期刊文献+
共找到824篇文章
< 1 2 42 >
每页显示 20 50 100
Optimizing Grey Wolf Optimization: A Novel Agents’ Positions Updating Technique for Enhanced Efficiency and Performance
1
作者 Mahmoud Khatab Mohamed El-Gamel +2 位作者 Ahmed I. Saleh Asmaa H. Rabie Atallah El-Shenawy 《Open Journal of Optimization》 2024年第1期21-30,共10页
Grey Wolf Optimization (GWO) is a nature-inspired metaheuristic algorithm that has gained popularity for solving optimization problems. In GWO, the success of the algorithm heavily relies on the efficient updating of ... Grey Wolf Optimization (GWO) is a nature-inspired metaheuristic algorithm that has gained popularity for solving optimization problems. In GWO, the success of the algorithm heavily relies on the efficient updating of the agents’ positions relative to the leader wolves. In this paper, we provide a brief overview of the Grey Wolf Optimization technique and its significance in solving complex optimization problems. Building upon the foundation of GWO, we introduce a novel technique for updating agents’ positions, which aims to enhance the algorithm’s effectiveness and efficiency. To evaluate the performance of our proposed approach, we conduct comprehensive experiments and compare the results with the original Grey Wolf Optimization technique. Our comparative analysis demonstrates that the proposed technique achieves superior optimization outcomes. These findings underscore the potential of our approach in addressing optimization challenges effectively and efficiently, making it a valuable contribution to the field of optimization algorithms. 展开更多
关键词 Grey wolf optimization (GWO) Metaheuristic algorithm optimization Problems Agents’ Positions Leader Wolves optimal Fitness Values optimization Challenges
下载PDF
Optimal Operation of Distributed Generations Considering Demand Response in a Microgrid Using GWO Algorithm 被引量:2
2
作者 Hassan Shokouhandeh Mehrdad Ahmadi Kamarposhti +2 位作者 William Holderbaum Ilhami Colak Phatiphat Thounthong 《Computer Systems Science & Engineering》 SCIE EI 2023年第10期809-822,共14页
The widespread penetration of distributed energy sources and the use of load response programs,especially in a microgrid,have caused many power system issues,such as control and operation of these networks,to be affec... The widespread penetration of distributed energy sources and the use of load response programs,especially in a microgrid,have caused many power system issues,such as control and operation of these networks,to be affected.The control and operation of many small-distributed generation units with different performance characteristics create another challenge for the safe and efficient operation of the microgrid.In this paper,the optimum operation of distributed generation resources and heat and power storage in a microgrid,was performed based on real-time pricing through the proposed gray wolf optimization(GWO)algorithm to reduce the energy supply cost with the microgrid.Distributed generation resources such as solar panels,diesel generators with battery storage,and boiler thermal resources with thermal storage were used in the studied microgrid.Also,a combined heat and power(CHP)unit was used to produce thermal and electrical energy simultaneously.In the simulations,in addition to the gray wolf algorithm,some optimization algorithms have also been used.Then the results of 20 runs for each algorithm confirmed the high accuracy of the proposed GWO algorithm.The results of the simulations indicated that the CHP energy resources must be managed to have a minimum cost of energy supply in the microgrid,considering the demand response program. 展开更多
关键词 MICROGRID demand response program cost reduction gray wolf optimization algorithm
下载PDF
Enhancing Cancer Classification through a Hybrid Bio-Inspired Evolutionary Algorithm for Biomarker Gene Selection 被引量:1
3
作者 Hala AlShamlan Halah AlMazrua 《Computers, Materials & Continua》 SCIE EI 2024年第4期675-694,共20页
In this study,our aim is to address the problem of gene selection by proposing a hybrid bio-inspired evolutionary algorithm that combines Grey Wolf Optimization(GWO)with Harris Hawks Optimization(HHO)for feature selec... In this study,our aim is to address the problem of gene selection by proposing a hybrid bio-inspired evolutionary algorithm that combines Grey Wolf Optimization(GWO)with Harris Hawks Optimization(HHO)for feature selection.Themotivation for utilizingGWOandHHOstems fromtheir bio-inspired nature and their demonstrated success in optimization problems.We aimto leverage the strengths of these algorithms to enhance the effectiveness of feature selection in microarray-based cancer classification.We selected leave-one-out cross-validation(LOOCV)to evaluate the performance of both two widely used classifiers,k-nearest neighbors(KNN)and support vector machine(SVM),on high-dimensional cancer microarray data.The proposed method is extensively tested on six publicly available cancer microarray datasets,and a comprehensive comparison with recently published methods is conducted.Our hybrid algorithm demonstrates its effectiveness in improving classification performance,Surpassing alternative approaches in terms of precision.The outcomes confirm the capability of our method to substantially improve both the precision and efficiency of cancer classification,thereby advancing the development ofmore efficient treatment strategies.The proposed hybridmethod offers a promising solution to the gene selection problem in microarray-based cancer classification.It improves the accuracy and efficiency of cancer diagnosis and treatment,and its superior performance compared to other methods highlights its potential applicability in realworld cancer classification tasks.By harnessing the complementary search mechanisms of GWO and HHO,we leverage their bio-inspired behavior to identify informative genes relevant to cancer diagnosis and treatment. 展开更多
关键词 Bio-inspired algorithms BIOINFORMATICS cancer classification evolutionary algorithm feature selection gene expression grey wolf optimizer harris hawks optimization k-nearest neighbor support vector machine
下载PDF
Smart Fraud Detection in E-Transactions Using Synthetic Minority Oversampling and Binary Harris Hawks Optimization
4
作者 Chandana Gouri Tekkali Karthika Natarajan 《Computers, Materials & Continua》 SCIE EI 2023年第5期3171-3187,共17页
Fraud Transactions are haunting the economy of many individuals with several factors across the globe.This research focuses on developing a mechanism by integrating various optimized machine-learning algorithms to ens... Fraud Transactions are haunting the economy of many individuals with several factors across the globe.This research focuses on developing a mechanism by integrating various optimized machine-learning algorithms to ensure the security and integrity of digital transactions.This research proposes a novel methodology through three stages.Firstly,Synthetic Minority Oversampling Technique(SMOTE)is applied to get balanced data.Secondly,SMOTE is fed to the nature-inspired Meta Heuristic(MH)algorithm,namely Binary Harris Hawks Optimization(BinHHO),Binary Aquila Optimization(BAO),and Binary Grey Wolf Optimization(BGWO),for feature selection.BinHHO has performed well when compared with the other two.Thirdly,features from BinHHO are fed to the supervised learning algorithms to classify the transactions such as fraud and non-fraud.The efficiency of BinHHO is analyzed with other popular MH algorithms.The BinHHO has achieved the highest accuracy of 99.95%and demonstrates amore significant positive effect on the performance of the proposed model. 展开更多
关键词 Metaheuristic algorithms K-nearest-neighbour binary aquila optimization binary grey wolf optimization BinHHO optimization support vector machine
下载PDF
VGWO: Variant Grey Wolf Optimizer with High Accuracy and Low Time Complexity
5
作者 Junqiang Jiang Zhifang Sun +3 位作者 Xiong Jiang Shengjie Jin Yinli Jiang Bo Fan 《Computers, Materials & Continua》 SCIE EI 2023年第11期1617-1644,共28页
The grey wolf optimizer(GWO)is a swarm-based intelligence optimization algorithm by simulating the steps of searching,encircling,and attacking prey in the process of wolf hunting.Along with its advantages of simple pr... The grey wolf optimizer(GWO)is a swarm-based intelligence optimization algorithm by simulating the steps of searching,encircling,and attacking prey in the process of wolf hunting.Along with its advantages of simple principle and few parameters setting,GWO bears drawbacks such as low solution accuracy and slow convergence speed.A few recent advanced GWOs are proposed to try to overcome these disadvantages.However,they are either difficult to apply to large-scale problems due to high time complexity or easily lead to early convergence.To solve the abovementioned issues,a high-accuracy variable grey wolf optimizer(VGWO)with low time complexity is proposed in this study.VGWO first uses the symmetrical wolf strategy to generate an initial population of individuals to lay the foundation for the global seek of the algorithm,and then inspired by the simulated annealing algorithm and the differential evolution algorithm,a mutation operation for generating a new mutant individual is performed on three wolves which are randomly selected in the current wolf individuals while after each iteration.A vectorized Manhattan distance calculation method is specifically designed to evaluate the probability of selecting the mutant individual based on its status in the current wolf population for the purpose of dynamically balancing global search and fast convergence capability of VGWO.A series of experiments are conducted on 19 benchmark functions from CEC2014 and CEC2020 and three real-world engineering cases.For 19 benchmark functions,VGWO’s optimization results place first in 80%of comparisons to the state-of-art GWOs and the CEC2020 competition winner.A further evaluation based on the Friedman test,VGWO also outperforms all other algorithms statistically in terms of robustness with a better average ranking value. 展开更多
关键词 Intelligence optimization algorithm grey wolf optimizer(GWO) manhattan distance symmetric coordinates
下载PDF
Hybridized Intelligent Neural Network Optimization Model for Forecasting Prices of Rubber in Malaysia
6
作者 Shehab Abdulhabib Alzaeemi Saratha Sathasivam +2 位作者 Majid Khan bin Majahar Ali K.G.Tay Muraly Velavan 《Computer Systems Science & Engineering》 SCIE EI 2023年第11期1471-1491,共21页
Rubber producers,consumers,traders,and those who are involved in the rubber industry face major risks of rubber price fluctuations.As a result,decision-makers are required to make an accurate estimation of the price o... Rubber producers,consumers,traders,and those who are involved in the rubber industry face major risks of rubber price fluctuations.As a result,decision-makers are required to make an accurate estimation of the price of rubber.This paper aims to propose hybrid intelligent models,which can be utilized to forecast the price of rubber in Malaysia by employing monthly Malaysia’s rubber pricing data,spanning from January 2016 to March 2021.The projected hybrid model consists of different algorithms with the symbolic Radial Basis Functions Neural Network k-Satisfiability Logic Mining(RBFNN-kSAT).These algorithms,including Grey Wolf Optimization Algorithm,Artificial Bee Colony Algorithm,and Particle Swarm Optimization Algorithm were utilized in the forecasting data analysis.Several factors,which affect the monthly price of rubber,such as rubber production,total exports of rubber,total imports of rubber,stocks of rubber,currency exchange rate,and crude oil prices were also considered in the analysis.To evaluate the results of the introduced model,a comparison has been conducted for each model to identify the most optimum model for forecasting the price of rubber.The findings showed that GWO with RBFNN-kSAT represents the most accurate and efficient model compared with ABC with RBFNNkSAT and PSO with RBFNN-kSAT in forecasting the price of rubber.The GWO with RBFNN-kSAT obtained the greatest average accuracy(92%),with a better correlation coefficient R=0.983871 than ABC with RBFNN-kSAT and PSO with RBFNN-kSAT.Furthermore,the empirical results of this study provided several directions for policymakers to make the right decision in terms of devising proper measures in the industry to address frequent price changes so that the Malaysian rubber industry maintains dominance in the international markets. 展开更多
关键词 Rubber prices in Malaysia grey wolf optimization algorithm radial basis functions neural network k-satisfiability commodity prices
下载PDF
Swarm-Based Extreme Learning Machine Models for Global Optimization
7
作者 Mustafa Abdul Salam Ahmad Taher Azar Rana Hussien 《Computers, Materials & Continua》 SCIE EI 2022年第3期6339-6363,共25页
Extreme Learning Machine(ELM)is popular in batch learning,sequential learning,and progressive learning,due to its speed,easy integration,and generalization ability.While,Traditional ELM cannot train massive data rapid... Extreme Learning Machine(ELM)is popular in batch learning,sequential learning,and progressive learning,due to its speed,easy integration,and generalization ability.While,Traditional ELM cannot train massive data rapidly and efficiently due to its memory residence,high time and space complexity.In ELM,the hidden layer typically necessitates a huge number of nodes.Furthermore,there is no certainty that the arrangement of weights and biases within the hidden layer is optimal.To solve this problem,the traditional ELM has been hybridized with swarm intelligence optimization techniques.This paper displays five proposed hybrid Algorithms“Salp Swarm Algorithm(SSA-ELM),Grasshopper Algorithm(GOA-ELM),Grey Wolf Algorithm(GWO-ELM),Whale optimizationAlgorithm(WOA-ELM)andMoth Flame Optimization(MFO-ELM)”.These five optimizers are hybridized with standard ELM methodology for resolving the tumor type classification using gene expression data.The proposed models applied to the predication of electricity loading data,that describes the energy use of a single residence over a fouryear period.In the hidden layer,Swarm algorithms are used to pick a smaller number of nodes to speed up the execution of ELM.The best weights and preferences were calculated by these algorithms for the hidden layer.Experimental results demonstrated that the proposed MFO-ELM achieved 98.13%accuracy and this is the highest model in accuracy in tumor type classification gene expression data.While in predication,the proposed GOA-ELM achieved 0.397which is least RMSE compared to the other models. 展开更多
关键词 Extreme learning machine salp swarm optimization algorithm grasshopper optimization algorithm grey wolf optimization algorithm moth flame optimization algorithm bio-inspired optimization classification model and whale optimization algorithm
下载PDF
Grey Wolf Optimizer to Real Power Dispatch with Non-Linear Constraints
8
作者 G.R.Venkatakrishnan R.Rengaraj S.Salivahanan 《Computer Modeling in Engineering & Sciences》 SCIE EI 2018年第4期25-45,共21页
A new and efficient Grey Wolf Optimization(GWO)algorithm is implemented to solve real power economic dispatch(RPED)problems in this paper.The nonlinear RPED problem is one the most important and fundamental optimizati... A new and efficient Grey Wolf Optimization(GWO)algorithm is implemented to solve real power economic dispatch(RPED)problems in this paper.The nonlinear RPED problem is one the most important and fundamental optimization problem which reduces the total cost in generating real power without violating the constraints.Conventional methods can solve the ELD problem with good solution quality with assumptions assigned to fuel cost curves without which these methods lead to suboptimal or infeasible solutions.The behavior of grey wolves which is mimicked in the GWO algorithm are leadership hierarchy and hunting mechanism.The leadership hierarchy is simulated using four types of grey wolves.In addition,searching,encircling and attacking of prey are the social behaviors implemented in the hunting mechanism.The GWO algorithm has been applied to solve convex RPED problems considering the all possible constraints.The results obtained from GWO algorithm are compared with other state-ofthe-art algorithms available in the recent literatures.It is found that the GWO algorithm is able to provide better solution quality in terms of cost,convergence and robustness for the considered ELD problems. 展开更多
关键词 GREY wolf optimization(GWO) constraints power generation DISPATCH EVOLUTIONARY computation computational COMPLEXITY algorithms
下载PDF
改进灰狼算法优化GBDT在PM_(2.5)预测中的应用 被引量:2
9
作者 江雨燕 傅杰 +2 位作者 甘如美江 孙雨辰 王付宇 《安全与环境学报》 CAS CSCD 北大核心 2024年第4期1569-1580,共12页
针对灰狼算法易陷入局部最优解和全局搜索能力不足的问题,通过霍尔顿序列(Halton Sequence)搜索算法初始化狼群位置,避免灰狼算法陷入局部最优解和重复运算;引入莱维飞行和随机游动策略对灰狼算法的寻优过程进行优化,以增加算法的全局... 针对灰狼算法易陷入局部最优解和全局搜索能力不足的问题,通过霍尔顿序列(Halton Sequence)搜索算法初始化狼群位置,避免灰狼算法陷入局部最优解和重复运算;引入莱维飞行和随机游动策略对灰狼算法的寻优过程进行优化,以增加算法的全局搜索能力;利用粒子群算法模拟灰狼种群得出的最佳适应度以用于惩罚项改进灰狼算法中的头狼更新策略。使用改进算法优化的梯度提升树(Gradient Boosting Decision Trees,GBDT)模型对北京市大气污染物监测数据中PM_(2.5)质量浓度进行预测,采用3种评估函数对各模型以及混合模型预测效果得分进行评估。结果显示,本文改进的灰狼算法对梯度提升树的优化效果优于其他算法,均方根误差E RMS为6.65μg/m^(3),平均绝对值误差E MA为3.20μg/m^(3),拟合优度(R^(2))为99%,比传统灰狼算法优化结果的均方根误差减少了19.19μg/m^(3),平均绝对值误差降低了10.03μg/m^(3),拟合优度增加了9百分点;与霍尔顿序列和莱维飞行改进的(Levy Flight-Halton Sequence,LHGWO)相比,改进的灰狼算法预测得分的均方根误差降低了10.39μg/m^(3),平均绝对值误差减小了6.71μg/m^(3),拟合优度提高了5百分点。研究表明了预测模型优化的有效性,为未来城市改善空气质量提供了科学依据和技术支持。 展开更多
关键词 环境学 PM_(2.5)质量浓度预测 改进灰狼算法(GWO) 梯度提升树算法(GBDT) 莱维(Levy)飞行 霍尔顿序列(Halton Sequence) 粒子群算法(PSO)
下载PDF
变压器长圆形绕组振动仿真与机械故障诊断研究 被引量:1
10
作者 陈朝阳 杨文荣 +1 位作者 张雨蒙 石小晖 《传感器与微系统》 CSCD 北大核心 2024年第3期63-66,75,共5页
针对目前配电变压器长圆形绕组的故障诊断研究较少的问题,本文提出一种基于灰狼优化(GWO)算法的变压器长圆形绕组机械故障诊断的方法。首先,建立长圆形绕组的辐向和轴向振动数学模型;其次,建立变压器电磁—机械耦合有限元模型,计算长圆... 针对目前配电变压器长圆形绕组的故障诊断研究较少的问题,本文提出一种基于灰狼优化(GWO)算法的变压器长圆形绕组机械故障诊断的方法。首先,建立长圆形绕组的辐向和轴向振动数学模型;其次,建立变压器电磁—机械耦合有限元模型,计算长圆形绕组在正常、松动以及翘曲状态下的振动分布,选取R点作为特征值提取点;最后,对变压器样机进行正常、松动以及翘曲3种状态试验,获取R点的小波包能量特征,采用GWO算法优化支持向量机(SVM)参数对变压器长圆形绕组机械故障诊断,最终优化后的诊断综合准确率达到90%。 展开更多
关键词 配电变压器 长圆形绕组 有限元仿真 灰狼优化算法 故障诊断
下载PDF
基于优化功率跟随控制的E-REV能量管理策略研究 被引量:1
11
作者 刘凯 李捷辉 章舒韬 《车用发动机》 北大核心 2024年第2期60-67,共8页
基于功率跟随控制的增程式电动汽车能量管理策略具有减缓电池寿命衰减与提高车辆NVH性能等优势,但存在阈值参数依赖性强、增程器启停频繁等问题,为此提出了一种基于优化功率跟随控制的E-REV能量管理策略。依据车速、SOC状态与驾驶员的... 基于功率跟随控制的增程式电动汽车能量管理策略具有减缓电池寿命衰减与提高车辆NVH性能等优势,但存在阈值参数依赖性强、增程器启停频繁等问题,为此提出了一种基于优化功率跟随控制的E-REV能量管理策略。依据车速、SOC状态与驾驶员的加速踏板力度等信息特征,制定基于功率跟随控制的能量管理策略。在此基础上,针对固定规则参数的局限性,以车辆行驶总成本与SOC变化梯度为目标函数,结合灰狼优化算法对增程器启停功率阈值参数进行优化,减少发动机频繁启停现象。运用Matlab/Simulink搭建控制策略模型,并联合基于Simcenter/AMESIM搭建的整车物理模型进行仿真试验,结果表明:CHTC-LT循环工况下,优化功率跟随控制策略与功率跟随控制策略相比,SOC最大波动值降低了28%,增程器启停次数减少了28.5%,整车燃油经济性提升了6.89%。 展开更多
关键词 增程式汽车 能量管理 功率跟随控制 灰狼优化算法 燃油经济性
下载PDF
基于VMD-IMPA-SVM的超短期风电功率预测 被引量:2
12
作者 刘金朋 邓嘉明 +2 位作者 高鹏宇 刘胡诗涵 孙思源 《智慧电力》 北大核心 2024年第7期24-31,79,共9页
针对风力发电强波动性带来的预测精度不高问题,构建一种基于变模态分解(VMD)、灰狼优化算法(GWO)、海洋捕食者算法(MPA)和支持向量机(SVM)的组合预测模型。采用GWO对VMD的模态数和惩罚因子进行寻优,将原始功率序列分解为子序列进行降噪... 针对风力发电强波动性带来的预测精度不高问题,构建一种基于变模态分解(VMD)、灰狼优化算法(GWO)、海洋捕食者算法(MPA)和支持向量机(SVM)的组合预测模型。采用GWO对VMD的模态数和惩罚因子进行寻优,将原始功率序列分解为子序列进行降噪处理;运用对立学习和柯西变异等方法改进MPA的种群生成与变异方式,得到改进MPA(IMPA)并优化SVM中的核参数与惩罚参数,进而构建VMD-IMPA-SVM组合预测模型,对各子序列进行预测并叠加得到最终预测值。实际算例分析表明,所提组合预测模型具有较高的预测精度,同时具备强鲁棒性。 展开更多
关键词 风电功率预测 变模态分解 海洋捕食者算法 支持向量机 灰狼优化算法
下载PDF
基于POA-GWO-CSO 算法的新能源电力系统精准切负荷控制多目标优化方法
13
作者 张建新 邱建 +4 位作者 赵青春 姜拓 李建设 夏尚学 靳文星 《可再生能源》 CAS CSCD 北大核心 2024年第9期1262-1270,共9页
为解决新能源电力系统因功率缺额引发系统频率、电压偏移等一系列安全问题,文章提出了一种基于POA-GWO-CSO算法的电力系统精准切负荷控制多目标优化方法。首先,从电力系统的安全性和经济性两个方面综合考虑电力系统稳定运行和分布式电... 为解决新能源电力系统因功率缺额引发系统频率、电压偏移等一系列安全问题,文章提出了一种基于POA-GWO-CSO算法的电力系统精准切负荷控制多目标优化方法。首先,从电力系统的安全性和经济性两个方面综合考虑电力系统稳定运行和分布式电源出力特性等各项约束条件,提出一种基于负荷分类的精准切负荷控制多目标优化模型;然后,为了增强传统鹈鹕优化算法(POA)全局与局部搜索能力之间的协调关系,克服优化算法在处理复杂问题时出现收敛过早、寻优范围不够、求解精度不高等问题,引入非线性惯性权重因子、灰狼优化算法(GWO)中狼群领导者策略以及纵横交叉法(CSO),对鹈鹕新的个体的位置进行更新;最后,基于改进后的IEEE33节点进行实证分析。分析结果表明,利用改进的POA-GWO算法对紧急切负荷模型进行求解,实现了系统经济性及稳定性的协调控制。 展开更多
关键词 新能源电力系统 精准切负荷 鹈鹕优化算法 灰狼优化算法 纵横交叉法
下载PDF
基于多目标狼群算法的机场行李导入系统仿真优化研究 被引量:1
14
作者 陶翼飞 丁小鹏 +3 位作者 罗俊斌 付潇 吴佳兴 李宜榕 《系统仿真学报》 CAS CSCD 北大核心 2024年第7期1655-1669,共15页
针对民航机场行李导入系统运行过程中旅客行李注入等待时间长、系统能耗高等问题,综合考虑虚拟视窗控制方式、收集带式输送机运行速度、虚拟视窗长度及同时开放值机柜台数量等关键控制参数对机场行李导入系统运行效率的影响,提出一种求... 针对民航机场行李导入系统运行过程中旅客行李注入等待时间长、系统能耗高等问题,综合考虑虚拟视窗控制方式、收集带式输送机运行速度、虚拟视窗长度及同时开放值机柜台数量等关键控制参数对机场行李导入系统运行效率的影响,提出一种求解该问题的仿真优化框架。通过分析机场行李导入系统实际运行工况,建立参数化仿真优化模型。以最小化旅客行李注入平均等待时间和系统能耗为优化目标,结合系统设计和运行过程中的实际约束条件,建立该问题的数学模型,并设计了一种多目标自适应并行狼群算法进行求解。该算法针对所提问题特性及经典狼群算法易陷入局部最优和收敛速度慢等不足,提出一种混合整实数单链编码方式,融合反向学习策略生成初始种群,引入自适应游走概率机制和智能行为并行机制,采用局部和全局自适应邻域搜索及启发式保优策略实现狼群算法智能行为搜索,使用Pareto非支配排序进行寻优迭代并获得最优解集。以国内某大型国际航空枢纽机场行李导入系统为例设计不同规模多种算法对比实验,验证了所提方法的有效性和优越性。 展开更多
关键词 机场行李导入系统 关键控制参数 仿真优化 多目标自适应并行狼群算法 Pareto非支配排序
下载PDF
混合灰狼-自适应蝴蝶算法下的多目标无线传感器网络覆盖研究
15
作者 张晶 曲悦 +2 位作者 张家洪 冯勇 张大骋 《小型微型计算机系统》 CSCD 北大核心 2024年第8期1993-2000,共8页
为提高无线传感器网络的覆盖率、减少二次部署中节点移动的能量消耗以及减少牵涉节点数目,提出了一种混合灰狼-自适应蝴蝶算法.首先,通过将灰狼算法与蝴蝶算法融合寻找最优解,在种群间优化中加入种群内部优化,提升算法的寻优能力,提高... 为提高无线传感器网络的覆盖率、减少二次部署中节点移动的能量消耗以及减少牵涉节点数目,提出了一种混合灰狼-自适应蝴蝶算法.首先,通过将灰狼算法与蝴蝶算法融合寻找最优解,在种群间优化中加入种群内部优化,提升算法的寻优能力,提高算法收敛速度;其次,在蝴蝶算法中改进自适应开关概率,根据当前迭代情况决定寻优方式,加快搜索速度;最后,在算法中融入反馈机制,引入随机蝴蝶进行漫步,防止陷入局部最优.从最优覆盖、最小冗余、最低能量消耗3个方向综合考量,建立函数模型,进行覆盖优化.实验结果表明,与其他6种算法相比,本文算法在多种场景下,有效地提高覆盖率,降低节点冗余,减少节点使用数目,降低能量消耗. 展开更多
关键词 无线传感器网络 多目标覆盖优化 蝴蝶优化算法 灰狼优化算法
下载PDF
基于改进GWO-LightGBM的磨煤机故障预警方法研究 被引量:1
16
作者 陈思勤 周浩豪 茅大钧 《自动化仪表》 CAS 2024年第2期106-110,115,共6页
为提高燃煤电厂磨煤机运维效率、降低运维成本,对磨煤机故障预警进行了研究。创新性地提出一种基于改进灰狼优化(GWO)算法的轻量级梯度提升机(LightGBM)故障预警方法。通过建立LightGBM轴承温度预测模型获取磨煤机轴承温度阈值,并引入改... 为提高燃煤电厂磨煤机运维效率、降低运维成本,对磨煤机故障预警进行了研究。创新性地提出一种基于改进灰狼优化(GWO)算法的轻量级梯度提升机(LightGBM)故障预警方法。通过建立LightGBM轴承温度预测模型获取磨煤机轴承温度阈值,并引入改进GWO算法优化模型超参数,以提高算法效率和性能。试验结果表明,改进GWO-LightGBM算法相比支持向量机(SVM)等传统算法具有更高的精度和更优的泛化能力。通过实际故障案例证明,该方法能够提前2 h对磨煤机进行早期故障预警。该方法对燃煤电厂磨煤机安全运维具有指导意义。 展开更多
关键词 燃煤电厂 磨煤机 故障预警 改进灰狼优化算法 轻量级梯度提升机 滑动窗口法 Halton
下载PDF
基于改进灰狼算法的微网多主体主从博弈策略
17
作者 陈晓梅 周博 蔡烨 《科学技术与工程》 北大核心 2024年第18期7701-7709,共9页
为平衡包含电、热两种能源形式的微网系统内各参与者间的利益关系,通过改进灰狼算法提出了一种微网能量管理模型。首先,在充分分析微网结构及其各主体功能的基础上,为综合考虑源-网-荷的决策能力,将主从博弈方法应用于产能商、微网运营... 为平衡包含电、热两种能源形式的微网系统内各参与者间的利益关系,通过改进灰狼算法提出了一种微网能量管理模型。首先,在充分分析微网结构及其各主体功能的基础上,为综合考虑源-网-荷的决策能力,将主从博弈方法应用于产能商、微网运营商、负荷聚合商之间的互动,建立一主多从的微网能量管理数学模型;其次,针对博弈上层模型高维、非线性的特点,在传统灰狼算法基础上,利用Tent映射对种群进行初始化、采用非线性收敛因子平衡种群搜索能力、利用莱维飞行策略降低陷入局部最优的风险。在模型求解时,博弈上层采用改进灰狼算法,下层采用二次规划方法,二者结合以探讨使各主体利益最大的策略;最后,通过算例进行验证,结果表明:本文算法更加高效,所提模型在提高参与者收益,平滑用户负荷分布方面更加优越。 展开更多
关键词 主从博弈 微网 改进灰狼算法 优化运行
下载PDF
基于实时补货情况下的制造型企业RMFS订单拣选系统储位分配问题
18
作者 鲁建厦 钱慧元 +2 位作者 赵文彬 李英德 赵国利 《计算机集成制造系统》 EI CSCD 北大核心 2024年第7期2526-2539,共14页
为提高制造型企业基于移动机器人的拣货系统(RMFS)的拣选效率,分析订单拣选过程中补货对拣选效率的影响,对其实时补货情况下的储位分配问题进行研究,以补货和拣货两阶段总搬运距离最短为目标,建立整数非线性规划模型,提出基于二分网络... 为提高制造型企业基于移动机器人的拣货系统(RMFS)的拣选效率,分析订单拣选过程中补货对拣选效率的影响,对其实时补货情况下的储位分配问题进行研究,以补货和拣货两阶段总搬运距离最短为目标,建立整数非线性规划模型,提出基于二分网络的储位分配算法和改进灰狼优化算法,利用前两个算法有效解决了基于实时补货情况下的RMFS订单拣选系统储位分配问题。实验表明,设计的储位分配算法和改进灰狼算法与遗传算法、传统灰狼算法、改进人工蜂群算法、引入Lévy飞行的改进灰狼算法相比,在求解精度和求解稳定性上有较明显的优势,在不同仓库规模和订单拣选规模下有效提高了RMFS的作业效率。 展开更多
关键词 实时补货 基于移动机器人的拣货系统 储位分配 灰狼优化算法
下载PDF
采煤机滚筒工作性能优化研究
19
作者 王宏伟 郭军军 +3 位作者 梁威 耿毅德 陶磊 李进 《工矿自动化》 CSCD 北大核心 2024年第4期133-143,共11页
在实际生产中,截割破碎过程是多作用耦合的结果,离散元法(DEM)与多体动力学(MBD)双向耦合技术可实现煤机设备与煤壁的信息交互,符合实际生产情况,具有较大的优越性。为提高采煤机滚筒的工作性能,基于DEM−MBD双向耦合机理,结合力学性能... 在实际生产中,截割破碎过程是多作用耦合的结果,离散元法(DEM)与多体动力学(MBD)双向耦合技术可实现煤机设备与煤壁的信息交互,符合实际生产情况,具有较大的优越性。为提高采煤机滚筒的工作性能,基于DEM−MBD双向耦合机理,结合力学性能试验和模拟试验得到实际工况参数,采用仿真软件EDEM和RecurDyn建立了采煤机滚筒截割煤壁的双向耦合模型,对仿真过程中滚筒所受的转矩和截割力进行分析,证明耦合效果和截割效果较好。设计了单因素试验和正交试验,分析了滚筒运行参数对工作性能的影响规律,并利用SPSS软件得到滚筒转速、截割深度、牵引速度对截割比能耗、装煤率、载荷波动系数的影响程度,通过现场试验验证了模型的可行性。构建了以滚筒转速、截割深度、牵引速度为决策变量,以截割比能耗、装煤率和载荷波动系数为目标的多目标优化模型,利用改进多目标灰狼(MOGWO)算法和优劣解距离法(TOPSIS)对模型进行求解,得出当滚筒转速为31.12 r/min、截割深度为639.4 mm、牵引速度为5.58 m/min时,采煤机滚筒的工作性能最优,此时截割比能耗为0.4677 kW·h/^(3),装煤率为43.01%,载荷波动系数为0.3278。 展开更多
关键词 采煤机滚筒 双向耦合机理 离散元法 多体动力学 多目标优化 改进多目标灰狼优化算法 优劣解距离法
下载PDF
基于Vague集和响应面模型的注塑工艺多目标优化
20
作者 张庆 何也能 《塑料工业》 CAS CSCD 北大核心 2024年第1期93-100,共8页
针对注塑工艺多目标优化问题,以塑件的翘曲变形量、顶出时体积收缩率和缩痕深度作为优化目标,选取熔体温度、模具温度、注射时间、保压压力、保压时间等工艺参数为试验因素,采用中心复合试验设计结合模流分析建立试验样本,利用Vague集... 针对注塑工艺多目标优化问题,以塑件的翘曲变形量、顶出时体积收缩率和缩痕深度作为优化目标,选取熔体温度、模具温度、注射时间、保压压力、保压时间等工艺参数为试验因素,采用中心复合试验设计结合模流分析建立试验样本,利用Vague集方法计算各优化目标相似度,通过指标相关性的指标权重确定(CRITIC)法确定各优化目标影响权重,得到综合相似度;建立综合相似度与各工艺参数之间的响应面模型,运用灰狼算法进行工艺参数寻优,得到最优工艺参数组合。结果表明,将Vague集和响应面模型相结合的优化结果显著,为实际生产过程提供了有益参考。 展开更多
关键词 VAGUE集 响应面模型 灰狼算法 注塑成型 多目标优化
下载PDF
上一页 1 2 42 下一页 到第
使用帮助 返回顶部