[Objective] The paper was to establish embryonic stem cell system of goats. [Method] Numerous primordial germ cell colonies were derived from gonadal ridge and the surrounding tissues in 20 millimeter fetuses of down ...[Objective] The paper was to establish embryonic stem cell system of goats. [Method] Numerous primordial germ cell colonies were derived from gonadal ridge and the surrounding tissues in 20 millimeter fetuses of down producing goat. Primordial germ cells and goats embryonic fibroblasts obtained from conceptus of equivaient gestational age were co-cultured. [Result] The colonies showed some characteristics of embryonic stem cells, such as the morphology of nest-like, they continued to be AKP positive and the ability to be continuously passed [Conclusion] These cells were pluripotent and ES-like cells.展开更多
A total of 219 embryonic-germ-cell-like (EG-like) clumps were derived from 15 selected goat fetuses. Isolation of primordial germ cells (PGCs) based on co-culture with primary goat embryonic fibroblast showed no d...A total of 219 embryonic-germ-cell-like (EG-like) clumps were derived from 15 selected goat fetuses. Isolation of primordial germ cells (PGCs) based on co-culture with primary goat embryonic fibroblast showed no difference from traditional feeder layer-based culture method used in mouse and human. The putative primary EG colonies were multilayer clumps of compact cells with unclear cell-cell boundaries. Three subculture methods of goat EG-like colony, traditional enzymatic digestion, mechanical cutting and combination of the both, were compared in this study. As a result, EG-like colonies traditionally disassociated with collagenase 1V could be subcultured for up to 4 passages. And the mechanically disaggregated EG-like colonies were successfully maintained 9-12 passages with or without enzymatic treatment. The pluripotency of the EG-like colonies was identified by their specific marker staining, spontaneous differentiation and embryoid bodies (EBs) formation in vitro. Most goat EG-like colonies (〉 80%) were AKP positive and immunocytochemically characterized with positive SSEA-1, Oct-4 and c-kit staining but SSEA-4. Under the condition of delaying passage, goat EG-like cells could differentiate into fibroblast-like, epithelium-like, and neuron-like cells. In addition, EBs could be obtained successfully in routine hanging drop culture. The serum free culture system (feeder layer-based) used in this study was suitable for keeping PGCs and EG-like cells in their undifferentiated condition, but failed to converse them to immortal cells. These results indicated that mechanical cutting is an effective method for passaging goat EG cell colonies. However, the microenvironment of conversing EG cells to immortal cells is still unclear.展开更多
Recent studies have reported that induced pluripotent stem (iPS) cells from mice and humans can differentiate into primordial germ cells. However, whether iPS cells are capable of producing male germ cells is not kn...Recent studies have reported that induced pluripotent stem (iPS) cells from mice and humans can differentiate into primordial germ cells. However, whether iPS cells are capable of producing male germ cells is not known. The objective of this study was to investigate the differentiation potential of mouse iPS cells into spermatogonial stem cells and late-stage male germ cells. We used an approach that combines in vitrodifferentiation and in vivotransplantation. Embryoid bodies (EBs) were obtained from iPS cells using leukaemia inhibitor factor (LIF)-free medium. Quantitative PCR revealed a decrease in Oct4 expression and an increase in StraSand Vasa mRNA in the EBs derived from iPS cells, iPS cell-derived EBs were induced by retinoic acid to differentiate into spermatogonial stem cells (SSCs), as evidenced by their expression of VASA, as well as CDH1 and GFRal, which are markers of SSCs. Furthermore, these germ cells derived from iPS cells were transplanted into recipient testes of mice that had been pre-treated with busulfan. Notably, iPS cell-derived SSCs were able to differentiate into male germ cells ranging from spermatogonia to round spermatids, as shown by VASA and SCP3 expression. This study demonstrates that iPS cells have the potential to differentiate into late-stage male germ cells. The derivation of male germ cells from iPS cells has potential applications in the treatment of male infertility and provides a model for uncovering the molecular mechanisms underlying male germ cell development.展开更多
Successful spermatogonial transplantation requires depletion of the host germ cells to allow efficient colonization of the donor spermatogonial stem cells. Although a sterilizing drug,busulfan (Myleran),is commonly ...Successful spermatogonial transplantation requires depletion of the host germ cells to allow efficient colonization of the donor spermatogonial stem cells. Although a sterilizing drug,busulfan (Myleran),is commonly used for preparing a recipient mouse before transplantation,the optimal dose of this drug has not yet been defined.The present study investigated the effects of different doses of busulfan (10-50 mg per kg body weight) on survival rate,testicular mass and histomorphology,and on the haploid spermatids and spermatozoa of male BALB/c mice.The results suggest that a dosage of 30 mg kg^-1 is optimal for the ablative treatment withbusulfan used to prepare the recipient mice. This dose results in an adequate depletion of the host germ cells for colonization of donorderived spermatogonial stem cells and causes the lowest death rate of the animals.展开更多
Recent advances in avian transgenic studies highlight the possibility of utilizing lentiviral vectors as tools to generate transgenic chickens. However, low rates of gonadal chimerism and germ line transmission effici...Recent advances in avian transgenic studies highlight the possibility of utilizing lentiviral vectors as tools to generate transgenic chickens. However, low rates of gonadal chimerism and germ line transmission efficiency still limit the broad usage of this method in creating transgenic chickens. In this study, we implemented a simple strategy using modified lentiviral vectors targeted to chicken primordial germ cells(PGCs) to generate transgenic chickens. The lentiviral vectors were pseudotyped with a modified Sindbis virus envelope protein(termed M168) and conjugated with an antibody specific to PGC membrane proteins. We demonstrated that these optimized M168-pseudotyped lentiviral vectors conjugated with SSEA4 antibodies successfully targeted transduction of PGCs in vitro and in vivo. Compared with the control, 50.0%–66.7% of chicken embryos expressed green fluorescent protein(GFP) in gonads transduced by the M168-pseudotyped lentivirus. This improved the targeted transduction efficiency by 30.0%–46.7%. Efficient chimerism of exogenous genes was also observed. This targeting technology could improve the efficiency of germ line transmission and provide greater opportunities for transgenic poultry studies.展开更多
Chromosome abnormalities are one of the major causes of human infertility. In infertile males, abnormal karyotypes are more frequent than in the general population. Furthermore, meiotic disorders affecting the germ ce...Chromosome abnormalities are one of the major causes of human infertility. In infertile males, abnormal karyotypes are more frequent than in the general population. Furthermore, meiotic disorders affecting the germ cell-line have been observed in men with normal somatic karyotypes consulting for infertility. In both cases, the production of unbalanced spermatozoa has been demonstrated. Basically addressed to establish reproductive risks, fluorescence in situ hybridization (FISH) on decondensed sperm heads has become the most frequently used method to evaluate the chromosomal constitution of spermatozoa in carriers of numerical sex chromosome abnormalities, carriers of structural chromosome reorganizations and infertile males with normal karyotype. The aim of this review is to present updated figures of the information obtained through sperm FISH studies with an emphasis on its clinical significance. Furthermore, the incorporation of novel FISH-based techniques (Multiplex-FISH; Multi-FISH) in male infertility studies is also discussed. (Asian J Androl 2005 Sep; 7: 227-236)展开更多
Mesenchymal stem cells (MSCs) derived from bone marrow are a well-characterized population of adult stem cells that can be maintained and propagated in culture for a long time with the capacity to form a variety of ...Mesenchymal stem cells (MSCs) derived from bone marrow are a well-characterized population of adult stem cells that can be maintained and propagated in culture for a long time with the capacity to form a variety of cell types. This study investigated the characteristics of dairy goat bone marrow MSCs (gMSCs) and their differentiation potential toward germ cells in vitro, and to test their potential in vivo, these ceils were transplanted into seminiferous tubes of endogenous germ cells-depleted mouse models. The results showed that characteristic gMSC lines were established and a small population of gMSCs transdifferentiated into male germ cell-like cells which expressed Stra8 after induction with retinoic acid (RA), as analysed by reverse transcription-polymerase chain reaction (RT-PCR) and immunofluorescence. Further, we transplanted the gMSCs into endogenous germ cells-depleted mouse models. A variety of analysis demonstrated that gMSCs might differentiate into male germ cells and helped spermatogenesis in endogenous germ cells depleted mouse models at 30 d after transplantation. The gMSCs could be used as a potential source of cells for reproductive studies and a neoadjuvant therapy for the spermatogenesis anomaly. Moreover, these cells may offer a new strategy for male infertility and an alternative approach for production of transgenic animals.展开更多
Aim: This study was designed to investigate the effect of busulfan treatment on the proliferation of chicken primordialgerm cells (PGCs) in vivo, focusing on the preferential settlement of PGCs onto the germinal ridge...Aim: This study was designed to investigate the effect of busulfan treatment on the proliferation of chicken primordialgerm cells (PGCs) in vivo, focusing on the preferential settlement of PGCs onto the germinal ridges of chicken em-bryos. Methods: Busulfan (250 ng/egg) was injected into the egg white of freshly oviposited fertilized eggs, whichwere then incubated. Embryonic development and viability were examined, and exogenous PGCs collected from embry-onic blood vessels were injected into the germinal crescent region of recipient embryos. The number of PGCs residedonto germinal ridges of the right and left sides were compared. Results: Busulfan had a slight harmful effect on theembryo viability and the PGCs proliferation. The number of PGCs resided onto the left side of germinal ridges wasslightly higher as compared with the right side. Conclusion: Busulfan suppressed the viability of embryos and the pro-liferation of endogenous PGCs in the recipient embryos. However, the number of exogenous PGCs proliferated washigher in embryos treated with busulfan than those without busulfan. Data also suggest the possibility of a preferentialresidence of PGCs toward the left side of the germinal crescent region as compared with the fight, which may be due toa more advanced functional development of the left gonad than the right. (Asian J Androl 1999 Dec; 1: 187-190)展开更多
Background:NANOG is a core transcription factor(TF)in embryonic stem cells(ESCs)and primordial germ cells(PGCs).Regulation of the NANOG gene by TFs,epigenetic factors,and autoregulatory factors is well characterized i...Background:NANOG is a core transcription factor(TF)in embryonic stem cells(ESCs)and primordial germ cells(PGCs).Regulation of the NANOG gene by TFs,epigenetic factors,and autoregulatory factors is well characterized in ESCs,and transcriptional regulation of NANOG is well established in these cells.Although NANOG plays a key role in germ cells,the molecular mechanism underlying its transcriptional regulation in PGCs has not been studied.Therefore,we investigated the mechanism that regulates transcription of the chicken NANOG(cNANOG)gene in PGCs and ESCs.Results:We first identified the transcription start site of cNANOG by 5′-rapid amplification of cDNA ends PCR analysis.Then,we measured the promoter activity of various 5′flanking regions of cNANOG in chicken PGCs and ESCs using the luciferase reporter assay.cNANOG expression required transcriptional regulatory elements,which were positively regulated by POU5F3(OCT4)and SOX2 and negatively regulated by TP53 in PGCs.The proximal region of the cNANOG promoter contains a positive transcriptional regulatory element(CCAAT/enhancer-binding protein(CEBP)-binding site)in ESCs.Furthermore,small interfering RNA-mediated knockdown demonstrated that POU5F3,SOX2,and CEBP played a role in cell type-specific transcription of cNANOG.Conclusions:We show for the first time that different trans-regulatory elements control transcription of cNANOG in a cell type-specific manner.This finding might help to elucidate the mechanism that regulates cNANOG expression in PGCs and ESCs.展开更多
Thiram is a dithiocarbamate compound widely used for industrial processes and agriculture. Animal studies reveal that this compound may afftct the male reproductive system. Aim of this study was to test, using sensiti...Thiram is a dithiocarbamate compound widely used for industrial processes and agriculture. Animal studies reveal that this compound may afftct the male reproductive system. Aim of this study was to test, using sensitive testicular parameters, whether thiram directly affects germinal cells. For this purpose, B6C3F1 mice were intraperitoneally injected with thiram in oil (single dose:75 mg/kg; repeated five daily doses: 25 mg/kg).Although both treatments were toxic, none of the parameters examined, i.e., testis weighi, spermatid head number,specific enzyme levels at different times after treatment (14, 28, 35, 56 days) showed significant variations from the controls, On the contrary, in the positive controls (treated with chlorambucil), a marked reduction of sperm head number as well as a deerease of lactate dehydrogenasex and sorbitol dehydrogenase activity letels were evidenced at day 28, with a tendency to recover at day 35. Under these conditions thiram did not cause cytotoxicity on differentiating spermatogonia and on late spermatocyte stages of mice gonads展开更多
Developmental potency of primitive and embryonic ectoderm cells from 4.50-day to 6.25-day post-coitum (p.c.) mouse embryos and primordial germ cells from 12.50-day p.c.male genital ridges of fetal mice were studied by...Developmental potency of primitive and embryonic ectoderm cells from 4.50-day to 6.25-day post-coitum (p.c.) mouse embryos and primordial germ cells from 12.50-day p.c.male genital ridges of fetal mice were studied by direct introducing them into 3.50-day p.c.blastocysts.Sixteen (61.5) overt chimaeras out of 26(50%) offsprings were obtained after transfer of 52 blastocysts injected with 4.50-day primitive ectoderm cells;four (16.0%) overt chimaeras were obtained out of 25 (51.0%) offsprings with 4.75-day primitive ectoderm cells from 49 transferred blastocysts.However,no overt chimaera was obtained with either 5.25-day or 6.25-day embryonic ectoderm cells or 12.50-day male primordial germ cells.GPI analysis of mid-gestation conceptuses developed from injected blastocysts showedthat 5.25-day embryonic ectoderm cells could only contributed to yolk sac of conceptus.Results suggested that implantation acts as a trigger for the determination of primitive ectoderm cells,and their developmental potency becomes limited within a short period of time in normal development.展开更多
Aim: To assess the spatial and temporal expression of germ cell nuclear factor (GCNF) in male mouse germ cells during postnatal development and in sperm before and after capacitation. Methods: The indirect immun-ofluo...Aim: To assess the spatial and temporal expression of germ cell nuclear factor (GCNF) in male mouse germ cells during postnatal development and in sperm before and after capacitation. Methods: The indirect immun-ofluorescence method with anti-GCNF antiserum was used to investigate the GCNF expression in mice at day 8, 10, 14, 17, 20, 28, 35, 70, and 420 after birth and in sperm before and after capacitation. Results: With the proceeding of spermatogenesis, GCNF was first detected in the nuclei of spermatogonia and a few early stage primary sperma-tocytes at day 8, which was increased gradually at day 10 to 14 inclusive. From day 17 to day 20, the GCNF was concentrated in round spermatids, while both spermatogonia and early stage primary spermatocytes became GCNF negative. From day 28 until day 420, strong GCNF expression was shown in round spermatids and pachytene spermatocytes, while spermatogonia, early primary spermatocytes and elongating spermatids were all GCNF negative. In addition, it was also found that GCNF was localized on the acrosomal cap region of spermatozoa and there was a big change in GCNF expression during capacitation, from 98 % GCNF positive before capacitation to about 20 % positive following capacitation. The localization of GCNF in caput and cauda spermatozoa was similar. Conclusion: GCNF may play important roles in spermatogenesis, capacitation and fertilization.展开更多
In order to explore the role of vasa gene in the development of germ cells after gonad differentiation in male rats,the expression of vasa mRNA and vasa protein in 17.5-day-old fetal rats and neonatal rats was detecte...In order to explore the role of vasa gene in the development of germ cells after gonad differentiation in male rats,the expression of vasa mRNA and vasa protein in 17.5-day-old fetal rats and neonatal rats was detected by real-time fluorescent quantitative PCR and immunohistochemistry method.The results showed that the expression of vasa mRNA was detected in the testis tissue of 17.5-day-old fetal rats and neonatal rats,and the expression of vasa mRNA in testis of neonatal rats was high than that in fetal rats.The expression of vasa protein was detected in neonatal rats,but it was not found in fetal rats.In conclusion,vasa gene plays an important role in the development of germ cells.However,as a marker,it can only be used to label all kinds of germ cells after formation of prespermatogonia.展开更多
Coilia nasus is an endangered fish species in the Yangtze River,and there is urgent need to know the genes related to its reproduction and fertility.The DAZ family including boule,daz and dazl,plays an important role ...Coilia nasus is an endangered fish species in the Yangtze River,and there is urgent need to know the genes related to its reproduction and fertility.The DAZ family including boule,daz and dazl,plays an important role in germ cells development.In this study,the cDNA sequence of boule(Cnbol)and dazl(Cndazl)genes were cloned and their expression patterns were characterized in Coilia nasus.RT-PCR showed that the expression of Cnbol and Cndazl mRNAs was restricted in adult gonads.The section in situ hybridization indicated that the temporospatial expression patterns of Cnbol and Cndazl were significantly different.In the testis,Cnbol was mainly detected in spermatocytes and spermatids,while Cndazl was prominently expressed in s permatogonia.In the ovary,Cnbol and Cndazl were highly expressed in the early stages of oocytes.Interestingly,Cndazl was also concentrated in perinuclear speckle and then localized to the Balbiani body in late stages of oocytes.In addition,Cnbol and Cndazl 3′UTR can specifically label medaka Primordial Germ Cells(PGCs).According to our results,Cnbol and Cndazl are marker genes of germ cells and may play a vital role in the development and differentiation of germ cells in Coilia nasus.展开更多
Infertility has become a serious disease since it affects 10%–15%of couples worldwide,and male infertility contributes to about 50%of the cases.Notably,a significant decrease occurs in the newborn population by 7.82 ...Infertility has become a serious disease since it affects 10%–15%of couples worldwide,and male infertility contributes to about 50%of the cases.Notably,a significant decrease occurs in the newborn population by 7.82 million in 2020 compared to 2016 in China.As such,it is essential to explore the effective methods of obtaining functional male gametes for restoring male fertility.Stem cells,including embryonic stem cells(ESCs),induced pluripotent stem cells(iPSCs),spermatogonial stem cells(SSCs),and mesenchymal stem cells(MSCs),possess the abilities of both self-renewal and differentiation into germ cells.Significantly,much progress has recently been achieved in the generation of male germ cells in vitro from various kinds of stem cells under the specified conditions,e.g.,the coculturing with Sertoli cells,three-dimensional culture system,the addition of growth factors and cytokines,and/or the overexpression of germ cell-related genes.In this review,we address the current advance in the derivation of male germ cells in vitro from stem cells based on the studies of the peers and us,and we highlight the perspectives and potential application of stem cell-derived male gametes in reproductive medicine.展开更多
BACKGROUND Suprasellar germinomas are rare intracranial tumors frequently associated with permanent endocrine disorders.We present the clinical picture,treatment,and complications of suprasellar germinoma at pediatric...BACKGROUND Suprasellar germinomas are rare intracranial tumors frequently associated with permanent endocrine disorders.We present the clinical picture,treatment,and complications of suprasellar germinoma at pediatric age which,besides being lifethreatening,has lifelong endocrinological consequences.CASE SUMMARY A 12-year-old female patient was presented having had intensive headaches for three weeks and visual disturbances for six months.An ophthalmological examination revealed bilateral papilledema and a marked loss of vision.Emergency brain magnetic resonance imaging(MRI)showed a suprasellar tumor,involving the infundibulum and the optic chiasm,extending to the third ventricle.Laboratory tests confirmed decreased levels of thyroxine,cortisol,gonadotropins,and insulin-like growth factor 1.Maximal tumor reduction was performed,and immunohistopathology established the diagnosis of suprasellar germinoma.MRI of the spine and cerebrospinal fluid cytology confirmed the localized disease.Adjuvant chemotherapy and radiotherapy were performed according to the SIOP CNS GCT II protocol.A post-treatment MRI showed no residual tumor,but pituitary function had not recovered.Three and a half years after the end of the treatment,the patient is in a complete remission,requiring hormonal replacement therapy,continuous education,and psychological support.CONCLUSION This complex case highlights the importance of timely diagnosis,a multidisciplinary approach,and close follow-up in children with suprasellar germinomas.展开更多
The sexual differentiation of germ cells into spermatozoa or oocytes is strictly regulated by their gonadal environment, testis or ovary, which is determined by the presence or absence of the Y chromosome, respectivel...The sexual differentiation of germ cells into spermatozoa or oocytes is strictly regulated by their gonadal environment, testis or ovary, which is determined by the presence or absence of the Y chromosome, respectively. Hence, in normal mammalian development, male germ cells differentiate in the presence of X and Y chromosomes, and female germ cells do so in the presence of two X chromosomes. However, gonadal sex reversal occurs in humans as well as in other mammalian species, and the resultant XX males and XY females can lead healthy lives, except for a complete or partial loss of fertility. Germ cells carrying an abnormal set of sex chromosomes are efficiently eliminated by multilayered surveillance mechanisms in the testis, and also, though more variably, in the ovary. Studying the molecular basis for sex-specific responses to a set of sex chromosomes during gametogenesis will promote our understanding of meiotic processes contributing to the evolution of sex determining mechanisms. This review discusses the fate of germ cells carrying various sex chromosomal compositions in mouse models, the limitation of which may be overcome by recent successes in the differentiation of functional germ cells from embryonic stem cells under experimental conditions.展开更多
Germ cells are the precursors of the sperm and oocytes and hence are critical for survival of the species. In mammals, they are specified during fetal life, migrate to the developing gonads and then undergo a critical...Germ cells are the precursors of the sperm and oocytes and hence are critical for survival of the species. In mammals, they are specified during fetal life, migrate to the developing gonads and then undergo a critical period during which they are instructed, by the soma, to adopt the appropriate sexual fate. In a fetal ovary, germ cells enter meiosis and commit to oogenesis, whereas in a fetal testis, they avoid entry into meiosis and instead undergo mitotic arrest and mature toward spermatogenesis. Here, we discuss what we know so far about the regulation of sex-specific differentiation of germ cells, considering extrinsic molecular cues produced by somatic cells, as well as critical intrinsic changes within the germ cells. This review focuses almost exclusively on our understanding of these events in the mouse model.展开更多
Embryonic germ (EG) cells are cultured pluripotent stem cells derived from the primordial germ cells (PGCs) that migrate from the dorsal mesentery of the hindgut to the developing genital ridge. In this study, the...Embryonic germ (EG) cells are cultured pluripotent stem cells derived from the primordial germ cells (PGCs) that migrate from the dorsal mesentery of the hindgut to the developing genital ridge. In this study, the morphology of the porcine genital ridge was assessed in embryos harvested on days 22-30 of pregnancy. PGCs from embryos at these stages were cultured to obtain porcine EG cell lines, and EG-like cells were derived from PGCs from embryos harvested on days 24-28 of pregnancy. The EG-like cells expressed Oct4, Sox2, Nanog, SSEA-3, SSEA-4 and alkaline phosphatase (AP). These cells were able to form embryoid bodies (EBs) in suspension culture and differentiate into cells representative of the three germ layers as verified by a-fetoprotein (AFP), s-smooth muscle actin (^-SMA), and Nestin expression. Spontaneous differentiation from the porcine EG-like cells of delayed passage in vitro showed that they could differentiate into epithelial-like cells, mesenchymal-like cells and neuron-like cells. In vitro directed differentiation generated osteocytes, adipocytes and a variety of neural lineage cells, as demonstrated by alizarin red staining, oil red O staining, and immunoftuorescence for neuronal class III [3-tubulin (Tuj 1), glial fibrillary protein (GFAP) and galactosylceramidase (GALC), respectively. These results indicate that porcine EG-like cells have the potential for multi-lineage differentiation and are useful for basic porcine stem cell research.展开更多
There is growing evidence that cellular metabolism can directly participate in epigenetic dynamics and consequently modulate gene expression.However,the role of metabolites in activating the key gene regulatory networ...There is growing evidence that cellular metabolism can directly participate in epigenetic dynamics and consequently modulate gene expression.However,the role of metabolites in activating the key gene regulatory network for specialization of germ cell lineage remains largely unknown.Here,we identified some cellular metabolites with significant changes by untargeted metabolomics between mouse epiblast-like cells(EpiLCs)and primordial germ cell-like cells(PGCLCs).More importantly,we found that inhibition of glutaminolysis by bis-2-(5-phenylacetamido-1,3,4-thiadiazol-2-yl)ethyl sulfide(BPTES)impeded PGCLC specialization,but the impediment could be rescued by addition ofα-ketoglutarate(αKG),the intermediate metabolite of oxidative phosphorylation and glutaminolysis.Moreover,adding aKG alone to the PGCLC medium accelerated the PGCLC specialization through promoting H3 K27 me3 demethylation.Thus,our study reveals the importance of metabolite aKG in the germ cell fate determination and highlights the essential role of cellular metabolism in shaping the cell identities through epigenetic events.展开更多
基金Supported by Project of Baotou University(BSY2010-23)~~
文摘[Objective] The paper was to establish embryonic stem cell system of goats. [Method] Numerous primordial germ cell colonies were derived from gonadal ridge and the surrounding tissues in 20 millimeter fetuses of down producing goat. Primordial germ cells and goats embryonic fibroblasts obtained from conceptus of equivaient gestational age were co-cultured. [Result] The colonies showed some characteristics of embryonic stem cells, such as the morphology of nest-like, they continued to be AKP positive and the ability to be continuously passed [Conclusion] These cells were pluripotent and ES-like cells.
基金supported by the National Programs for High Technology Research and Development of China(2005AA219050)the National Natural Science Foundation of China(30200137).
文摘A total of 219 embryonic-germ-cell-like (EG-like) clumps were derived from 15 selected goat fetuses. Isolation of primordial germ cells (PGCs) based on co-culture with primary goat embryonic fibroblast showed no difference from traditional feeder layer-based culture method used in mouse and human. The putative primary EG colonies were multilayer clumps of compact cells with unclear cell-cell boundaries. Three subculture methods of goat EG-like colony, traditional enzymatic digestion, mechanical cutting and combination of the both, were compared in this study. As a result, EG-like colonies traditionally disassociated with collagenase 1V could be subcultured for up to 4 passages. And the mechanically disaggregated EG-like colonies were successfully maintained 9-12 passages with or without enzymatic treatment. The pluripotency of the EG-like colonies was identified by their specific marker staining, spontaneous differentiation and embryoid bodies (EBs) formation in vitro. Most goat EG-like colonies (〉 80%) were AKP positive and immunocytochemically characterized with positive SSEA-1, Oct-4 and c-kit staining but SSEA-4. Under the condition of delaying passage, goat EG-like cells could differentiate into fibroblast-like, epithelium-like, and neuron-like cells. In addition, EBs could be obtained successfully in routine hanging drop culture. The serum free culture system (feeder layer-based) used in this study was suitable for keeping PGCs and EG-like cells in their undifferentiated condition, but failed to converse them to immortal cells. These results indicated that mechanical cutting is an effective method for passaging goat EG cell colonies. However, the microenvironment of conversing EG cells to immortal cells is still unclear.
文摘Recent studies have reported that induced pluripotent stem (iPS) cells from mice and humans can differentiate into primordial germ cells. However, whether iPS cells are capable of producing male germ cells is not known. The objective of this study was to investigate the differentiation potential of mouse iPS cells into spermatogonial stem cells and late-stage male germ cells. We used an approach that combines in vitrodifferentiation and in vivotransplantation. Embryoid bodies (EBs) were obtained from iPS cells using leukaemia inhibitor factor (LIF)-free medium. Quantitative PCR revealed a decrease in Oct4 expression and an increase in StraSand Vasa mRNA in the EBs derived from iPS cells, iPS cell-derived EBs were induced by retinoic acid to differentiate into spermatogonial stem cells (SSCs), as evidenced by their expression of VASA, as well as CDH1 and GFRal, which are markers of SSCs. Furthermore, these germ cells derived from iPS cells were transplanted into recipient testes of mice that had been pre-treated with busulfan. Notably, iPS cell-derived SSCs were able to differentiate into male germ cells ranging from spermatogonia to round spermatids, as shown by VASA and SCP3 expression. This study demonstrates that iPS cells have the potential to differentiate into late-stage male germ cells. The derivation of male germ cells from iPS cells has potential applications in the treatment of male infertility and provides a model for uncovering the molecular mechanisms underlying male germ cell development.
文摘Successful spermatogonial transplantation requires depletion of the host germ cells to allow efficient colonization of the donor spermatogonial stem cells. Although a sterilizing drug,busulfan (Myleran),is commonly used for preparing a recipient mouse before transplantation,the optimal dose of this drug has not yet been defined.The present study investigated the effects of different doses of busulfan (10-50 mg per kg body weight) on survival rate,testicular mass and histomorphology,and on the haploid spermatids and spermatozoa of male BALB/c mice.The results suggest that a dosage of 30 mg kg^-1 is optimal for the ablative treatment withbusulfan used to prepare the recipient mice. This dose results in an adequate depletion of the host germ cells for colonization of donorderived spermatogonial stem cells and causes the lowest death rate of the animals.
基金the National Transgenic Breeding Project of China(2016ZX08009003006)National Natural Science Foundation of China(31672411)Discipline Innovative Engineering Plan(B12008)。
文摘Recent advances in avian transgenic studies highlight the possibility of utilizing lentiviral vectors as tools to generate transgenic chickens. However, low rates of gonadal chimerism and germ line transmission efficiency still limit the broad usage of this method in creating transgenic chickens. In this study, we implemented a simple strategy using modified lentiviral vectors targeted to chicken primordial germ cells(PGCs) to generate transgenic chickens. The lentiviral vectors were pseudotyped with a modified Sindbis virus envelope protein(termed M168) and conjugated with an antibody specific to PGC membrane proteins. We demonstrated that these optimized M168-pseudotyped lentiviral vectors conjugated with SSEA4 antibodies successfully targeted transduction of PGCs in vitro and in vivo. Compared with the control, 50.0%–66.7% of chicken embryos expressed green fluorescent protein(GFP) in gonads transduced by the M168-pseudotyped lentivirus. This improved the targeted transduction efficiency by 30.0%–46.7%. Efficient chimerism of exogenous genes was also observed. This targeting technology could improve the efficiency of germ line transmission and provide greater opportunities for transgenic poultry studies.
文摘Chromosome abnormalities are one of the major causes of human infertility. In infertile males, abnormal karyotypes are more frequent than in the general population. Furthermore, meiotic disorders affecting the germ cell-line have been observed in men with normal somatic karyotypes consulting for infertility. In both cases, the production of unbalanced spermatozoa has been demonstrated. Basically addressed to establish reproductive risks, fluorescence in situ hybridization (FISH) on decondensed sperm heads has become the most frequently used method to evaluate the chromosomal constitution of spermatozoa in carriers of numerical sex chromosome abnormalities, carriers of structural chromosome reorganizations and infertile males with normal karyotype. The aim of this review is to present updated figures of the information obtained through sperm FISH studies with an emphasis on its clinical significance. Furthermore, the incorporation of novel FISH-based techniques (Multiplex-FISH; Multi-FISH) in male infertility studies is also discussed. (Asian J Androl 2005 Sep; 7: 227-236)
基金supported by the grants from the National Natural Science Foundation of China(30972097)the Key Program of Ministry of Education of China (109148)+2 种基金the Proram for New Century Excellent Talents in University, China (NCET-09-0654)the Scientific Research Program of Shaanxi Province, China (2011K02-06)the China Postdoctoral Science Foundation(20080431253)
文摘Mesenchymal stem cells (MSCs) derived from bone marrow are a well-characterized population of adult stem cells that can be maintained and propagated in culture for a long time with the capacity to form a variety of cell types. This study investigated the characteristics of dairy goat bone marrow MSCs (gMSCs) and their differentiation potential toward germ cells in vitro, and to test their potential in vivo, these ceils were transplanted into seminiferous tubes of endogenous germ cells-depleted mouse models. The results showed that characteristic gMSC lines were established and a small population of gMSCs transdifferentiated into male germ cell-like cells which expressed Stra8 after induction with retinoic acid (RA), as analysed by reverse transcription-polymerase chain reaction (RT-PCR) and immunofluorescence. Further, we transplanted the gMSCs into endogenous germ cells-depleted mouse models. A variety of analysis demonstrated that gMSCs might differentiate into male germ cells and helped spermatogenesis in endogenous germ cells depleted mouse models at 30 d after transplantation. The gMSCs could be used as a potential source of cells for reproductive studies and a neoadjuvant therapy for the spermatogenesis anomaly. Moreover, these cells may offer a new strategy for male infertility and an alternative approach for production of transgenic animals.
文摘Aim: This study was designed to investigate the effect of busulfan treatment on the proliferation of chicken primordialgerm cells (PGCs) in vivo, focusing on the preferential settlement of PGCs onto the germinal ridges of chicken em-bryos. Methods: Busulfan (250 ng/egg) was injected into the egg white of freshly oviposited fertilized eggs, whichwere then incubated. Embryonic development and viability were examined, and exogenous PGCs collected from embry-onic blood vessels were injected into the germinal crescent region of recipient embryos. The number of PGCs residedonto germinal ridges of the right and left sides were compared. Results: Busulfan had a slight harmful effect on theembryo viability and the PGCs proliferation. The number of PGCs resided onto the left side of germinal ridges wasslightly higher as compared with the right side. Conclusion: Busulfan suppressed the viability of embryos and the pro-liferation of endogenous PGCs in the recipient embryos. However, the number of exogenous PGCs proliferated washigher in embryos treated with busulfan than those without busulfan. Data also suggest the possibility of a preferentialresidence of PGCs toward the left side of the germinal crescent region as compared with the fight, which may be due toa more advanced functional development of the left gonad than the right. (Asian J Androl 1999 Dec; 1: 187-190)
基金This work was supported by a National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIP)[2015R1A3A2033826]and[2018R1D1A1B07049376].
文摘Background:NANOG is a core transcription factor(TF)in embryonic stem cells(ESCs)and primordial germ cells(PGCs).Regulation of the NANOG gene by TFs,epigenetic factors,and autoregulatory factors is well characterized in ESCs,and transcriptional regulation of NANOG is well established in these cells.Although NANOG plays a key role in germ cells,the molecular mechanism underlying its transcriptional regulation in PGCs has not been studied.Therefore,we investigated the mechanism that regulates transcription of the chicken NANOG(cNANOG)gene in PGCs and ESCs.Results:We first identified the transcription start site of cNANOG by 5′-rapid amplification of cDNA ends PCR analysis.Then,we measured the promoter activity of various 5′flanking regions of cNANOG in chicken PGCs and ESCs using the luciferase reporter assay.cNANOG expression required transcriptional regulatory elements,which were positively regulated by POU5F3(OCT4)and SOX2 and negatively regulated by TP53 in PGCs.The proximal region of the cNANOG promoter contains a positive transcriptional regulatory element(CCAAT/enhancer-binding protein(CEBP)-binding site)in ESCs.Furthermore,small interfering RNA-mediated knockdown demonstrated that POU5F3,SOX2,and CEBP played a role in cell type-specific transcription of cNANOG.Conclusions:We show for the first time that different trans-regulatory elements control transcription of cNANOG in a cell type-specific manner.This finding might help to elucidate the mechanism that regulates cNANOG expression in PGCs and ESCs.
文摘Thiram is a dithiocarbamate compound widely used for industrial processes and agriculture. Animal studies reveal that this compound may afftct the male reproductive system. Aim of this study was to test, using sensitive testicular parameters, whether thiram directly affects germinal cells. For this purpose, B6C3F1 mice were intraperitoneally injected with thiram in oil (single dose:75 mg/kg; repeated five daily doses: 25 mg/kg).Although both treatments were toxic, none of the parameters examined, i.e., testis weighi, spermatid head number,specific enzyme levels at different times after treatment (14, 28, 35, 56 days) showed significant variations from the controls, On the contrary, in the positive controls (treated with chlorambucil), a marked reduction of sperm head number as well as a deerease of lactate dehydrogenasex and sorbitol dehydrogenase activity letels were evidenced at day 28, with a tendency to recover at day 35. Under these conditions thiram did not cause cytotoxicity on differentiating spermatogonia and on late spermatocyte stages of mice gonads
文摘Developmental potency of primitive and embryonic ectoderm cells from 4.50-day to 6.25-day post-coitum (p.c.) mouse embryos and primordial germ cells from 12.50-day p.c.male genital ridges of fetal mice were studied by direct introducing them into 3.50-day p.c.blastocysts.Sixteen (61.5) overt chimaeras out of 26(50%) offsprings were obtained after transfer of 52 blastocysts injected with 4.50-day primitive ectoderm cells;four (16.0%) overt chimaeras were obtained out of 25 (51.0%) offsprings with 4.75-day primitive ectoderm cells from 49 transferred blastocysts.However,no overt chimaera was obtained with either 5.25-day or 6.25-day embryonic ectoderm cells or 12.50-day male primordial germ cells.GPI analysis of mid-gestation conceptuses developed from injected blastocysts showedthat 5.25-day embryonic ectoderm cells could only contributed to yolk sac of conceptus.Results suggested that implantation acts as a trigger for the determination of primitive ectoderm cells,and their developmental potency becomes limited within a short period of time in normal development.
文摘Aim: To assess the spatial and temporal expression of germ cell nuclear factor (GCNF) in male mouse germ cells during postnatal development and in sperm before and after capacitation. Methods: The indirect immun-ofluorescence method with anti-GCNF antiserum was used to investigate the GCNF expression in mice at day 8, 10, 14, 17, 20, 28, 35, 70, and 420 after birth and in sperm before and after capacitation. Results: With the proceeding of spermatogenesis, GCNF was first detected in the nuclei of spermatogonia and a few early stage primary sperma-tocytes at day 8, which was increased gradually at day 10 to 14 inclusive. From day 17 to day 20, the GCNF was concentrated in round spermatids, while both spermatogonia and early stage primary spermatocytes became GCNF negative. From day 28 until day 420, strong GCNF expression was shown in round spermatids and pachytene spermatocytes, while spermatogonia, early primary spermatocytes and elongating spermatids were all GCNF negative. In addition, it was also found that GCNF was localized on the acrosomal cap region of spermatozoa and there was a big change in GCNF expression during capacitation, from 98 % GCNF positive before capacitation to about 20 % positive following capacitation. The localization of GCNF in caput and cauda spermatozoa was similar. Conclusion: GCNF may play important roles in spermatogenesis, capacitation and fertilization.
基金Supported by Science and Technology Project of Guizhou Province(QKH J LKZ[2012]36)Natural Science Research Project of Guizhou Department of Education(QJH KY[2014]263)
文摘In order to explore the role of vasa gene in the development of germ cells after gonad differentiation in male rats,the expression of vasa mRNA and vasa protein in 17.5-day-old fetal rats and neonatal rats was detected by real-time fluorescent quantitative PCR and immunohistochemistry method.The results showed that the expression of vasa mRNA was detected in the testis tissue of 17.5-day-old fetal rats and neonatal rats,and the expression of vasa mRNA in testis of neonatal rats was high than that in fetal rats.The expression of vasa protein was detected in neonatal rats,but it was not found in fetal rats.In conclusion,vasa gene plays an important role in the development of germ cells.However,as a marker,it can only be used to label all kinds of germ cells after formation of prespermatogonia.
基金supported by the National Key R&D Program of China(2018YFD0901205)National Natural Science Foundation of China(31672700).
文摘Coilia nasus is an endangered fish species in the Yangtze River,and there is urgent need to know the genes related to its reproduction and fertility.The DAZ family including boule,daz and dazl,plays an important role in germ cells development.In this study,the cDNA sequence of boule(Cnbol)and dazl(Cndazl)genes were cloned and their expression patterns were characterized in Coilia nasus.RT-PCR showed that the expression of Cnbol and Cndazl mRNAs was restricted in adult gonads.The section in situ hybridization indicated that the temporospatial expression patterns of Cnbol and Cndazl were significantly different.In the testis,Cnbol was mainly detected in spermatocytes and spermatids,while Cndazl was prominently expressed in s permatogonia.In the ovary,Cnbol and Cndazl were highly expressed in the early stages of oocytes.Interestingly,Cndazl was also concentrated in perinuclear speckle and then localized to the Balbiani body in late stages of oocytes.In addition,Cnbol and Cndazl 3′UTR can specifically label medaka Primordial Germ Cells(PGCs).According to our results,Cnbol and Cndazl are marker genes of germ cells and may play a vital role in the development and differentiation of germ cells in Coilia nasus.
基金supported by the grants from the National Nature Science Foundation of China (32170862 and 31872845)Major Scientific and Technological Projects for Collaborative Prevention and Control of Birth Defect in Hunan Province (2019SK1012)+2 种基金Key Grant of Research and Development in Hunan Province (2020DK2002)High-Level Talent Gathering Project in Hunan Province (2018RS3066)Natural Science Foundation of Hunan Province of China (2020J5380 and 2020JJ5383).
文摘Infertility has become a serious disease since it affects 10%–15%of couples worldwide,and male infertility contributes to about 50%of the cases.Notably,a significant decrease occurs in the newborn population by 7.82 million in 2020 compared to 2016 in China.As such,it is essential to explore the effective methods of obtaining functional male gametes for restoring male fertility.Stem cells,including embryonic stem cells(ESCs),induced pluripotent stem cells(iPSCs),spermatogonial stem cells(SSCs),and mesenchymal stem cells(MSCs),possess the abilities of both self-renewal and differentiation into germ cells.Significantly,much progress has recently been achieved in the generation of male germ cells in vitro from various kinds of stem cells under the specified conditions,e.g.,the coculturing with Sertoli cells,three-dimensional culture system,the addition of growth factors and cytokines,and/or the overexpression of germ cell-related genes.In this review,we address the current advance in the derivation of male germ cells in vitro from stem cells based on the studies of the peers and us,and we highlight the perspectives and potential application of stem cell-derived male gametes in reproductive medicine.
文摘BACKGROUND Suprasellar germinomas are rare intracranial tumors frequently associated with permanent endocrine disorders.We present the clinical picture,treatment,and complications of suprasellar germinoma at pediatric age which,besides being lifethreatening,has lifelong endocrinological consequences.CASE SUMMARY A 12-year-old female patient was presented having had intensive headaches for three weeks and visual disturbances for six months.An ophthalmological examination revealed bilateral papilledema and a marked loss of vision.Emergency brain magnetic resonance imaging(MRI)showed a suprasellar tumor,involving the infundibulum and the optic chiasm,extending to the third ventricle.Laboratory tests confirmed decreased levels of thyroxine,cortisol,gonadotropins,and insulin-like growth factor 1.Maximal tumor reduction was performed,and immunohistopathology established the diagnosis of suprasellar germinoma.MRI of the spine and cerebrospinal fluid cytology confirmed the localized disease.Adjuvant chemotherapy and radiotherapy were performed according to the SIOP CNS GCT II protocol.A post-treatment MRI showed no residual tumor,but pituitary function had not recovered.Three and a half years after the end of the treatment,the patient is in a complete remission,requiring hormonal replacement therapy,continuous education,and psychological support.CONCLUSION This complex case highlights the importance of timely diagnosis,a multidisciplinary approach,and close follow-up in children with suprasellar germinomas.
文摘The sexual differentiation of germ cells into spermatozoa or oocytes is strictly regulated by their gonadal environment, testis or ovary, which is determined by the presence or absence of the Y chromosome, respectively. Hence, in normal mammalian development, male germ cells differentiate in the presence of X and Y chromosomes, and female germ cells do so in the presence of two X chromosomes. However, gonadal sex reversal occurs in humans as well as in other mammalian species, and the resultant XX males and XY females can lead healthy lives, except for a complete or partial loss of fertility. Germ cells carrying an abnormal set of sex chromosomes are efficiently eliminated by multilayered surveillance mechanisms in the testis, and also, though more variably, in the ovary. Studying the molecular basis for sex-specific responses to a set of sex chromosomes during gametogenesis will promote our understanding of meiotic processes contributing to the evolution of sex determining mechanisms. This review discusses the fate of germ cells carrying various sex chromosomal compositions in mouse models, the limitation of which may be overcome by recent successes in the differentiation of functional germ cells from embryonic stem cells under experimental conditions.
文摘Germ cells are the precursors of the sperm and oocytes and hence are critical for survival of the species. In mammals, they are specified during fetal life, migrate to the developing gonads and then undergo a critical period during which they are instructed, by the soma, to adopt the appropriate sexual fate. In a fetal ovary, germ cells enter meiosis and commit to oogenesis, whereas in a fetal testis, they avoid entry into meiosis and instead undergo mitotic arrest and mature toward spermatogenesis. Here, we discuss what we know so far about the regulation of sex-specific differentiation of germ cells, considering extrinsic molecular cues produced by somatic cells, as well as critical intrinsic changes within the germ cells. This review focuses almost exclusively on our understanding of these events in the mouse model.
基金supported by the National Basic Research Program of China(Program 973)(Nos.2009CB941002 and 2011CB944202)the Distinguished Young Scholar Foundation of Heilongjiang Province(No.JC200905)
文摘Embryonic germ (EG) cells are cultured pluripotent stem cells derived from the primordial germ cells (PGCs) that migrate from the dorsal mesentery of the hindgut to the developing genital ridge. In this study, the morphology of the porcine genital ridge was assessed in embryos harvested on days 22-30 of pregnancy. PGCs from embryos at these stages were cultured to obtain porcine EG cell lines, and EG-like cells were derived from PGCs from embryos harvested on days 24-28 of pregnancy. The EG-like cells expressed Oct4, Sox2, Nanog, SSEA-3, SSEA-4 and alkaline phosphatase (AP). These cells were able to form embryoid bodies (EBs) in suspension culture and differentiate into cells representative of the three germ layers as verified by a-fetoprotein (AFP), s-smooth muscle actin (^-SMA), and Nestin expression. Spontaneous differentiation from the porcine EG-like cells of delayed passage in vitro showed that they could differentiate into epithelial-like cells, mesenchymal-like cells and neuron-like cells. In vitro directed differentiation generated osteocytes, adipocytes and a variety of neural lineage cells, as demonstrated by alizarin red staining, oil red O staining, and immunoftuorescence for neuronal class III [3-tubulin (Tuj 1), glial fibrillary protein (GFAP) and galactosylceramidase (GALC), respectively. These results indicate that porcine EG-like cells have the potential for multi-lineage differentiation and are useful for basic porcine stem cell research.
基金supported by grants from the National Natural Science Foundation of China(No.31871445 and No.31501211)the National Key R&D program of China(No.2017YFC1001302 and No.2016YFA0503300)。
文摘There is growing evidence that cellular metabolism can directly participate in epigenetic dynamics and consequently modulate gene expression.However,the role of metabolites in activating the key gene regulatory network for specialization of germ cell lineage remains largely unknown.Here,we identified some cellular metabolites with significant changes by untargeted metabolomics between mouse epiblast-like cells(EpiLCs)and primordial germ cell-like cells(PGCLCs).More importantly,we found that inhibition of glutaminolysis by bis-2-(5-phenylacetamido-1,3,4-thiadiazol-2-yl)ethyl sulfide(BPTES)impeded PGCLC specialization,but the impediment could be rescued by addition ofα-ketoglutarate(αKG),the intermediate metabolite of oxidative phosphorylation and glutaminolysis.Moreover,adding aKG alone to the PGCLC medium accelerated the PGCLC specialization through promoting H3 K27 me3 demethylation.Thus,our study reveals the importance of metabolite aKG in the germ cell fate determination and highlights the essential role of cellular metabolism in shaping the cell identities through epigenetic events.