on the P-P^(·)diagram.(3)GLEAM-X J162759.5-523504.3 and GPM J1839-10 may be magnetars or white dwarf radio pulsars.At present,there are many parameters and uncertainties in both of these possibilities.展开更多
We report the discovery of PSR J1909+0122 by the Five-hundred-meter Aperture Spherical Radio Telescope(FAST)as part of the Commensal Radio Astronomy FAST Survey.PSR J1909+0122 has a spin period of 1.257 s and a disper...We report the discovery of PSR J1909+0122 by the Five-hundred-meter Aperture Spherical Radio Telescope(FAST)as part of the Commensal Radio Astronomy FAST Survey.PSR J1909+0122 has a spin period of 1.257 s and a dispersion measure of 186.2 pc cm^(-3).The averaged pulse profile shows two distinct components.We performed a single-pulse study based on a one-hour observation at 1.25 GHz on 2021 August 23.We used a threshold of 5σ_(ep) to measure the nulling fraction(NF)as 63%±1.5%.The longitude-resolved fluctuation spectra and fast Fourier transform spectra of the binary sequences revealed the quasi-periodicity of nulling with a period of 30 rotation periods.We examined the reliability of the periodicity by comparing it to random noise injection.The NF,E,and modulation periodicity P_(M) of PSR J1909+0122 were compared with other periodic nulling pulsars,showing that the source of J1909+0122 has the second largest NF in the population.Long-term timing observations over six months were used to derive the phase-connected ephemeris of this pulsar.The measured P and P values disfavor dipolar geometry for polar gap models,and the prediction for a space-charge-limited flow model in the case of inverse Compton scattering is only just above the death line.In this work,PSR J1909+0122 has revealed possible correlations between nulling behavior and pulsar properties,which will help to shed light on the pulsar emission mechanism and its temporal evolution in future observations.展开更多
As one of the most useful cosmological distance indicators,type Ia supernovae(SNe Ia)play an important role in the study of cosmology.However,the progenitors of SNe Ia are still uncertain.It has been suggested that ca...As one of the most useful cosmological distance indicators,type Ia supernovae(SNe Ia)play an important role in the study of cosmology.However,the progenitors of SNe Ia are still uncertain.It has been suggested that carbonoxygen white dwarf(CO WD)+He subgiant systems could produce SNe Ia through the double-degenerate(DD)model,in which the He subgiant transfers He-rich matter to the primary CO WD and finally evolves to another CO WD.Recently,a CO WD+He star system(i.e.,HD 265435)has been discovered to be a new SNe Ia progenitor candidate based on the DD model.The orbital period of the system is about 0.0688 days,and the masses of the CO WD and the He star are 1.01±0.15 M_(⊙) and 0.63_(-0.12)^(+0.13)M_(⊙),respectively.In this work,we evolve a large number of primordial binaries to the formation of CO WD+He star systems and investigate the evolutionary history of HD265435.We find that HD 265435 may originate from a primordial binary that has a 5.18 M_(⊙) primary and a3.66 M_(⊙) secondary with an initial orbital period of 5200 days.The CO WD+He star system would be formed after the primordial binary experiences two common-envelope ejection processes.We also find that HD 265435 would evolve to a double WD system with a total mass of 1.58 M⊙after a stable mass-transfer process,and the double WD system would merge driven by gravitational wave radiation.We estimate that it would take about 76 Myr for HD 265435 to form an SN Ia.In addition,HD 265435 would be a potential target of space-based gravitational wave observatories(e.g.,LISA,Taiji and TianQin).展开更多
基金supported by the National Natural Science Foundation of China(Nos.12220101003,12273114,U1931204,12103040,12147208 and U2031111)the Project for Young Scientists in Basic Research of Chinese Academy of Sciences(No.YSBR-061)the Program for Innovative Talents and Entrepreneur in Jiangsu。
文摘In this paper,we analyze the spectral energy distributions of 17 powerful(with a spin-down luminosity greater than10~(35)erg s~(-1))young(with an age less than 15,000 yr)pulsar wind nebulae(PWNe)using a simple timein-dependent one-zone emission model.Our aim is to investigate correlations between model parameters and the ages of the corresponding PWNe,thereby revealing the evolution of high-energy electron distributions within PWNe.Our findings are as follows:(1)The electron distributions in PWNe can be characterized by a double power-law with a super-exponential cutoff.(2)As PWNe evolve,the high-energy end of the electron distribution spectrum becomes harder with the index decreasing from approximately 3.5 to 2.5,while the low-energy end spectrum index remains constant near 1.5.(3)There is no apparent correlation between the break energy or cutoff energy and the age of PWNe.(4)The average magnetic field within PWNe decreases with age,leading to a positive correlation between the energy loss timescale of electrons at the break energy or the high-energy cutoff and the age of the PWN.(5)The total electron energy within PWNe remains constant near 2×10~(48)erg,while the total magnetic energy decreases with age.
基金supported by the National SKA Program of China(Nos.2020SKA0120300,2020SKA0120100)the Outstanding Young and Middle-aged Science and Technology Innovation Teams from Hubei colleges and universities(No.T2021026)the Young Top-notch Talent Cultivation Program of Hubei Province,and the Key Laboratory Opening Fund(MOE)of China(grant No.QLPL2021P01)。
文摘Strangeon stars,which are proposed to describe the nature of pulsar-like compact stars,have passed various observational tests.The maximum mass of a non-rotating strangeon star could be high,which implies that the remnants of binary strangeon star mergers could even be long-lived massive strangeon stars.We study rigidly rotating strangeon stars in the slowly rotating approximation,using the Lennard-Jones model for the equation of state.Rotation can significantly increase the maximum mass of strangeon stars with unchanged baryon numbers,enlarging the mass-range of long-lived strangeon stars.During spin-down after merger,the decrease of radius of the remnant will lead to the release of gravitational energy.Taking into account the efficiency of converting the gravitational energy luminosity to the observed X-ray luminosity,we find that the gravitational energy could provide an alternative energy source for the plateau emission of X-ray afterglow.The fitting results of X-ray plateau emission of some short gamma-ray bursts suggest that the magnetic dipole field strength of the remnants can be much smaller than that of expected when the plateau emission is powered only by spin-down luminosity of magnetars.
基金supported by the Youth Program of the National Natural Science Foundation of China No.12003017。
文摘Using archival Fermi-LAT data with a time span of~12 yr,we study the population of Millisecond Pulsars(MSPs)in Globular Clusters(GlCs)and investigate their dependence on cluster dynamical evolution in the Milky Way.We show that theγ-ray luminosity(L_(γ))and emissivity(i.e.,ε_(γ)=L_(γ)/M,with M the cluster mass)are good indicators of the population and abundance of MSPs in GlCs,and they are highly dependent on the dynamical evolution history of the host clusters.Specifically speaking,the dynamically older GlCs with more compact structures are more likely to have larger L_(γ)andε_(γ),and these trends can be summarized as strong correlations with cluster stellar encounter rateΓand the specific encounter rate(Λ=Γ/M),with L_(γ)∝Γ^(0.7±0.11)andε_(γ)∝Λ^(0.73±0.13)for dynamically normal GlCs.However,as GlCs evolve into deep core collapse,these trends are found to be reversed,implying that strong encounters may have lead to the disruption of Low-Mass X-ray Binaries and ejection of MSPs from core-collapsed systems.Besides,the GlCs are found to exhibit largerε_(γ)with increasing stellar mass function slope(ε_(γ)∝10^((0.52±0.1)α)),decreasing tidal radius(ε_(γ)∝R_(t)^(-10±0.22))and distances from the Galactic Center(GC,ε_(γ)∝R_(gc)^(-1.13±0.21)).These correlations indicate that,as GlCs losing kinetic energy and spiral in toward the GC,tidal stripping and mass segregation have a preference in leading to the loss of normal stars from GlCs,while MSPs are more likely to concentrate to cluster center and be deposited into the GC.Moreover,we gaugeε_(γ)of GlCs is~10-1000 times larger than the Galactic bulge,the latter is thought to reside thousands of unresolved MSPs and may be responsible for the GC 7-ray excess,which supports that GlCs are generous contributors to the population of MSPs in the GC.
文摘I further study the manner by which a pair of opposite jets shape the“keyhole”morphological structure of the core-collapse supernova(CCSN)SN 1997A,now the CCSN remnant(CCSNR)1987A.By doing so,I strengthen the claim that the jittering-jet explosion mechanism accounts for most,likely all,CCSNe.The“keyhole”structure comprises a northern low-intensity zone closed with a bright rim on its front and an elongated low-intensity nozzle in the south.This rim-nozzle asymmetry is observed in some cooling flow clusters and planetary nebulae that are observed to be shaped by jets.I build a toy model that uses the planar jittering jets pattern,where consecutive pairs of jets tend to jitter in a common plane,implying that the accreted gas onto the newly born neutron star at the late explosion phase flows perpendicular to that plane.This allows for a long-lived jet-launching episode.This long-lasting jet-launching episode launches more mass into the jets that can inflate larger pairs of ears or bubbles,forming the main jets'axis of the CCSNR that is not necessarily related to a possible pre-collapse core rotation.I discuss the relation of the main jets'axis to the neutron star's natal kick velocity.
基金supported by the Basic Research Program of Yunnan Province(No.202201AS070005)the National Natural Science Foundation of China(NSFC,grant No.12273033)+1 种基金the Original Innovation Program of the Chinese Academy of Sciences(E085021002)support of the science research program for graduate students of Yunnan University(KC-23234629)。
文摘We report our identification of three gigaelectronvoltγ-ray sources,4FGL J0502.6+0036,4FGL J1055.9+6507,and 4FGL J1708.2+5519,as Active Galactic Nuclei(AGNs).They are listed in the latest Fermi-Large Area Telescope source catalog as unidentified ones.We find that the sources all showedγ-ray flux variations in recent years.Using different survey catalogs,we are able to find a radio source within the error circle of each source's position.Further analysis of optical sources in the fields allows us to determine the optical counterparts,which showed similar variation patterns to those seen inγ-rays.The optical counterparts have reported redshifts of 0.6,1.5,and 2.3,respectively,estimated from photometric measurements.In addition,we also obtain an X-ray spectrum of 4FGL J0502.6+0036 and a flux upper limit on the X-ray emission of 4FGL J1055.9+6507 by analyzing the archival data.The broadband spectral energy distributions of the three sources from radio toγ-rays are constructed.Comparing mainly theγ-ray properties of the three sources with those of different sub-classes of AGNs,we tentatively identify them as blazars.Followup optical spectroscopy is highly warranted for obtaining their spectral features and thus verifying the identification.
基金supported by the Guangxi Science Foundation(grant No.2023GXNSFDA026007)the Program of Bagui Scholars Program(LHJ)。
文摘Theoretically,a supra-massive neutron star or magnetar may be formed after the merger of binary neutron stars.GRB210323A is a short-duration gamma-ray burst(GRB)with a duration of lasting~1 s.The light curve of the prompt emission of GRB 210323A shows a signal-peaked structure and a cutoff power-law model can adequately fit the spectra with E_p=1826±747.More interestingly,it has an extremely long-lasting plateau emission in the X-ray afterglow with a duration of~10^(4)s,and then follows a rapid decay with a decay slope~3.2.This temporal feature is challenging by invoking the external shock mode.In this paper,we suggest that the observed long-lasting X-ray plateau emission is caused by the energy injection of dipole radiation from supra-massive magnetar,and the abrupt decay following the longlasting X-ray plateau emission is explained by supra-massive magnetar collapsing into a black hole.It is the short GRB(SGRB)with the longest X-ray internal plateau emission powered by a supra-massive neutron star.If this is the case,one can estimate the physical parameters of a supra-massive magnetar,and compare with other SGRBs.We also discuss the possible gravitational-wave emission,which is powered by a supra-massive magnetar and its detectability,and the possible kilonova emission,which is powered by r-process and magnetar spin-down to compare with the observed data.
基金the National Natural Science Foundation of China(NSFC)through grants 12003022,12373035,12233009 and 12173047support from the Youth Innovation Promotion Association of the CAS(grant No.2022055)。
文摘Open clusters are the basic building blocks that serve as a laboratory for the study of young stellar populations in the Milky Way.Variable stars in open clusters provide a unique way to accurately probe the internal structure,temporal and dynamical evolutionary stages of individual stars and the host cluster.The most powerful tool for such studies is time-domain photometric observations.This paper follows the route of our previous work,concentrating on a photometric search for variable stars in NGC 884.The target cluster is the companion of NGC869,forming the well-known double cluster system that is gravitationally bound.From the observation run in 2016 November,a total of 9247 B-band CCD images and 8218Ⅴ-band CCD images were obtained.We detected a total of 15 stars with variability in visual brightness,including five Be stars,three eclipsing binaries,and seven of unknown types.Two new variable stars were discovered in this work.We also compared the variable star content of NGC 884 with its companion NGC 869.
基金supported by a grant from the Israel Science Foundation(769/20)。
文摘I present the effervescent zone model to account for the compact dense circumstellar material(CSM)around the progenitor of the core collapse supernova(CCSN)SN 2023ixf.The effervescent zone is composed of bound dense clumps that are lifted by stellar pulsation and envelope convection to distances of≈tens×au,and then fall back.The dense clumps provide most of the compact CSM mass and exist alongside the regular(escaping)wind.I crudely estimate that for a compact CSM within R_(CSM)≈30 au that contains M_(CSM)≈0.01 M_(⊙),the density of each clump is k_(b)≳3000 times the density of the regular wind at the same radius and that the total volume filling factor of the clumps is several percent.The clumps might cover only a small fraction of the CCSN photosphere in the first days post-explosion,accounting for the lack of strong narrow absorption lines.The long-lived effervescent zone is compatible with no evidence for outbursts in the years prior to the SN 2023ixf explosion and the large-amplitude pulsations of its progenitor,and it is an alternative to the CSM scenario of several-years-long high mass loss rate wind.
基金the European Space Agency(ESA)mission Gaia,processed by the Gaia Data Processing and Analysis Consortium(DPAC).This research has made use of the SIMBAD database,operated at CDS,Strasbourg,France.
文摘We address the physical and kinematical properties of Wolf–Rayet[WR]central stars(CSs)and their host planetary nebulae(PNe).The studied sample comprises all[WR]CSs that are currently known.The analysis is based on recent observations of the parallax,proper motion,and color index of[WR]CSs from the Gaia space mission’s early third release(eDR3)catalog,as well as common nebular characteristics.The results revealed an evolutionary sequence,in terms of decreasing Teff,from the early hot[WO 1]to the late cold[WC 12]stars.This evolutionary sequence extends beyond[WR]CS temperature and luminosity to additional CS and nebular characteristics.The statistical analysis shows that the mean final stellar mass and evolutionary age of the[WR]CS sample are 0.595±0.13M⊙and 9449±2437 yr,respectively,with a mean nebular dynamical age of 7270±1380 yr.In addition,we recognize that the color of the majority(∼85%)of[WR]CSs tends to be red rather than their genuine blue color.The analysis indicates that two-thirds of the apparent red color of most[WR]s is attributed to the interstellar extinction whereas the other one-third is due to the PN self-extinction effect.
基金the Resource sharing platform construction project of Xinjiang Uygur Autonomous Region(No.PT2306)the Chinese Academy of Sciences(CAS)“Light of West China”Program(No.2020-XBQNXZ-016,2022-XBQNXZ-016)。
文摘This work presents the charge-coupled device(CCD)photometric survey of the old open cluster NGC 188.Timeseries V-band photometric observations were conducted for ten nights in 2017 January using the Nanshan Onemeter Wide-field Telescope to search for variable stars in the field of the cluster.A total of 25 variable stars,including one new variable star,were detected in the target field.Among the detected variables,16 are cluster member stars,and the others are identified as field stars.The periods,radial velocities,effective temperatures,and classifications of the detected variables are discussed in this work.Most of the stars’effective temperatures are between 4200 and 6600 K,indicating their spectral types are G or K.The newly discovered variable is probably a W UMa system.In this study,a known cluster variable star(V21=V0769 Cep)is classified as an EA-type variable star based on the presence of an 0.5 mag eclipse in its light curve.
文摘The extremely accurate estimates of stellar variability and radial velocity in the Gaia Data Release 3(Gaia DR3)have enabled us to examine the close binarity and radial velocity(RV)of central stars(CSs)of planetary nebulae(PNe).This study is twofold:(1)searching for new close binary CS candidates to better understand how binarity affects the formation and evolution of PNe;and(2)extending the sample size of known RVs of PNe in order to understand their kinematics and the dynamics of the Milky Way.As a target sample,we used all true,possible,and likely PNe available in the literature.Then,we looked for their matched Gaia DR3 sources that provide measurements of variability and RV.As a result,we detected the first large collection of trustworthy photometric variability of 26 symbiotic stars and 82 CSs.In this CS group,there are 24 sources already classified as true close binary CSs in the literature.Hence,we discovered 58 new close binary CS candidates.This close binary(CB)sample represents more than half of what is currently available in the literature.In addition,we identified the radial velocities for 51 PNe.To our knowledge,24 of these were measured for the first time.The RV measurements predicted by Gaia,based on the Doppler shift of the CS absorption lines,and those derived from nebular emission lines,show satisfactory agreement except for a few extremely high-velocity PNe.
基金All spectral observations reported in this paper were obtained with the Southern African Large Telescope(SALT)under program 2020-1-MLT-002(PI:Alexei Kniazev),support from the National Research Foundation(NRF)of South Africasupported by the Ministry of Science and Higher Education of the Russian Federation Grant 075-15-2022-262(13.MNPMU.21.0003)。
文摘We have completed our observational program to search for wide binary systems with non-coeval components in the southern sky and report our results here.The final set of four systems was spectroscopically investigated in this paper.No binary systems with components of different ages were found among them.Taking into account our previous studies,we estimate the fraction of such binaries(i.e.,binaries formed,presumably,by capture)to be not higher than 0.06%.The study will be continued on the northern sky.
基金the National SKA Program of China(2020SKA0120100)research projects of Henan Science and Technology Committee(212300410378)the National NaturalScience Foundationof China(NSFC)grant(U1938116).
文摘It seems that the wealth of information revealed by the multi-messenger observations of the binary neutron star(NS)merger event,GW170817/GRB 170817A/kilonova AT2017gfo,places irreconcilable constraints to models of the prompt emission of this gamma-ray burst(GRB).The observed time delay between the merger of the two NSs and the trigger of the GRB and the thermal tail of the prompt emission can hardly be reproduced by these models simultaneously.We argue that the merger remnant should be an NS(last for,at least,a large fraction of 1 s),and that the difficulty can be alleviated by the delayed formation of the accretion disk due to the absorption of high-energy neutrinos emitted by the NS and the delayed emergence of effective viscosity in the disk.Further,we extend the consideration of the effect of the energy deposition of neutrinos emitted from the NS.If the NS is the central object of a GRB with a distance and duration similar to that of GRB 170817A,thermal emission of the thermal bubble inflated by the NS after the termination of accretion may be detectable.If our scenario is verified,it would be of interest to investigate the cooling of nascent NSs.
基金supported by the National SKA Program of China No.2020SKA0120100the National Natural Science Foundation of China(NSFC,Grant Nos.11963002,11703047,11773041,U2031119,12173052,12003047 and 12173053)+7 种基金the fostering project of Guizhou University with No.201911Cultivation Project for FAST Scientific Payoff and Research Achievement of CAMS-CASsupported by the Specialized Research Fund for State Key Laboratoriessupported by the CAS“Light of West China”Programthe Youth Innovation Promotion Association of CAS(id 2023064)supported by the Youth Innovation Promotion Association of CAS(id.2018075 and Y2022027)supported by Guizhou Provincial Basic Research Program(Natural Science)(ZK[2023]039)Key Technology R&D Program([2023]352)。
文摘Up to 2022 November,267 pulsars had been discovered in 36 globular clusters(GCs).In this paper,we present our studies on the distribution of GC pulsar parameters and the detection efficiency.The power law relation between average dispersion measure(■)and dispersion measure difference(ΔDM)of known pulsars in GCs is lgΔDM∝1.52lg■.The sensitivity could be the key to finding more pulsars.As a result,several years after the construction of a large radio telescope facility,the number of known GC pulsars will likely be increased accordingly.We suggest that currently GCs in the southern hemisphere could have higher possibilities for finding new pulsars.
基金supported by the National SKA Program of China(No.2020SKA0120300)NSFC(12133004)。
文摘The magnetar SGR 1935+2154 is reported to have an anti-glitch,accompanied by fast radio bursts,and transient pulsed radio emission.In the wind braking model,this triplet event tells people that(1) SGR 1935+2154 does not have a strong particle wind and can be approximated by magnetic dipole braking in the persistent state;(2) its antiglitch is due to an enhanced particle wind,similar to the first anti-glitch in magnetars;(3) its transient pulsed radio emission may be due to a decreasing emission beam during the outburst;(4) the enhanced particle acceleration potential and pulsar death line may not be the dominate factor.
基金funded by the National Natural Science Foundation of China (NSFC) under No.11903028the support from the “Yunnan Revitalization Talent Support Program” of Yunnan province, China+2 种基金the University of Michigan Radio Astronomy Observatory, which is supported by the University of Michiganby a series of grants from the National Science Foundation, most recently AST-0607523NASA Fermi grants NNX09AU16G, NNX10AP16G, and NNX11AO13G.
文摘We present periodicity search analyses on long-term radio light curves at 4.8,8,and 14.5 GHz of blazar PKS 0607–157 observed by the University of Michigan Radio Astronomical Observatory telescope.The highly variable radio emissions are approximately distributed as a log-normal probability distribution function.The Power Spectral Density for the radio light curves can be well characterized by a power-law model.Using the Weighted Wavelet Z-transform and Lomb-Scargle periodogram methods,significant Quasi-periodic Oscillation(QPO)of∼4.6 yr in the radio light curve has been observed above the 3σconfidence level,which presents an interesting case among blazar QPO phenomena.We explore three plausible physical models to explain the observed QPOs:a supermassive binary black hole system,Lense-Thirring precession of the disk,and helical motion of plasma blobs within the jet.
基金supported by the National Key R&D Program of China grants Nos.2022YFF0503404 and 2021YFC2203102by the National Natural Science Foundation of China (NSFC,Grant Nos.12173036,11773024,11653002,11421303 and 12073036)+2 种基金by the China Manned Space Project grant No.CMSCSST-2021-B01by the Fundamental Research Funds for Central Universities Grant Nos.WK3440000004 and WK3440000005by the CAS Interdisciplinary Innovation Team。
文摘We study the potential of the galaxy cluster sample expected from the Chinese Space Station Telescope(CSST)survey to constrain dark energy properties.By modeling the distribution of observed cluster mass for a given true mass to be log-normal and adopting a selection threshold in the observed mass M_(200m)≥0.836×10^(14)h^(-1)M_(⊙),we find about 4.1×10^(5)clusters in the redshift range 0≤z≤1.5 can be detected by the CSST.We construct the Fisher matrix for the cluster number counts from CSST,and forecast constraints on dark energy parameters for models with constant(w_(0)CDM)and time dependent(w_(0)w_(a)CDM)equation of state.In the self-calibration scheme,the dark energy equation of state parameter w_(0)of the w_(0)CDM model can be constrained toΔw_(0)=0.036.If w_(a)is added as a free parameter,we obtainΔw_(0)=0.077 andΔw_(a)=0.39 for the w_(0)w_(a)CDM model,with a Figure of Merit for(w_(0),w_(a))of 68.99.Should we have perfect knowledge of the observable-mass scaling relation("known SR"scheme),we would obtainΔw_(0)=0.012 for the w_(0)CDM model,andΔw_(0)=0.062 andΔw_(a)=0.24 for the w_(0)w_(a)CDM model.The dark energy Figure of Merit of(w_(0),w_(a))increases to 343.25.This indicates again the importance of calibrating the observable-mass scaling relation for optically selected galaxy clusters.By extending the_(max)imum redshift of the clusters from z_(max)~1.5 to Z_(max)~2,the dark energy Figure of Merit for(w_(0),w_(a))increases to 89.72(self-calibration scheme)and 610.97("known SR"scheme),improved by a factor of~1.30 and~1.78,respectively.We find that the impact of clusters’redshift uncertainty on the dark energy constraints is negligible as long as the redshift error of clusters is smaller than 0.01,achievable by CSST.We also find that the bias in logarithm mass must be calibrated to be 0.30 or better to avoid significant dark energy parameter bias.
基金supported by National SKA Program of China(No.2020SKA0120300)the National Natural Science Foundation of China(NSFC,12133004)。
文摘Recently another long period radio pulsar GPM J1839-10 has been reported,similar to GLEAM-X J162759.5-523504.3.Previously,the energy budget and rotational evolution of long period radio pulsars had been considered.This time,the death line and pulse width for neutron star and white dwarf pulsars are investigated.The pulse width is included as the second criterion for neutron star and white dwarf pulsars.It is found that:(1)PSR J0250+5854 and PSR J0901-4046 etc.should be normal radio pulsars.They have narrow pulse width and they lie near the radio emission death line.(2)The two long period radio pulsars GLEAM-X J162759.5-523504.3 and GPM J1839-10 are unlikely to be normal radio pulsars.Their possible pulse width is relatively large.They lie far below the fiducial death line on the P-P^(·)diagram.(3)GLEAM-X J162759.5-523504.3 and GPM J1839-10 may be magnetars or white dwarf radio pulsars.At present,there are many parameters and uncertainties in both of these possibilities.
基金supported by the National Natural Science Foundation of China(NSFC)Grant Nos.11988101,1172531312041303,12041304,12203045,12203070,12103013,T2241020the National SKA Program of China(Nos.2020SKA0120200,2022SKA0130100,2022SKA0130104)+5 种基金the Foundation of Science and Technology of Guizhou Province(No.(2021)023)the Foundation of Guizhou Provincial Education Department(Nos.KY(2021)303,KY(2020)003)support from the National Natural Science Foundation of China under grant U2031117the Youth Innovation Promotion Association CAS(id.2021055)CAS Project for Young Scientists in Basic Research(grant YSBR006)the Cultivation Project for FAST Scientific Payoff and Research Achievement of CAMS-CAS。
文摘We report the discovery of PSR J1909+0122 by the Five-hundred-meter Aperture Spherical Radio Telescope(FAST)as part of the Commensal Radio Astronomy FAST Survey.PSR J1909+0122 has a spin period of 1.257 s and a dispersion measure of 186.2 pc cm^(-3).The averaged pulse profile shows two distinct components.We performed a single-pulse study based on a one-hour observation at 1.25 GHz on 2021 August 23.We used a threshold of 5σ_(ep) to measure the nulling fraction(NF)as 63%±1.5%.The longitude-resolved fluctuation spectra and fast Fourier transform spectra of the binary sequences revealed the quasi-periodicity of nulling with a period of 30 rotation periods.We examined the reliability of the periodicity by comparing it to random noise injection.The NF,E,and modulation periodicity P_(M) of PSR J1909+0122 were compared with other periodic nulling pulsars,showing that the source of J1909+0122 has the second largest NF in the population.Long-term timing observations over six months were used to derive the phase-connected ephemeris of this pulsar.The measured P and P values disfavor dipolar geometry for polar gap models,and the prediction for a space-charge-limited flow model in the case of inverse Compton scattering is only just above the death line.In this work,PSR J1909+0122 has revealed possible correlations between nulling behavior and pulsar properties,which will help to shed light on the pulsar emission mechanism and its temporal evolution in future observations.
基金supported by the National Key R&D Program of China(Nos.2021YFA1600404 and 2021YFA1600403)the National Natural Science Foundation of China(Nos.12225304 and 12273105)+3 种基金the Western Light Project of CAS(No.XBZG-ZDSYS-202117)the science research grants from the China Manned Space Project(Nos.CMS-CSST-2021-A12/B07)the Youth Innovation Promotion Association CAS(No.2021058)the Yunnan Fundamental Research Projects(Nos.202001AS070029,202001AU070054,202101AT070027 and 202101AW070047)。
文摘As one of the most useful cosmological distance indicators,type Ia supernovae(SNe Ia)play an important role in the study of cosmology.However,the progenitors of SNe Ia are still uncertain.It has been suggested that carbonoxygen white dwarf(CO WD)+He subgiant systems could produce SNe Ia through the double-degenerate(DD)model,in which the He subgiant transfers He-rich matter to the primary CO WD and finally evolves to another CO WD.Recently,a CO WD+He star system(i.e.,HD 265435)has been discovered to be a new SNe Ia progenitor candidate based on the DD model.The orbital period of the system is about 0.0688 days,and the masses of the CO WD and the He star are 1.01±0.15 M_(⊙) and 0.63_(-0.12)^(+0.13)M_(⊙),respectively.In this work,we evolve a large number of primordial binaries to the formation of CO WD+He star systems and investigate the evolutionary history of HD265435.We find that HD 265435 may originate from a primordial binary that has a 5.18 M_(⊙) primary and a3.66 M_(⊙) secondary with an initial orbital period of 5200 days.The CO WD+He star system would be formed after the primordial binary experiences two common-envelope ejection processes.We also find that HD 265435 would evolve to a double WD system with a total mass of 1.58 M⊙after a stable mass-transfer process,and the double WD system would merge driven by gravitational wave radiation.We estimate that it would take about 76 Myr for HD 265435 to form an SN Ia.In addition,HD 265435 would be a potential target of space-based gravitational wave observatories(e.g.,LISA,Taiji and TianQin).