An improved generalized predictive control algorithm is presented in thispaper by incorporating offline identification into online identification. Unlike the existinggeneralized predictive control algorithms, the prop...An improved generalized predictive control algorithm is presented in thispaper by incorporating offline identification into online identification. Unlike the existinggeneralized predictive control algorithms, the proposed approach divides parameters of a predictivemodel into the time invariant and time-varying ones, which are treated respectively by offline andonline identification algorithms. Therefore, both the reliability and accuracy of the predictivemodel are improved. Two simulation examples of control of a fixed bed reactor show that this newalgorithm is not only reliable and stable in the case of uncertainties and abnormal disturbances,but also adaptable to slow time varying processes.展开更多
Power plants are nonlinear and uncertain complex systems. Reliable control of superheated steam temperature is necessary to ensure high efficiency and high load-following capability in the operation of modem power pla...Power plants are nonlinear and uncertain complex systems. Reliable control of superheated steam temperature is necessary to ensure high efficiency and high load-following capability in the operation of modem power plant. A nonlinear generalized predictive controller based on neuro-fuzzy network (NFGPC) is proposed in this paper. The proposed nonlinear controller is applied to control the superheated steam temperature of a 200MW power plant. From the experiments on the plant and the simulation of the plant, much better performance than the traditional controller is obtained,展开更多
The high-purity distillation column system is strongly nonlinear and coupled,which makes it difficult to control.Active disturbance rejection control(ADRC)has been widely used in distillation systems,but it has limita...The high-purity distillation column system is strongly nonlinear and coupled,which makes it difficult to control.Active disturbance rejection control(ADRC)has been widely used in distillation systems,but it has limitations in controlling distillation systems with large time delays since ADRC employs ESO and feedback control law to estimate the total disturbance of the system without considering the large time delays.This paper designs a proportion integral-type active disturbance rejection generalized predictive control(PI-ADRGPC)algorithm to control the distillation column system with large time delay.It replaces the PD controller in ADRC with a proportion integral-type generalized predictive control(PI-GPC),thereby improving the performance of control systems with large time delays.Since the proposed controller has many parameters and is difficult to tune,this paper proposes to use the grey wolf optimization(GWO)to tune these parameters,whose structure can also be used by other intelligent optimization algorithms.The performance of GWO tuned PI-ADRGPC is compared with the control performance of GWO tuned ADRC method,multi-verse optimizer(MVO)tuned PI-ADRGPC and MVO tuned ADRC.The simulation results show that the proposed strategy can track reference well and has a good disturbance rejection performance.展开更多
In this paper, we present a quantitative analysis of the robustness of a generalized predictive controller. The result of stability analysis shows that, under a specific bounded modelling error, the closed-loop system...In this paper, we present a quantitative analysis of the robustness of a generalized predictive controller. The result of stability analysis shows that, under a specific bounded modelling error, the closed-loop system is BIBO stable in the presence of unmodelled dynamics.展开更多
A new framework for networked control system based on Generalized Predictive Control (GPC) is proposed in this paper. Clock-driven sensors, event-driven controller, and clock-driven actuators are required in this fram...A new framework for networked control system based on Generalized Predictive Control (GPC) is proposed in this paper. Clock-driven sensors, event-driven controller, and clock-driven actuators are required in this framework. A queuing strategy is proposed to overcome the network induced delay. Without redesigning, the proposed framework enables the existing GPC controller to be used in a network environment. It also does not require clock synchronization and is only slightly affected by bad network condition such as package loss. Various experiments are designed over the real network to test the proposed approach, which verify that the proposed approach can stabilize the Networked Control System (NCS) and is robust.展开更多
The problem of adaptive generalized predictive control which consists of output prediction errors for a class of switched systems is studied.The switching law is determined by the output predictive errors of a finite ...The problem of adaptive generalized predictive control which consists of output prediction errors for a class of switched systems is studied.The switching law is determined by the output predictive errors of a finite number of subsystems.For the single subsystem and multiple subsystems cases,it is proved that the given direct algorithm of generalized predictive control guarantees the global convergence of the system.This algorithm overcomes the inherent drawbacks of the slow convergence and large transient errors for the conventional adaptive control.展开更多
A GPC (generalized predictive control) law is developed to control the powerof a turbine, after transforming the nonlinear mathematical model of the power regulation systeminto a CARIMA(controlled auto-regressive inte...A GPC (generalized predictive control) law is developed to control the powerof a turbine, after transforming the nonlinear mathematical model of the power regulation systeminto a CARIMA(controlled auto-regressive integrated moving average) form. The effect of the newcontrol law is compared with a traditional PID (proportional, integral and differential) control lawby numerical simulation. The simulation results verify the effectiveness, the correctness and theadvantage of the new control scheme.展开更多
Some papers on stochastic adaptive control schemes have established convergence algorithm using a least-squares parameters. With the popular application of GPC, global convergence has become a key problem in automatic...Some papers on stochastic adaptive control schemes have established convergence algorithm using a least-squares parameters. With the popular application of GPC, global convergence has become a key problem in automatic control theory. However, now global convergence of GPC has not been established for algorithms in computing a least squares iteration. A generalized model of adaptive generalized predictive control is presented. The global convergebce is also given on the basis of estimating the parameters of GPC by least squares algorithm.展开更多
A simple delay-predictive continuous-time generalized predictive controller with filter (F-SDCGPC) is proposed. By using modified predictive output signal and cost function, the delay compensator is incorporated in th...A simple delay-predictive continuous-time generalized predictive controller with filter (F-SDCGPC) is proposed. By using modified predictive output signal and cost function, the delay compensator is incorporated in the control law with observer structure, and a filter is added for enhancing robustness. The design of filter does not affect the nominal set-point response, and it is more flexible than the design of observer polynomial. The analysis and simulation results show that the F-SDCGPC has better robustness than the observer structure without filter when large time-delay error is considered.展开更多
To study the application of the generalized predictive adaptive control algorithm in missile control system, the algorithm is presented based on the recursive least square estimation, and a controller of the pitch c...To study the application of the generalized predictive adaptive control algorithm in missile control system, the algorithm is presented based on the recursive least square estimation, and a controller of the pitch channel of a missile is designed by using this algorithm. The simulations verify that the designed controller can meet the demands of the task well.展开更多
This paper deeply analyzes the closed-loop nature ofGPCin the fram ework ofinter- nalm odelcontrol(IMC) theory. A new sort ofrelation lies in the feedback structure so that robustreason can be satisfactorily explain...This paper deeply analyzes the closed-loop nature ofGPCin the fram ework ofinter- nalm odelcontrol(IMC) theory. A new sort ofrelation lies in the feedback structure so that robustreason can be satisfactorily explained. The resultissignificantbecause the previous con- clusions are only applied to open-loop stable plant(orm odel).展开更多
In this paper, we propose a new Generalized Predictive Control (GPC) Algorithm. Based on the Fuzzy control principle rather than on one\|step control law of GPC, we use the weighted control law obtained from setting a...In this paper, we propose a new Generalized Predictive Control (GPC) Algorithm. Based on the Fuzzy control principle rather than on one\|step control law of GPC, we use the weighted control law obtained from setting a relation between the predictive precision of the model and the weighted coefficients of the control signals. The robustness and robustness of the algorithm to the unmodeled dynamic is demonstrated by simulation results.展开更多
With Kleinmans controller, its extended form and Riccati iteration as analyzing tools, the stability of GPC under various parameter cases is discussed. The overall closed-loop stability conclusions of GPC in equivalen...With Kleinmans controller, its extended form and Riccati iteration as analyzing tools, the stability of GPC under various parameter cases is discussed. The overall closed-loop stability conclusions of GPC in equivalence with Kleinmans controller are obtained, which cover some existing results and provide the theoretical foundation for stable design of predictive control.展开更多
In this paper, a nonlinear difference-algebraic system is used to model some populations with stage structure when the harvest behavior and the economic interest are considered. The stability analysis is studied at th...In this paper, a nonlinear difference-algebraic system is used to model some populations with stage structure when the harvest behavior and the economic interest are considered. The stability analysis is studied at the equilibrium points. After the non- linear difference-algebraic system is changed into a linear system with the unmodeled dynamics, a generalized predictive controller with feedforward compensator is designed to stabilize the system. Adaptive-network-based fuzzy inference system (ANFIS) is used to make the unmodeled dynamic compensated. An example illustrates the effectiveness of the proposed control method.展开更多
A constrained generalized predictive control (GPC) algorithm based on the T-S fuzzy model is presented for the nonlinear system. First, a Takagi-Sugeno (T-S) fuzzy model based on the fuzzy cluster algorithm and th...A constrained generalized predictive control (GPC) algorithm based on the T-S fuzzy model is presented for the nonlinear system. First, a Takagi-Sugeno (T-S) fuzzy model based on the fuzzy cluster algorithm and the orthogonalleast square method is constructed to approach the nonlinear system. Since its consequence is linear, it can divide the nonlinear system into a number of linear or nearly linear subsystems. For this T-S fuzzy model, a GPC algorithm with input constraints is presented. This strategy takes into account all the constraints of the control signal and its increment, and does not require the calculation of the Diophantine equations. So it needs only a small computer memory and the computational speed is high. The simulation results show a good performance for the nonlinear systems.展开更多
Used for industrial process with different degree of nonlinearity, the two predictive control algorithms presented in this paper are based on Least Squares Support Vector Machines (LS-SVM) model. For the weakly nonlin...Used for industrial process with different degree of nonlinearity, the two predictive control algorithms presented in this paper are based on Least Squares Support Vector Machines (LS-SVM) model. For the weakly nonlinear system, the system model is built by using LS-SVM with linear kernel function, and then the obtained linear LS-SVM model is transformed into linear input-output relation of the controlled system. However, for the strongly nonlinear system, the off-line model of the controlled system is built by using LS-SVM with Radial Basis Function (RBF) kernel. The obtained nonlinear LS-SVM model is linearized at each sampling instant of system running, after which the on-line linear input-output model of the system is built. Based on the obtained linear input-output model, the Generalized Predictive Control (GPC) algorithm is employed to implement predictive control for the controlled plant in both algorithms. The simulation results after the presented algorithms were implemented in two different industrial processes model; respectively revealed the effectiveness and merit of both algorithms.展开更多
The fuzzy NN predictive control algorithm introduced in this paper uses fuzzy neural network to model the nonlinear MIMO process. Its training method that integrates LS and BP algorithm brings quick convergence. GPC a...The fuzzy NN predictive control algorithm introduced in this paper uses fuzzy neural network to model the nonlinear MIMO process. Its training method that integrates LS and BP algorithm brings quick convergence. GPC algorithm is used as the predictive component. The fuzzy neural network has six layers, including input layer, output layer and four hidden layers. An application to a MIMO nonlinear process(green liquor system of the recovery system in a pulp factory shows that this algorithm has better performance than normal PID algrithm.展开更多
The objective of this work is to formulate and demonstrate the methodology of multi-models for improving the performance of existing advanced control strategies. Multiple models are used to capture the nonlinear proce...The objective of this work is to formulate and demonstrate the methodology of multi-models for improving the performance of existing advanced control strategies. Multiple models are used to capture the nonlinear process dynamics relating to gain and time constant variations. The multi-model strategy was implemented on several controllers such as Smith-Predictor using PI (Proportional-lntegral) and GPC (Generalized Predictive Control). Computer simulations and experiments were conducted on several nonlinear systems and compared to the original form of these controllers. The enhanced approach was tested on controlling the screw speed of an injection molding machine and temperature of a steel cylinder.展开更多
A novel method of incorporating generalized predictive control GPC algorithms based on quantitative feedback theory QFT principles is proposed for solving the feedback control problem of the highly uncertain and cross...A novel method of incorporating generalized predictive control GPC algorithms based on quantitative feedback theory QFT principles is proposed for solving the feedback control problem of the highly uncertain and cross-coupling plants. The quantitative feedback theory decouples the multi-input and multi-output MIMO plant and is also used to reduce the uncertainties of the system, stabilize the system, and achieve tracking performance of the system to a certain extent. Single-input and single-output SISO generalized predictive control is used to achieve performance with higher performance. In GPC, the model is identified on-line, which is based on the QFT input and the plant output signals. The simulation results show that the performance of the system is superior to the performance when only QFT is used for highly uncertain MIMO plants.展开更多
The batch dyeing process is a typical nonlinear process with time-delay,where precise controlling of temperature plays a vital role on the dyeing quality.Because the accuracy and robustness of the commonly used propor...The batch dyeing process is a typical nonlinear process with time-delay,where precise controlling of temperature plays a vital role on the dyeing quality.Because the accuracy and robustness of the commonly used proportion integration differentiation(PID) algorithm had been limited,a novel method was developed to precisely control the heating and cooling stages for batch dyeing process based on predictive sliding mode control(SMC) algorithm.Firstly,a special predictive sliding mode model was constructed according to the principle of generalized predictive control(GPC);secondly,an appropriate reference trajectory for SMC was designed based on the improved approaching law;finally,the predictive sliding mode model and the Diophantine equation were used to predict the output and then the optimized control law was derived using the generalized predictive law.This method combined GPC and the SMC with their respective advantages,so it could be applied to time-delay process,making the control system more robust.Simulation experiments show that this algorithm can well track the temperature variation for the batch dyeing process.展开更多
基金Supported by the National Natural Science Foundation of China (No. 20206028) and the Qingdao Municipal Major Lab of Industry Information Technology.
文摘An improved generalized predictive control algorithm is presented in thispaper by incorporating offline identification into online identification. Unlike the existinggeneralized predictive control algorithms, the proposed approach divides parameters of a predictivemodel into the time invariant and time-varying ones, which are treated respectively by offline andonline identification algorithms. Therefore, both the reliability and accuracy of the predictivemodel are improved. Two simulation examples of control of a fixed bed reactor show that this newalgorithm is not only reliable and stable in the case of uncertainties and abnormal disturbances,but also adaptable to slow time varying processes.
基金This work was supported by the Natural Science Foundation of Beijing (No. 4062030)National Natural Science Foundation of China (No. 50576022,69804003)Scientific Research Common Program of Beijing Municipal Commission of Education (KM200611232007).
文摘Power plants are nonlinear and uncertain complex systems. Reliable control of superheated steam temperature is necessary to ensure high efficiency and high load-following capability in the operation of modem power plant. A nonlinear generalized predictive controller based on neuro-fuzzy network (NFGPC) is proposed in this paper. The proposed nonlinear controller is applied to control the superheated steam temperature of a 200MW power plant. From the experiments on the plant and the simulation of the plant, much better performance than the traditional controller is obtained,
基金funded by the National Natural Science Foundation of China(61973175,62073177 and 61973172)South African National Research Foundation(132797)+2 种基金South African National Research Foundation Incentive(114911)Eskom Tertiary Education Support Programme Grant of South AfricaTianjin Research Innovation Project for Postgraduate Students(2021YJSB018,2020YJSB003)。
文摘The high-purity distillation column system is strongly nonlinear and coupled,which makes it difficult to control.Active disturbance rejection control(ADRC)has been widely used in distillation systems,but it has limitations in controlling distillation systems with large time delays since ADRC employs ESO and feedback control law to estimate the total disturbance of the system without considering the large time delays.This paper designs a proportion integral-type active disturbance rejection generalized predictive control(PI-ADRGPC)algorithm to control the distillation column system with large time delay.It replaces the PD controller in ADRC with a proportion integral-type generalized predictive control(PI-GPC),thereby improving the performance of control systems with large time delays.Since the proposed controller has many parameters and is difficult to tune,this paper proposes to use the grey wolf optimization(GWO)to tune these parameters,whose structure can also be used by other intelligent optimization algorithms.The performance of GWO tuned PI-ADRGPC is compared with the control performance of GWO tuned ADRC method,multi-verse optimizer(MVO)tuned PI-ADRGPC and MVO tuned ADRC.The simulation results show that the proposed strategy can track reference well and has a good disturbance rejection performance.
文摘In this paper, we present a quantitative analysis of the robustness of a generalized predictive controller. The result of stability analysis shows that, under a specific bounded modelling error, the closed-loop system is BIBO stable in the presence of unmodelled dynamics.
文摘A new framework for networked control system based on Generalized Predictive Control (GPC) is proposed in this paper. Clock-driven sensors, event-driven controller, and clock-driven actuators are required in this framework. A queuing strategy is proposed to overcome the network induced delay. Without redesigning, the proposed framework enables the existing GPC controller to be used in a network environment. It also does not require clock synchronization and is only slightly affected by bad network condition such as package loss. Various experiments are designed over the real network to test the proposed approach, which verify that the proposed approach can stabilize the Networked Control System (NCS) and is robust.
文摘The problem of adaptive generalized predictive control which consists of output prediction errors for a class of switched systems is studied.The switching law is determined by the output predictive errors of a finite number of subsystems.For the single subsystem and multiple subsystems cases,it is proved that the given direct algorithm of generalized predictive control guarantees the global convergence of the system.This algorithm overcomes the inherent drawbacks of the slow convergence and large transient errors for the conventional adaptive control.
文摘A GPC (generalized predictive control) law is developed to control the powerof a turbine, after transforming the nonlinear mathematical model of the power regulation systeminto a CARIMA(controlled auto-regressive integrated moving average) form. The effect of the newcontrol law is compared with a traditional PID (proportional, integral and differential) control lawby numerical simulation. The simulation results verify the effectiveness, the correctness and theadvantage of the new control scheme.
基金This project was supported by the National Natural Science Foundation of China (60174021) Tianjin Advanced School Science and Technology Development Foundation (01 - 20403) .
文摘Some papers on stochastic adaptive control schemes have established convergence algorithm using a least-squares parameters. With the popular application of GPC, global convergence has become a key problem in automatic control theory. However, now global convergence of GPC has not been established for algorithms in computing a least squares iteration. A generalized model of adaptive generalized predictive control is presented. The global convergebce is also given on the basis of estimating the parameters of GPC by least squares algorithm.
基金Supported by the National Natural Science Foundation of China (No.60774080)the Common Project Plan of Beijing Municipal Education Commission (No.100100435)
文摘A simple delay-predictive continuous-time generalized predictive controller with filter (F-SDCGPC) is proposed. By using modified predictive output signal and cost function, the delay compensator is incorporated in the control law with observer structure, and a filter is added for enhancing robustness. The design of filter does not affect the nominal set-point response, and it is more flexible than the design of observer polynomial. The analysis and simulation results show that the F-SDCGPC has better robustness than the observer structure without filter when large time-delay error is considered.
文摘To study the application of the generalized predictive adaptive control algorithm in missile control system, the algorithm is presented based on the recursive least square estimation, and a controller of the pitch channel of a missile is designed by using this algorithm. The simulations verify that the designed controller can meet the demands of the task well.
文摘This paper deeply analyzes the closed-loop nature ofGPCin the fram ework ofinter- nalm odelcontrol(IMC) theory. A new sort ofrelation lies in the feedback structure so that robustreason can be satisfactorily explained. The resultissignificantbecause the previous con- clusions are only applied to open-loop stable plant(orm odel).
基金The Projectis Supported by the Natural Science Foundation of Shandong Province,China
文摘In this paper, we propose a new Generalized Predictive Control (GPC) Algorithm. Based on the Fuzzy control principle rather than on one\|step control law of GPC, we use the weighted control law obtained from setting a relation between the predictive precision of the model and the weighted coefficients of the control signals. The robustness and robustness of the algorithm to the unmodeled dynamic is demonstrated by simulation results.
文摘With Kleinmans controller, its extended form and Riccati iteration as analyzing tools, the stability of GPC under various parameter cases is discussed. The overall closed-loop stability conclusions of GPC in equivalence with Kleinmans controller are obtained, which cover some existing results and provide the theoretical foundation for stable design of predictive control.
基金Acknowledgment This work was supported by the National Natural Science Foundation of China (No. 61273008).
文摘In this paper, a nonlinear difference-algebraic system is used to model some populations with stage structure when the harvest behavior and the economic interest are considered. The stability analysis is studied at the equilibrium points. After the non- linear difference-algebraic system is changed into a linear system with the unmodeled dynamics, a generalized predictive controller with feedforward compensator is designed to stabilize the system. Adaptive-network-based fuzzy inference system (ANFIS) is used to make the unmodeled dynamic compensated. An example illustrates the effectiveness of the proposed control method.
基金This Project was supported by the National Natural Science Foundation of China (60374037 and 60574036)the Opening Project Foundation of National Lab of Industrial Control Technology (0708008).
文摘A constrained generalized predictive control (GPC) algorithm based on the T-S fuzzy model is presented for the nonlinear system. First, a Takagi-Sugeno (T-S) fuzzy model based on the fuzzy cluster algorithm and the orthogonalleast square method is constructed to approach the nonlinear system. Since its consequence is linear, it can divide the nonlinear system into a number of linear or nearly linear subsystems. For this T-S fuzzy model, a GPC algorithm with input constraints is presented. This strategy takes into account all the constraints of the control signal and its increment, and does not require the calculation of the Diophantine equations. So it needs only a small computer memory and the computational speed is high. The simulation results show a good performance for the nonlinear systems.
基金Project supported by the National Outstanding Youth ScienceFoundation of China (No. 60025308) and the Teach and ResearchAward Program for Outstanding Young Teachers in Higher EducationInstitutions of MOE, China
文摘Used for industrial process with different degree of nonlinearity, the two predictive control algorithms presented in this paper are based on Least Squares Support Vector Machines (LS-SVM) model. For the weakly nonlinear system, the system model is built by using LS-SVM with linear kernel function, and then the obtained linear LS-SVM model is transformed into linear input-output relation of the controlled system. However, for the strongly nonlinear system, the off-line model of the controlled system is built by using LS-SVM with Radial Basis Function (RBF) kernel. The obtained nonlinear LS-SVM model is linearized at each sampling instant of system running, after which the on-line linear input-output model of the system is built. Based on the obtained linear input-output model, the Generalized Predictive Control (GPC) algorithm is employed to implement predictive control for the controlled plant in both algorithms. The simulation results after the presented algorithms were implemented in two different industrial processes model; respectively revealed the effectiveness and merit of both algorithms.
文摘The fuzzy NN predictive control algorithm introduced in this paper uses fuzzy neural network to model the nonlinear MIMO process. Its training method that integrates LS and BP algorithm brings quick convergence. GPC algorithm is used as the predictive component. The fuzzy neural network has six layers, including input layer, output layer and four hidden layers. An application to a MIMO nonlinear process(green liquor system of the recovery system in a pulp factory shows that this algorithm has better performance than normal PID algrithm.
文摘The objective of this work is to formulate and demonstrate the methodology of multi-models for improving the performance of existing advanced control strategies. Multiple models are used to capture the nonlinear process dynamics relating to gain and time constant variations. The multi-model strategy was implemented on several controllers such as Smith-Predictor using PI (Proportional-lntegral) and GPC (Generalized Predictive Control). Computer simulations and experiments were conducted on several nonlinear systems and compared to the original form of these controllers. The enhanced approach was tested on controlling the screw speed of an injection molding machine and temperature of a steel cylinder.
基金the National Natural Science Foundation of China (No.60374037, No.60574036)the Program for New CenturyExcellent Talents in Education Ministry (NCET)the Specialized Research Fund for the Doctoral Program of Higher Edu-cation of China (No.20050055013)
文摘A novel method of incorporating generalized predictive control GPC algorithms based on quantitative feedback theory QFT principles is proposed for solving the feedback control problem of the highly uncertain and cross-coupling plants. The quantitative feedback theory decouples the multi-input and multi-output MIMO plant and is also used to reduce the uncertainties of the system, stabilize the system, and achieve tracking performance of the system to a certain extent. Single-input and single-output SISO generalized predictive control is used to achieve performance with higher performance. In GPC, the model is identified on-line, which is based on the QFT input and the plant output signals. The simulation results show that the performance of the system is superior to the performance when only QFT is used for highly uncertain MIMO plants.
基金National Natural Science Foundation of China(No.61074154)
文摘The batch dyeing process is a typical nonlinear process with time-delay,where precise controlling of temperature plays a vital role on the dyeing quality.Because the accuracy and robustness of the commonly used proportion integration differentiation(PID) algorithm had been limited,a novel method was developed to precisely control the heating and cooling stages for batch dyeing process based on predictive sliding mode control(SMC) algorithm.Firstly,a special predictive sliding mode model was constructed according to the principle of generalized predictive control(GPC);secondly,an appropriate reference trajectory for SMC was designed based on the improved approaching law;finally,the predictive sliding mode model and the Diophantine equation were used to predict the output and then the optimized control law was derived using the generalized predictive law.This method combined GPC and the SMC with their respective advantages,so it could be applied to time-delay process,making the control system more robust.Simulation experiments show that this algorithm can well track the temperature variation for the batch dyeing process.