期刊文献+
共找到54篇文章
< 1 2 3 >
每页显示 20 50 100
Gingipain from Porphyromonas gingivalis causes insulin resistance by degrading insulin receptors through direct proteolytic effects
1
作者 Fen Liu Bofeng Zhu +7 位作者 Ying An Zhifei Zhou Peiying Xiong Xuan Li Yang Mi Tongqiang He Faming Chen Buling Wu 《International Journal of Oral Science》 SCIE CAS CSCD 2024年第3期539-552,共14页
Periodontitis is a critical risk factor for the occurrence and development of diabetes.Porphyromonas gingivalis may participate in insulin resistance(IR)caused by periodontal inflammation,but the functional role and s... Periodontitis is a critical risk factor for the occurrence and development of diabetes.Porphyromonas gingivalis may participate in insulin resistance(IR)caused by periodontal inflammation,but the functional role and specific mechanisms of P.gingivalis in IR remain unclear.In the present study,clinical samples were analysed to determine the statistical correlation between P.gingivalis and IR occurrence.Through culturing of hepatocytes,myocytes,and adipocytes,and feeding mice P.gingivalis orally,the functional correlation between P.gingivalis and IR occurrence was further studied both in vitro and in vivo.Clinical data suggested that the amount of P.gingivalis isolated was correlated with the Homeostatic Model Assessment for IR score.In vitro studies suggested that coculture with P.gingivalis decreased glucose uptake and insulin receptor(INSR)protein expression in hepatocytes,myocytes,and adipocytes.Mice fed P.gingivalis tended to undergo IR.P.gingivalis was detectable in the liver,skeletal muscle,and adipose tissue of experimental mice.The distribution sites of gingipain coincided with the downregulation of INSR.Gingipain proteolysed the functional insulin-binding region of INSR.Coculture with P.gingivalis significantly decreased the INSR–insulin binding ability.Knocking out gingipain from P.gingivalis alleviated the negative effects of P.gingivalis on IR in vivo.Taken together,these findings indicate that distantly migrated P.gingivalis may directly proteolytically degrade INSR through gingipain,thereby leading to IR.The results provide a new strategy for preventing diabetes by targeting periodontal pathogens and provide new ideas for exploring novel mechanisms by which periodontal inflammation affects the systemic metabolic state. 展开更多
关键词 gingivalis INFLAMMATION resistance
下载PDF
Porphyromonas gingivalis Induces Chronic Kidney Disease through Crosstalk between the NF-κB/NLRP3 Pathway and Ferroptosis in GMCs
2
作者 Xue LI Chao YAO +2 位作者 Dong-mei LAN Yan WANG Sheng-cai QI 《Current Medical Science》 SCIE CAS 2024年第5期932-946,共15页
Objective Porphyromonas gingivalis(P.gingivalis)is a gram-negative bacterium found in the human oral cavity and is a recognized pathogenic bacterium associated with chronic periodontitis and systemic diseases,includin... Objective Porphyromonas gingivalis(P.gingivalis)is a gram-negative bacterium found in the human oral cavity and is a recognized pathogenic bacterium associated with chronic periodontitis and systemic diseases,including chronic kidney disease(CKD),but the roles and molecular mechanism of P.gingivalis in CKD pathogenesis are unclear.Methods In this study,an animal model of oral P.gingivalis administration and glomerular mesangial cells(GMCs)cocultured with M1-polarized macrophages and P.gingivalis supernatant were constructed.After seven weeks of P.gingivalis gavaged,peripheral blood was collected to detect the changes in renal function.By collecting the teeth and kidneys of mice,H&E staining and IHC were used to analyze the expression of periodontal inflammatory factors in mice,PAS staining was used to analyze glomerular lesions.The supernatant of macrophages was treated with 5%P.gingivalis supernatant.H&E staining,IHC,Western blot and RT-PCR were applied to analyze renal inflammatory factors,macrophage M1 polarization,NF-κB,NLRP3 and ferroptosis changes in vitro.Results We found that oral P.gingivalis administration induced CKD in mice.P.gingivalis supernatant induced macrophage polarization and inflammatory factor upregulation,which triggered the activation of the NF-κB/NLRP3 pathway and ferroptosis in GMCs.By inhibiting the NF-κB/NLRP3 pathway and ferroptosis in GMCs,cell viability and the inflammatory response were partially alleviated in vitro.Conclusion We demonstrated that P.gingivalis induced CKD in mice by triggering crosstalk between the NFκB/NLRP3 pathway and ferroptosis in GMCs.Overall,our study suggested that periodontitis can promote the pathogenesis of CKD in mice,which provides evidence of the importance of periodontitis therapy in the prevention and treatment of CKD. 展开更多
关键词 Porphyromonas gingivalis chronic kidney disease glomerular mesangial cells MACROPHAGES NF-κB/NLRP3 pathway ferroptosis
下载PDF
Porphyromonas gingivalis bacteremia increases the permeability of the blood-brain barrier via the Mfsd2a/Caveolin-1 mediated transcytosis pathway 被引量:9
3
作者 Shuang Lei Jian Li +6 位作者 Jingjun Yu Fulong Li Yaping Pan Xu Chen Chunliang Ma Weidong Zhao Xiaolin Tang 《International Journal of Oral Science》 SCIE CAS CSCD 2023年第1期136-147,共12页
Bacteremia induced by periodontal infection is an important factor for periodontitis to threaten general health. P. gingivalis DNA/virulence factors have been found in the brain tissues from patients with Alzheimer’s... Bacteremia induced by periodontal infection is an important factor for periodontitis to threaten general health. P. gingivalis DNA/virulence factors have been found in the brain tissues from patients with Alzheimer’s disease(AD). The blood-brain barrier(BBB) is essential for keeping toxic substances from entering brain tissues. However, the effect of P. gingivalis bacteremia on BBB permeability and its underlying mechanism remains unclear. In the present study, rats were injected by tail vein with P. gingivalis three times a week for eight weeks to induce bacteremia. An in vitro BBB model infected with P. gingivalis was also established. We found that the infiltration of Evans blue dye and Albumin protein deposition in the rat brain tissues were increased in the rat brain tissues with P. gingivalis bacteremia and P. gingivalis could pass through the in vitro BBB model. Caveolae were detected after P. gingivalis infection in BMECs both in vivo and in vitro. Caveolin-1(Cav-1) expression was enhanced after P. gingivalis infection.Downregulation of Cav-1 rescued P. gingivalis-enhanced BMECs permeability. We further found P. gingivalis-gingipain could be colocalized with Cav-1 and the strong hydrogen bonding between Cav-1 and arg-specific-gingipain(RgpA) were detected.Moreover, P. gingivalis significantly inhibited the major facilitator superfamily domain containing 2a(Mfsd2a) expression. Mfsd2a overexpression reversed P. gingivalis-increased BMECs permeability and Cav-1 expression. These results revealed that Mfsd2a/Cav-1 mediated transcytosis is a key pathway governing BBB BMECs permeability induced by P. gingivalis, which may contribute to P. gingivalis/virulence factors entrance and the subsequent neurological impairments. 展开更多
关键词 gingivalis expression inhibited
下载PDF
Presence of Porphyromonas gingivalis in gingival squamous cell carcinoma 被引量:25
4
作者 Joseph Katz Mairelys D. Onate +2 位作者 Kaleb M. Pauley Indraneel Bhattacharyya Seunghee Cha 《International Journal of Oral Science》 SCIE CAS CSCD 2011年第4期209-215,共7页
Periodontal disease has been recently linked to a variety of systemic conditions such as diabetes, cardiovascular disease, preterm delivery, and oral cancer. The most common bacteria associated with periodontal diseas... Periodontal disease has been recently linked to a variety of systemic conditions such as diabetes, cardiovascular disease, preterm delivery, and oral cancer. The most common bacteria associated with periodontal disease, Porphyromonas gingivalis (P. gingivalis) has not yet been studied in the malignant gingival tissues. The objective of this study was to investigate the presence of R gingivalis in specimens from squamous cell carcinoma patients. We have performed immunohistochemical staining to investigate the presence of R gingivafis and Streptococcus gordonii (S. gordonii), a non invasive oral bacteria, in paraffin embedded samples of gingival squamous cell carcinoma (n=10) and normal gingiva (n=5). Staining for R gingivalis revealed the presence of the bacteria in normal gingival tissues and gingival carcinoma, with higher levels (more than 33%, P〈0.05) detected in the carcinoma samples. The staining intensity was also significantly enhanced in the malignant tissue by 2 folds (P〈0.023) compared to specimens stained for the non-invasive S. gordonii. R gingivalis is abundantly present in malignant oral epithelium suggesting a potential association of the bacteria with gingival squamous cell carcinoma. 展开更多
关键词 Porphyromonas gingivalis gingival squamous cell carcinoma periodontits oral cancer
下载PDF
Porphyromonas gingivalis and digestive system cancers 被引量:12
5
作者 Ying Zhou Guang-Hua Luo 《World Journal of Clinical Cases》 SCIE 2019年第7期819-829,共11页
Porphyromonas gingivalis(P. gingivalis) is an anaerobic gram-negative bacterium that colonizes in the epithelium and has been strongly associated with periodontal disease. Recently, various degrees of associations bet... Porphyromonas gingivalis(P. gingivalis) is an anaerobic gram-negative bacterium that colonizes in the epithelium and has been strongly associated with periodontal disease. Recently, various degrees of associations between P.gingivalis and digestive system cancers, including oral squamous cell carcinoma in the oral cavity, oesophageal squamous carcinoma in the digestive tract, and pancreatic cancer in pancreatic tissues, have been displayed in multiple clinical and experimental studies. Since P. gingivalis has a strong association with periodontal diseases, not only the relationships between P. gingivalis and digestive system tumours but also the effects induced by periodontal diseases on cancers are well-illustrated in this review. In addition, the prevention and possible treatments for these digestive system tumours induced by P. gingivalis infection are also included in this review. At the end, we also highlighted the possible mechanisms of cancers caused by P. gingivalis. One important carcinogenic effect of P. gingivalis is inhibiting the apoptosis of epithelial cells,which also plays an intrinsic role in protecting cancerous cells. Some signalling pathways activated by P. gingivalis are involved in cell apoptosis, tumourigenesis,immune evasion and cell invasion of tumour cells. In addition, metabolism of potentially carcinogenic substances caused by P. gingivalis is also one of the connections between this bacterium and cancers. 展开更多
关键词 PORPHYROMONAS gingivalis Oral SQUAMOUS CELL CARCINOMA OESOPHAGEAL SQUAMOUS CELL CARCINOMA Pancreatic cancer PERIODONTAL diseases
下载PDF
Porphyromonas gingivalis disrupts vascular endothelial homeostasis in a TLR-NF-κB axis dependent manner 被引量:11
6
作者 Mengru Xie Qingming Tang +4 位作者 Shaoling Yu Jiwei Sun Feng Mei Jiajia Zhao Lili Chen 《International Journal of Oral Science》 SCIE CAS CSCD 2020年第3期249-257,共9页
Cardiovascular disease is still the leading cause of mortality worldwide.Vascular endothelial dysfunction is viewed as the initial step of most cardiovascular diseases.Many studies have indicated that periodontal path... Cardiovascular disease is still the leading cause of mortality worldwide.Vascular endothelial dysfunction is viewed as the initial step of most cardiovascular diseases.Many studies have indicated that periodontal pathogens,especially Porphyromonas gingivalis,are closely correlated with vascular endothelial homeostasis,but the function of P.gingivalis and the underlying mechanisms are still elusive.To illuminate the effects and elucidate the mechanisms of P.gingivalis on endothelial structural integrity,we developed P.gingivalis infection models in vivo and in vitro.Endothelial cell proliferation,differentiation and apoptosis were detected.Here,we showed that P.gingivalis can impair endothelial integrity by inhibiting cell proliferation and inducing endothelial mesenchymal transformation and apoptosis of endothelial cells,which reduce the cell levels and cause the endothelium to lose its ability to repair itself.A mechanistic analysis showed that TLR antagonist or NF-κB signalling inhibitor can largely rescue the damaged integrity of the endothelium caused by P.gingivalis,suggesting that TLR-NF-κB signalling plays a vital role in vascular endothelial homeostasis destroyed by P.gingivalis.These results suggest a potential intervention method for the prevention and treatment of cardiovascular disease. 展开更多
关键词 gingivalis HOMEOSTASIS PREVENTION
下载PDF
Porphyromonas gingivalis infection promotes mitochondrial dysfunction through Drp1-dependent mitochondrial fission in endothelial cells 被引量:9
7
作者 Tong Xu Qin Dong +4 位作者 Yuxiao Luo Yanqing Liu Liang Gao Yaping Pan Dongmei Zhang 《International Journal of Oral Science》 SCIE CAS CSCD 2021年第3期300-310,共11页
Porphyromonas gingivalis(P.gingivalis),a key pathogen in periodontitis,has been shown to accelerate the progression of atherosclerosis(AS).However,the definite mechanisms remain elusive.Emerging evidence supports an a... Porphyromonas gingivalis(P.gingivalis),a key pathogen in periodontitis,has been shown to accelerate the progression of atherosclerosis(AS).However,the definite mechanisms remain elusive.Emerging evidence supports an association between mitochondrial dysfunction and AS.In our study,the impact of P.gingivalis on mitochondrial dysfunction and the potential mechanism were investigated.The mitochondrial morphology of EA.hy926 cells infected with P.gingivalis was assessed by transmission electron microscopy,mitochondrial staining,and quantitative analysis of the mitochondrial network.Fluorescence staining and flow cytometry analysis were performed to determine mitochondrial reactive oxygen species(mtROS)and mitochondrial membrane potential(MMP)levels.Cellular ATP production was examined by a luminescence assay kit.The expression of key fusion and fission proteins was evaluated by western blot and immunofluorescence.Mdivi-1,a specific Drp1 inhibitor,was used to elucidate the role of Drp1 in mitochondrial dysfunction.Our findings showed that P.gingivalis infection induced mitochondrial fragmentation,increased the mtROS levels,and decreased the MMP and ATP concentration in vascular endothelial cells.We observed upregulation of Drp1(Ser616)phosphorylation and translocation of Drp1 to mitochondria.Mdivi-1 blocked the mitochondrial fragmentation and dysfunction induced by P.gingivalis.Collectively,these results revealed that P.gingivalis infection promoted mitochondrial fragmentation and dysfunction,which was dependent on Drp1.Mitochondrial dysfunction may represent the mechanism by which P.gingivalis exacerbates atherosclerotic lesions. 展开更多
关键词 Drp1 gingivalis DYSFUNCTION
下载PDF
Association between infection of different strains of Porphyromonas gingivalis and Actinobacillus actinomycetemcomitans in subgingival plaque and clinical parameters in chronic periodontitis 被引量:4
8
作者 WU Yan-min YAN Jie +1 位作者 CHEN Li-li GU Zhi-yuan 《Journal of Zhejiang University-Science B(Biomedicine & Biotechnology)》 SCIE CAS CSCD 2007年第2期121-131,共11页
Objective: The aim of this study was to investigate subgingival infection frequencies ofPorphyromonas gingivalis and Actinobacillus actinomycetemcomitans strains with genetic variation in Chinese chronic periodontit... Objective: The aim of this study was to investigate subgingival infection frequencies ofPorphyromonas gingivalis and Actinobacillus actinomycetemcomitans strains with genetic variation in Chinese chronic periodontitis (CP) patients and to evaluate its correlation with clinical parameters. Methods: Two multiplex polymerase chain reaction (PCR) assays were developed to detect the 16SrDNA, collagenase (prtC) and fimbria (fimA) genes of P. gingivalis and the 16SrDNA, leukotoxin (lktA) and fimbria-associated protein (fap) genes ofA. actinomycetemcomitans in 60 sulcus samples from 30 periodontal healthy subjects and in 122 subgingival plaque samples from 61 patients with CP. The PCR products were further T-A cloned and sent for nucleotide sequence analysis. Results: The 16SrDNA,prtC andfimA genes ofP. gingivalis were detected in 92.6%, 85.2% and 80.3% of the subgingival plaque samples respectively, while the 16SrDNA, lktA andfap genes ofA. actinomycetemcomitans were in 84.4%, 75.4% and 50.0% respectively. Nucleotide sequence analysis showed 98.62%-100% homology of the PCR products in these genes with the reported sequences. P. gingivalis strains with prtC+/fimA+ and A. actinomycetemcomitans with lktA+ were predominant in deep pockets (〉6 mm) or in sites with attachment loss 〉5 mm than in shallow pockets (3-4 mm) or in sites with attachment loss 〈2 mm (P〈0.05). P. gingivalis strains withprtC+/fimA+ also showed higher frequency in gingival index (GI)=3 than in GI=1 group (P〈0.05). Conclusion: Infection ofP. gingivalis with prtC+/fimA+ and A. actinomycetemcomitans with lktA+ correlates with periodontal destruction of CP in Chinese. Nonetheless P. gingivalis fim4, prtC genes and A. actinomycetem- comitans lktA gene are closely associated with periodontal destruction, while A. actinomycetemcomitansfap gene is not. 展开更多
关键词 Porphyromonas gingivalis Actinobacillus actinomycetemcomitans STRAIN PERIODONTITIS PCR
下载PDF
Porphyromonas gingivalis exacerbates ulcerative colitis via Porphyromonas gingivalis peptidylarginine deiminase 被引量:5
9
作者 Xida Zhao Jingbo Liu +8 位作者 Chong Zhang Ning Yu Ze Lu Shuwei Zhang Yuchao Li Qian Li Junchao Liu Dongjuan Liu Yaping Pan 《International Journal of Oral Science》 SCIE CAS CSCD 2021年第3期311-322,共12页
Abstract:Ulcerative Colitis(UC)has been reported to be related to Porphyromonas gingivalis(P.gingivalis).Porphyromonas gingivalis peptidylarginine deiminase(PPAD),a virulence factor released by P.gingivalis,is known t... Abstract:Ulcerative Colitis(UC)has been reported to be related to Porphyromonas gingivalis(P.gingivalis).Porphyromonas gingivalis peptidylarginine deiminase(PPAD),a virulence factor released by P.gingivalis,is known to induce inflammatory responses.To explore the pathological relationships between PPAD and UC,we used homologous recombination technology to construct a P.gingivalis strain in which the PPAD gene was deleted(Δppad)and aΔppad strain in which the PPAD gene was restored(comΔppad).C57 BL/6 mice were orally gavaged with saline,P.gingivalis,Δppad,or comΔppad twice a week for the entire 40 days(days 0-40),and then,UC was induced by dextran sodium sulfate(DSS)solution for 10 days(days 31-40).P.gingivalis and comΔppad exacerbated DDS-induced colitis,which was determined by assessing the parameters of colon length,disease activity index,and histological activity index,butΔppad failed to exacerbate DDS-induced colitis.Flow cytometry and ELISA revealed that compared withΔppad,P.gingivalis,and comΔppad increased T helper 17(Th17)cell numbers and interleukin(IL)-17 production but decreased regulatory T cells(Tregs)numbers and IL-10 production in the spleens of mice with UC.We also cocultured P.gingivalis,Δppad,or comΔppad with T lymphocytes in vitro and found that P.gingivalis and comΔppad significantly increased Th17 cell numbers and decreased Treg cell numbers.Immunofluorescence staining of colon tissue paraffin sections also confirmed these results.The results suggested that P.gingivalis exacerbated the severity of UC in part via PPAD. 展开更多
关键词 gingivalis COLITIS COLON
下载PDF
Analysis of differential expression of tight junction proteins in cultured oral epithelial cells altered by Porphyromonas gingivalis,Porphyromonas gingivalis lipopolysaccharide,and extracellular adenosine triphosphate 被引量:3
10
作者 wei guo peng wang +1 位作者 zhong-hao liu ping ye 《International Journal of Oral Science》 SCIE CAS CSCD 2017年第4期238-244,共7页
Tight junctions (TJs) are the most apical intercellular junctions of epithelial cells formed by occludin, claudins, junctional adhesion molecules (JAMs), and zonula occludens (ZO). Tight junction proteins can se... Tight junctions (TJs) are the most apical intercellular junctions of epithelial cells formed by occludin, claudins, junctional adhesion molecules (JAMs), and zonula occludens (ZO). Tight junction proteins can sense the presence of bacteria and regulate the transcription of target genes that encode effectors and regulators of the immune response. The aim of this study was to determine the impact of TJ proteins in response to Porphyromonas gingivalis (P. gingivalis), P. gingivalis lipopolysaccharide (P. gingivalis LPS), and extracellular adenosine triphosphate (ATP) in the oral epithelial cell culture model. Quantified real time- polymerase chain reaction (RT-PCR), immunoblots, and immunostaining were performed to assess the gene and protein expression in TJs. It was found that P. gingivalis infection led to transient upregulation of the genes encoding occludin, claudin- 1, and claudin-4 but not JAM-A, claudin-15, or ZO-1, while P. gingivalis LPS increased claudin-1, claudin-15, and ZO-1 and decreased occludin, JAM-A, and claudin-4. Tight junction proteins showed significant upregulation in the above two groups when cells were pretreated with ATP for 3 h. The findings indicated that P. gingivalis induced the host defence responses at an early stage. P. gingivalis LPS exerted a more powerful stimulatory effect on the disruption of the epithelial barrier than P. gingivalis. ATP stimulation enhanced the reaction of TJ proteins to P. gingivalis invasion and LPS destruction of the epithelium. 展开更多
关键词 junctional epithelium PERIODONTITIS Porphyromonas gingivalis tight junctions
下载PDF
Micromolar sodium fluoride mediates anti-osteoclastogenesis in Porphyromonas gingivalis-induced alveolar bone loss 被引量:3
11
作者 Ujjal K Bhawal Hye-Jin Lee +10 位作者 Kazumune Arikawa Michiharu Shimosaka Masatoshi Suzuki Toshizo Toyama Takenori Sato Ryota Kawamata Chieko Taguchi Nobushiro Hamada Ikuo Nasu Hirohisa Arakawa Koh Shibutani 《International Journal of Oral Science》 SCIE CAS CSCD 2015年第4期242-249,共8页
Osteoclasts are bone-specific multinucleated cells generated by the differentiation of monocyte/macrophage lineage precursors. Regulation of osteoclast differentiation is considered an effective therapeutic approach t... Osteoclasts are bone-specific multinucleated cells generated by the differentiation of monocyte/macrophage lineage precursors. Regulation of osteoclast differentiation is considered an effective therapeutic approach to the treatment of bone-lytic diseases. Periodontitis is an inflammatory disease characterized by extensive bone resorption. In this study, we investigated the effects of sodium fluoride (NaF) on osteoclastogenesis induced by Porphyromonas gingivalis, an important colonizer of the oral cavity that has been implicated in periodontitis. NaF strongly inhibited the P. gingivalis-induced alveolar bone loss. That effect was accompanied by decreased levels of cathepsin K, interleukin (IL)-1β, matrix metalloproteinase 9 (MMP9), and tartrate-resistant acid phosphatase, which were up-regulated during P. gingivalis-induced osteoclastogenesis. Consistent with the in vivo anti-osteoclastogenic effect, NaF inhibited osteoclast formation caused by the differentiation factor RANKL (receptor activator of nuclear factor KB ligand) and macrophage colony-stimulating factor (M-CSF). The RANKL-stimulated induction of the transcription factor nuclear factor of activated T cells (NFAT) cl was also abrogated by NaF. Taken together, our data demonstrate that NaF inhibits RANKL-induced osteoclastogenesis by reducing the induction of NFATcl, ultimately leading to the suppressed expression of cathepsin K and MMP9. The in vivo effect of NaF on the inhibition of P. gingivalis-induced osteoclastogenesis strengthens the potential usefulness of NaF for treating periodontal diseases. 展开更多
关键词 alveolar bone loss OSTEOCLASTS Porphyromonas gingivalis sodium fluoride
下载PDF
Ghrelin-induced cSrc activation through constitutive nitric oxide synthase-dependent S-nitrosylation in modulation of salivary gland acinar cell inflammatory responses to <i>Porphyromonas gingivalis</i> 被引量:5
12
作者 Bronislaw L. Slomiany Amalia Slomiany 《American Journal of Molecular Biology》 2011年第2期43-51,共9页
A peptide hormone, ghrelin, recognized for its role in the regulation of nitric oxide production has emerged as an important modulator of oral mucosal inflammatory responses to periodontopathic bacterium, P. gingivali... A peptide hormone, ghrelin, recognized for its role in the regulation of nitric oxide production has emerged as an important modulator of oral mucosal inflammatory responses to periodontopathic bacterium, P. gingivalis. As cSrc kinase plays a major role in controlling the activity of nitric oxide synthase (NOS) system, in this study we investigated the influence of P. gingivalis LPS on the processes of Src activation in rat sublingual gland acinar cells. The LPS-induced enhancement in the activity of inducible (i) iNOS and the impairment in constitutive (c) cNOS were reflected in the suppression in cSrc activity and the extent of its phosphorylation at Tyr416. Further, we show that the countering effect of ghrelin on the LPS-induced changes in cSrc activity and the extent of its phosphorylation was accompanied by a marked reduction in iNOS and the increase in cNOS activation through phosphorylation at Ser1179. Moreover, the effect of ghrelin on cSrc activation was associated with the kinase S-nitrosylation that was susceptible to the blockage by cNOS inhibition. Our findings suggest that P. gingivalis-induced up-regulation in iNOS leads to disturbances in cNOS phosphorylation that exerts the detrimental effect on the processes of cSrc activation through cNOS mediated S-nitrosylation. We also show that the effect of ghrelin on P. gingivalis-induced inflammatory changes are manifested in the enhancement in cSrc activation through S-nitrosylation and the increase in its phosphorylation at Tyr416. 展开更多
关键词 Ghrelin P. gingivalis Salivary Acinar Cells CNOS CSRC ACTIVATION S-NITROSYLATION
下载PDF
Role of ghrelin in modulation of s-nitrosylation-Dependent akt inactivation induced in salivary gland acinar cells by porphyromonas gingivalis 被引量:4
13
作者 Bronislaw L. Slomiany Amalia Slomiany 《Health》 2010年第12期1448-1455,共8页
Ghrelin, a peptide hormone, newly identified in oral mucosal tissue, has emerged re-cently as a principal modulator of the in-flammatory responses to bacterial infection through the regulation of nitric oxide syn-thas... Ghrelin, a peptide hormone, newly identified in oral mucosal tissue, has emerged re-cently as a principal modulator of the in-flammatory responses to bacterial infection through the regulation of nitric oxide syn-thase system. In this study, using rat sub-lingual salivary gland acinar cells, we report that lipopolysaccharide (LPS) of periodon-topathic bacterium, P. gingivalis- induced enhancement in the activity of inducible ni-tric oxide synthase (iNOS) was associated with the suppression in Akt kinase activity and the impairment in constitutive (c) cNOS phosphorylation. Further, we show that the detrimental effect of the LPS on Akt activa-tion, manifested in the kinase protein S-nitrosylation and a decrease in its phos-phorylation at Ser473, was susceptible to suppression by iNOS inhibitor, 1400W. Moreover, we demonstrate that a peptide hormone, ghrelin, countered the LPS- induced changes in Akt activity and NOS system. This effect of ghrelin was reflected in the decreased in Akt S-nitrosylation and the increase in its phosphorylation at Ser473, as well as cNOS activation through phos-phorylation. Our findings suggest that P. gingivalis-induced up-regulation in iNOS leads to Akt kinase inactivation through S-nitrosylation that impacts cNOS activation through phosphorylation. We also show that the countering effect of ghrelin on P. gingivalis-induced disturbances in Akt ac-tivation are manifested in a decrease in the kinase S-nitrosylation and the increase in its phosphorylation. 展开更多
关键词 P. gingivalis SALIVARY GLAND Inos AKT S-NITROSYLATION CNO s Phosphorylation GHRELIN
下载PDF
Porphyromonas gingivalis Resistance to Polymyxin B Is Determined by the Lipid A 4’-Phosphatase, PGN_0524 被引量:2
14
作者 Stephen R. Coats Thao T. To +2 位作者 Sumita Jain Pamela H. Braham Richard P. Darveau 《International Journal of Oral Science》 SCIE CAS CSCD 2009年第3期126-135,共10页
Aim To elucidate the genetic basis for the pronounced resistance that the oral pathogen, Porphyromonas gingivalis (P. gingivalis), exhibits towards the cationic antimicrobial peptide, polymyxin B. Methodology A gene... Aim To elucidate the genetic basis for the pronounced resistance that the oral pathogen, Porphyromonas gingivalis (P. gingivalis), exhibits towards the cationic antimicrobial peptide, polymyxin B. Methodology A genetic screen of P. gingivalis clones generated by a Tn4400-based random insertion mutagenesis strategy was performed to identify bacteria harboring novel genetic mutations that render P. gingivalis susceptible to killing by the cationic antimicrobial peptide, polymyxin B (PMB, 50μg·mL^-1). Results P. gingivalis (ATCC 33277) is unusually resistant to the cationic antimicrobial peptide, PMB at relatively high concentrations (200μg·mL^-1). Approximately 2,700 independent Tn4400 '-derived mutants ofP. gingivalis were examined for increased sensitivity to PMB killing at a relatively low dose (50 μg·mL^-1). A single PMB-sensitive mutant was obtained in this phenotypic screen. We determined that the Tn4400' transposon was integrated into the gene encoding the lipid A 4'-phosphatase, PGN 0524, demonstrating that this insertion event was responsible for its increased susceptibility of this clone to PMB-dependent killing. The resulting mutant strain, designated 0524-Tn4400', was highly sensitive to PMB killing relative to wild-type P. gingivalis, and exhibited the same sensitivity as the previously characterized strain, 0524KO, which bears a genetically engineered deletion in the PGN_0524 locus. Positive ion mass spectrometric structural (MALDI-TOF MS) analyses revealed that lipid A isolates from 0524-Tn4400" and 0524KO strains displayed strikingly similar MALDI-TOF MS spectra that were substantially different from the wildtype P gingivalis lipid A spectrum. Finally, intact 0524- Tn4400' and 0524KO mutant bacteria, as well as their corresponding LPS isolates, were significantly more potent in stimulating Toll-like receptor 4 (TLR4)-dependent E-selectin expression in human endothelial cells relative to intact wild-type P.. gingivalis or its corresponding LPS isolate. Conclusion The combined molecular evidence provided in this report suggests that PGN 0524, a lipid A 4'-phosphatase, is the sole genetic element conferring the ability of the periodontopathogen, P. gingivalis, to evade the killing activity of cationic antimicrobial peptides, such as PMB. These data strongly implicate PGN_0524 as a critical virulence factor for the ability of P.. gingivalis to evade front-line host innate defenses that are dependent upon cationic antimicrobial peptide activity and TLR 4 sensing. 展开更多
关键词 P. gingivalis antimicrobial peptide lipid A phosphatase polymyxin B TRANSPOSON LIPOPOLYSACCHARIDE
下载PDF
<i>Porphyromonas gingivalis</i>-Stimulated TACE Activation for TGF-<i>α</i>Ectodomain Shedding and EGFR Transactivation in Salivary Gland Cells Requires Rac1-Dependent p38 MAPK Membrane Localization 被引量:4
15
作者 Bronislaw L. Slomiany Amalia Slomiany 《Journal of Biosciences and Medicines》 2015年第11期42-53,共12页
Oral mucosal inflammatory responses to P. gingivalis and its key virulence factor, lipopolysaccharide (LPS), are characterized by a massive rise in proinflammatory cytokine production, up-regu- lation in mitogen-activ... Oral mucosal inflammatory responses to P. gingivalis and its key virulence factor, lipopolysaccharide (LPS), are characterized by a massive rise in proinflammatory cytokine production, up-regu- lation in mitogen-activated protein kinase (MAPK) cascade, and the induction in epidermal growth factor receptor (EGFR) activation. In this study, we report that stimulation of salivary gland acinar cells with P. gingivalis LPS leads to p38 MAPK-dependent release of soluble TGF-α ligand and the increase in EGFR phosphorylation. Further, we show that the LPS-induced TGF-α shedding and EGFR transactivation involve the activation of membrane-associated metalloprotease, TACE also known as ADAM17, through phosphorylation by p38 MAPK, and require Rac1 participation. Moreover, we demonstrate that blocking the Rac1 activation leads to the suppression in the membrane translocation of Rac1 as well as p38, thus indicating that the LPS-elicited p38 membrane recruitment for TACE phosphorylation requires colocalization with Rac1. Hence, our findings imply that Rac1 membrane translocation serves as an essential platform for the localization of p38 with TACE, TGF-α ectodomain shedding, and the EGFR activation. 展开更多
关键词 P. gingivalis LPS Oral Mucosa p38 MAPK TGF-α TACE ACTIVATION RAC1 EGFR TRANSACTIVATION
下载PDF
Characterization of Fusobacterium nucleatum ATCC 23726 adhesins involved in strain-specific attachment to Porphyromonas gingivalis 被引量:2
16
作者 Jane Park Bhumika Shokeen +1 位作者 Susan K Haake Renate Lux 《International Journal of Oral Science》 SCIE CAS CSCD 2016年第3期138-144,共7页
Bacterial adherence is an essential virulence factor in pathogenesis and infection. Fusobacterium nucleatum has a central role in oral biofilm architecture by acting as a bridge between early Gram-positive and late Gr... Bacterial adherence is an essential virulence factor in pathogenesis and infection. Fusobacterium nucleatum has a central role in oral biofilm architecture by acting as a bridge between early Gram-positive and late Gram-negative colonizers that do not otherwise adhere to each other. In this study, we survey a key adherence interaction of F. nucleatum with Porphyromonas gingivalis, and present evidence that multiple fusobacterial adhesins have a role in the attachment of F. nucleatum ATCC 23726 to P. gingivalis in a highly strain-dependent manner. Interaction between these species displayed varying sensitivities to arginine, galactose and lactose. Arginine was found to hamper coaggregation by at least 62% and up to 89% with several P. gingivalis strains and galactose inhibition ranged from no inhibition up to 58% with the same P. gingivalis strains. Lactose consistently inhibited F. nucleatum interaction with these P. gingivalis strains ranging from 40% to 56% decrease in coaggregation. Among the adhesins involved are the previously described Fap2 and surprisingly, RadD, which was described in an earlier study for its function in attachment of F. nucleatum to Gram-positive species. We also provide evidence for the presence of at least one additional adhesin that is sensitive to arginine but unlike Fap2 and RadD, is not a member of the autotransporter family type of fusobacterial large outer membrane proteins. The strain-specific binding profile of multiple fusobacterial adhesins to P. gingivalis highlights the heterogeneity and complexity of interspecies interactions in the oral cavity. 展开更多
关键词 ADHESIN bio?lm COAGGREGATION Fusobacterium nucleatum Porphyromonas gingivalis
下载PDF
Intragingival injection of Porphyromonas gingivalis-derived lipopolysaccharide induces a transient increase in gingival tumour necrosis factor-a, but not interleukin-6,in anaesthetised rats 被引量:1
17
作者 Hiroko Taguchi Yuri Aono +3 位作者 Takayuki Kawato Masatake Asano Noriyoshi Shimizu Tadashi Saigusa 《International Journal of Oral Science》 SCIE CAS CSCD 2015年第3期155-160,共6页
This study used in vivo microdialysis to examine the effects of intragingival application of lipopolysaccharide(LPS) derived from Porphyromonas gingivalis(Pg-LPS) on gingival tumour necrosis factor(TNF)-a and in... This study used in vivo microdialysis to examine the effects of intragingival application of lipopolysaccharide(LPS) derived from Porphyromonas gingivalis(Pg-LPS) on gingival tumour necrosis factor(TNF)-a and interleukin(IL)-6 levels in rats. A microdialysis probe with an injection needle attached to the surface of the dialysis membrane was implanted into the gingiva of the upper incisor. For comparison, the effects of LPS derived from Escherichia coli(Ec-LPS) on IL-6 and TNF-a levels were also analysed. Pg-LPS(1 mg/1 m L) or Ec-LPS(1 or 6 mg/1 m L) was applied by microsyringe, with gingival dialysates collected every hour. Enzyme-linked immunosorbent assay(ELISA) revealed that gingival dialysates contained approximately 389 pg?m L21 of IL-6 basally; basal TNF-a levels were lower than the detection limit of the ELISA. Pg-LPS failed to alter IL-6 levels but markedly increased TNF-a levels, which remained elevated for 2 h after treatment. Neither IL-6 nor TNF-a were affected by Ec-LPS. Reverse transcriptase-polymerase chain reaction(RT-PCR) analysis revealed that the gingiva expresses Toll-like receptor(TLR) 2 and TLR4 m RNA. Immunohistochemical examination showed that TLR2 and TLR4 are expressed by gingival epithelial cells. The present study provides in vivo evidence that locally applied Pg-LPS, but not Ec-LPS, into the gingiva transiently increases gingival TNF-a without affecting IL-6. The present results suggest that TLR2 but not TLR4 expressed on gingival epithelial cells may mediate the Pg-LPS-induced increase in gingival TNF-a in rats. 展开更多
关键词 Porphyromonas gingivalis LIPOPOLYSACCHARIDE GINGIVA tumour necrosis factor-a MICRODIALYSIS
下载PDF
Role of α-Tubulin Acetylation and Protein Kinase D2 Ser/Tyr Phosphorylation in Modulation by Ghrelin of Porphyromonas gingivalis-Induced Enhancement in Matrix Metalloproteinase-9 (MMP-9) Secretion by Salivary Gland Cells 被引量:3
18
作者 Bronislaw L. Slomiany Amalia Slomiany 《Journal of Biosciences and Medicines》 2016年第7期82-94,共13页
Matrix metalloproteinas-9 (MMP-9) is a glycosylated endopeptidase, and hence its processing between the endoplasmic reticulum (ER), Golgi and trans-Golgi (TGN) network remains under a strict control of factors that af... Matrix metalloproteinas-9 (MMP-9) is a glycosylated endopeptidase, and hence its processing between the endoplasmic reticulum (ER), Golgi and trans-Golgi (TGN) network remains under a strict control of factors that affect the microtubule (MT) stabilization, and the recruitment and activation of coat and cargo proteins, including ADP-ribosylation factors (Arfs) and protein kinase D (PKD). Here, we report on the factors implicated in the regulation of MMP-9 secretion by salivary gland acinar cells in response to P. gingivalis LPS, and the effect of hormone, ghrelin. We show that the LPS-elicited induction in MMP-9 secretion is associated with the increase in α-tubulin acetylation and the enhancement in MT stabilization, while the modulatory effect of ghrelin is reflected in a decrease in α-tubulin acetylation. Further, the effect of the LPS occurs in concert with up-regulation in Arf-guanine nucleotide exchange factor (GEF)-mediated Arf1 activation and the TGN recruitment of PKD2, while ghrelin exerts the modulatory effect on Arf-GEF activation. Moreover, we reveal that the LPS-induced up-regulation in MMP-9 secretion is reflected in a marked increase in PKCδ-mediated PKD2 phosphorylation on Ser, while the modulatory effect of ghrelin is manifested by the SFK-PTKs-dependent phosphorylation of PKD2 on Tyr. The findings demonstrate that MT stabilization along with Arf-GEF-mediated Arf1/PKD2 activation play a major role in P. gingivalis LPS-induced up-regulation in salivary gland acinar cell MMP-9 secretion, and point the modulatory mode of action by ghrelin. 展开更多
关键词 Porphyromonas gingivalis Oral Mucosa GHRELIN MMP-9 α-Tubulin Acetylation Arf1 PKD2 Ser/Tyr Phosphorylation
下载PDF
An early report: a modified porphyrin-linked metronidazole targeting intracellular Porphyromonas gingivalis in cultured oral epithelial cells 被引量:1
19
作者 Ping Ye Jiho Chang +1 位作者 Lin Feng Foo Benjamin C-M Yap 《International Journal of Oral Science》 SCIE CAS CSCD 2017年第3期167-173,共7页
Porphyromonas gingivalis (P. gingivalis) has a strong association with the pathogenesis of periodontal disease. Recurrence of periodontal disease following therapy is attributed to numerous factors, and of growing i... Porphyromonas gingivalis (P. gingivalis) has a strong association with the pathogenesis of periodontal disease. Recurrence of periodontal disease following therapy is attributed to numerous factors, and of growing interest is the potential problem of intracellular bacteria that are able to persist and multiply within the host cell, thereby facilitating relapse of infection. The effect of antibiotic therapy in controlling P. gingivalis is questionable. Accordingly, while metronidazole is very effective against anaerobic extracellular P. gingivalis by disrupting the DNA of anaerobic microbial cells, this antibiotic does not effectively penetrate into mammalian cells to inhibit intracellular bacteria. Therefore in the present study, a modified porphyrin-linked metronidazole adducts, developed in our laboratory, was used to kill intracellular P. gingivalis. A series of experiments were performed, including cytotoxicity assays and cellular uptake of adducts by flow cytometry coupled with live cell imaging analysis, P. gingivalis invasion and elimination assays, and the analysis of colocalization of P. gingivalis and porphyrin-linked metronidazole by confocal laser scanning microscopy. Findings indicated that P. gingivalis and porphyrin-linked metronidazole were colocalized in the cytoplasm, and this compound was able to kill P. gingivalis intracellular with a sufficient culture time. This is a novel antimicrobial approach in the elimination of P. gingivalis from the oral cavity. 展开更多
关键词 porphyrin-linked metronidazole Porphyromonas gingivalis PERIODONTITIS oral epithelial cells
下载PDF
Role of Rac1/p38 and ERK-Dependent Cytosolic Phospholipase A2 Activation in Porphyromonas gingivalis-Evoked Induction in Matrix Metalloproteinase-9 (MMP-9) Release by Salivary Gland Cells 被引量:3
20
作者 Bronislaw L. Slomiany Amalia Slomiany 《Journal of Biosciences and Medicines》 2016年第4期68-79,共12页
Matrix metalloproteinase-9 (MMP-9) is a highly glycosylated endopeptidase implicated in a wide rage of oral mucosal inflammatory and neoplastic diseases, including chronic periodontitis, a persistent mucosal inflammat... Matrix metalloproteinase-9 (MMP-9) is a highly glycosylated endopeptidase implicated in a wide rage of oral mucosal inflammatory and neoplastic diseases, including chronic periodontitis, a persistent mucosal inflammation attributed primarily to infection by oral anaerobe, P. gingivalis. In this study, we explored the role of Rac1 and mitogen-activated protein kinases (MAPKs) in the processes of MMP-9 release in sublingual salivary gland cells exposed to P. gingivalis key endotoxin, cell wall lipopolysaccharide (LPS). We demonstrate that the LPS-elicited induction in the acinar cell MMP-9 release is associated with MAPK, ERK and p38 activation, and occurs with the involvement of Rac1 and cytosolic phospholipase A<sub>2</sub> (cPLA<sub>2</sub>). Further, we reveal that the LPS-induced MMP-9 release involves ERK-mediated phosphorylation of cPLA<sub>2</sub> on Ser<sup>505</sup> that is essential for its membrane translocation with Rac1, and that this process requires p38 activation. Moreover, we show that phosphorylation and membrane localization of p38 with Rac1-GTP play a pivotal role in cPLA<sub>2</sub>-dependent induction in MMP-9 release. Thus collectively, our findings infer that P. gingivalis LPS-induced up-regulation in the acinar cell MMP-9 release requires ERK-dependent recruitment of cPLA<sub>2</sub> to the membrane localized Rac1/p38 complex. 展开更多
关键词 P. gingivalis LPS Oral Mucosa RAC1 P38 ERK cPLA2 Activation MMP-9 Release
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部