Glabridin is the main ingredient of hydrophobic fraction in licorice extract and has been shown to have anti-melanogenesis activity in skins.However,the underlying mechanism(s)remain not completely understood.The aim ...Glabridin is the main ingredient of hydrophobic fraction in licorice extract and has been shown to have anti-melanogenesis activity in skins.However,the underlying mechanism(s)remain not completely understood.The aim of this study is thus to elucidate the possible mechanisms related to the melanogenesis suppression by glabridin in cultured B16 murine melanoma cells and in UVA radiation induced hyperpigmentation model of BALB/c mice as well.Molecular docking simulations revealed that between catalytic core residues and the compound.The treatment by glabridin significantly downregulated both transcriptional and/or protein expression of melanogenesis-related factors including melanocyte stimulating hormone receptor(MC1R),microphthalmia-associated transcription factor(MITF),tyrosinase(TYR),TYR-related protein-1(TRP-1)and TRP-2 in B16 cells.Both PKA/MITF and MAPK/MITF signaling pathways were found to be involved in the suppression of melanogenesis by glabridin in B16 cells.Also in vivo glabridin therapy significantly reduced hyperpigmentation,epidermal thickening,roughness and inflammation induced by frequent UVA exposure in mice skins,thus beneficial for skin healthcare.These data further look insights into the molecular mechanisms of melanogenesis suppression by glabridin,rationalizing the application of the natural compound for skin healthcare.展开更多
Objective: To evaluate the anti-inflammatory property of both glycyrrhizic acid(GA)and glabridin in reducing inflammation to accelerate wound regeneration on 3T3-L1 and NIH-3T3 fibroblast cell lines.Methods: Cell prol...Objective: To evaluate the anti-inflammatory property of both glycyrrhizic acid(GA)and glabridin in reducing inflammation to accelerate wound regeneration on 3T3-L1 and NIH-3T3 fibroblast cell lines.Methods: Cell proliferation and viability assay(MTT assay), scratch wound healing assays,and quantitative real-time PCR were conducted to investigate the effects on cell proliferation,cell migration, and expression of CXC chemokine ligand 5 inflammation gene respectively.Results: Results showed that at a low concentration of 1 × 10^(-8)mol/L, glabridin down regulated cell proliferation in NIH-3T3 significantly, suggesting its involvement in ERK1/2 signaling pathway. GA and glabridin significantly accelerated cell migration through wound healing in both 3T3-L1 and NIH-3T3 and significantly down regulated the expression of CXC chemokine ligand 5 in 3T3-L1 at concentration 1 × 10^(-8)mol/L,indicating the possible involvement of nuclear factor-k B and cyclooxygenase 2 transcriptions modulation.Conclusions: Both GA and glabridin can serve as potential treatment for chronic inflammatory disease, and glabridin as an oncogenic inhibitor due to its anti-proliferative property.展开更多
The aim of the current study was to investigate the pharmacological activity of glabridinon the isolated human saphenous vein (SV) and explore the underlying mechanisms. Samples of patients' SVs were removed durin...The aim of the current study was to investigate the pharmacological activity of glabridinon the isolated human saphenous vein (SV) and explore the underlying mechanisms. Samples of patients' SVs were removed during bypass surgery, and 4-mm lengths of the vessels were placedin Krebs solution at ±4℃ and hung in an isolated organ bath to assess their contraction/relaxationresponses. The contraction/relaxation responses were recorded to observe if the cyclic guanosinemonophosphate (cGMP)/protein kinase G (PKG) pathway mediates the relaxant effect of glabridinafter treatment with blockers like ODQ (a guanylate cyclase inhibitor), KT5823 (a PKG inhibitor),isobutylmethylxanthine [IBMX, a phosphodiesterase (PDE) inhibitor], and cantharidin [Cant,a myosin light-chain phosphatase (MLCP) inhibitor]. Moreover, nitric oxide (NO), cGMP, andPKG levels in SV tissues were determined by ELISA after incubation with glabridin, N(o)-nitro-L-arginine methyl ester (L-Name, a NO synthetase inhibitor), phenylephrine (PE), ODQ, IBMX,and KT5823. The results showed that glabridin relaxed the vascular smooth muscle of humanSV pretreated with PE in a dose-dependent manner, which was independent of the endothelium.The vasorelaxant effect of glabridin was only inhibited by iberiotoxin (IbTX), Cant, and KT5823.Glabridin increased cGMP and PKG levels in SV homogenates, whereas it did not alter the NOlevel. The enhancing efects of cGMP and PKG levels by glabridin were abolished by ODQ andKT5823. In conclusion, glabridin has a vasorelaxant effect, which is associated with the activationof BKc. channels and inhibition of PDE.展开更多
Lung cancer is the leading cause of cancer related death in the United States killing over 130,000 people each year. While a combination of chemo and radiation therapy may be effective, surgery is still required for m...Lung cancer is the leading cause of cancer related death in the United States killing over 130,000 people each year. While a combination of chemo and radiation therapy may be effective, surgery is still required for many patients. Without surgery, the disease may progress and lead to metastases. We sought to determine if treatment with anti-non-muscle myosin IIA antibody would inhibit movement of the cells in the presence and absence of glabridin (an isoflavonoid compound shown to inhibit cell migration by inhibiting myosin). We compared inhibition by glabridin to that of an anti-non-muscle myosin IIA antibody and a combination therapy of both at 12 and 24 hours post wound creation. Cells that took up the anti-non-muscle myosin IIA antibody were greatly inhibited in motility and exhibited no significant change in wound healing. Glabridin treatment resulted in a dramatic increase in wound size within 12 hours and regeneration within 24 hours. The greatest decrease in motility was observed in cells treated with the combination of both glabridin and anti-non-muscle myosin IIA antibody. By 24 hrs, cell migration had halted due to death of the cells resulting from this combination. Further testing needs to be done to determine a safe mode of delivery of the combination therapy to ensure only local distribution. Controlled release drug delivery depot systems have been used as a means to provide local release of drugs intra-tumorally or adjacent to the cancerous tissue after surgical resection and have great potential.展开更多
Transthyretin(TTR), as a tetrameric protein, functions as a neuroprotector. The native TTR homotetramer dissociates into dimers and monomers. Dimers and monomers self-assemble into amyloid fibrils, and this process ...Transthyretin(TTR), as a tetrameric protein, functions as a neuroprotector. The native TTR homotetramer dissociates into dimers and monomers. Dimers and monomers self-assemble into amyloid fibrils, and this process can lead to some diseases. Native TTR homotetramer is a widely accepted model for TTR amyloid formation. In this study, simulations using molecular dynamics(MD) and steered MD(SMD) were performed to explore the mechanisms for glabridin(Glab), a specific inhibitor for TTR binding, for V30A mutant and wild-type(WT) TTR. MD simulation results indicate that, compared with Glab binding to WT and V30A mutant, the WT TTR could lead to the collapse of β-strands from Ser52 to His56 at chain A. This phenomenon facilitated the easy dissociation of chains A and C. Calculations of the binding free energy between the two chains showed that the V30A-Glab TTR complex displayed a lower binding energy than other systems(WT TTR and WT-Glab TTR). Then, SMD simulation was performed to ex- plore the unbinding pathway for Glab through the WT and V30A mutant TTR. The results show that Lysl 5(chain A) produced a hydrogen bond with Glab at the force peak via the WT TTR tunnel. Meanwhile, in the V30A TTR mutant, the hydrogen bond between Lysl 5(chain A) and Glab was broken at the force peak. This condition was beneficial for Glab to be taken off from the protein. Our theoretical results will be useful in designing a new specific inhibitor of TTR protein to control the TTR homotetramer dissociation.展开更多
基金supported by the Inner Mongolia Autonomous Region Science and Technology Revitalization Foundation (2021CG0029)the National Natural Science Foundation of China (22178070)
文摘Glabridin is the main ingredient of hydrophobic fraction in licorice extract and has been shown to have anti-melanogenesis activity in skins.However,the underlying mechanism(s)remain not completely understood.The aim of this study is thus to elucidate the possible mechanisms related to the melanogenesis suppression by glabridin in cultured B16 murine melanoma cells and in UVA radiation induced hyperpigmentation model of BALB/c mice as well.Molecular docking simulations revealed that between catalytic core residues and the compound.The treatment by glabridin significantly downregulated both transcriptional and/or protein expression of melanogenesis-related factors including melanocyte stimulating hormone receptor(MC1R),microphthalmia-associated transcription factor(MITF),tyrosinase(TYR),TYR-related protein-1(TRP-1)and TRP-2 in B16 cells.Both PKA/MITF and MAPK/MITF signaling pathways were found to be involved in the suppression of melanogenesis by glabridin in B16 cells.Also in vivo glabridin therapy significantly reduced hyperpigmentation,epidermal thickening,roughness and inflammation induced by frequent UVA exposure in mice skins,thus beneficial for skin healthcare.These data further look insights into the molecular mechanisms of melanogenesis suppression by glabridin,rationalizing the application of the natural compound for skin healthcare.
基金Support by the Exploratory Research Grants Scheme(ERGS/1/2012/STG08/TAYLOR/03/2),Ministry of Higher Education,Malaysia
文摘Objective: To evaluate the anti-inflammatory property of both glycyrrhizic acid(GA)and glabridin in reducing inflammation to accelerate wound regeneration on 3T3-L1 and NIH-3T3 fibroblast cell lines.Methods: Cell proliferation and viability assay(MTT assay), scratch wound healing assays,and quantitative real-time PCR were conducted to investigate the effects on cell proliferation,cell migration, and expression of CXC chemokine ligand 5 inflammation gene respectively.Results: Results showed that at a low concentration of 1 × 10^(-8)mol/L, glabridin down regulated cell proliferation in NIH-3T3 significantly, suggesting its involvement in ERK1/2 signaling pathway. GA and glabridin significantly accelerated cell migration through wound healing in both 3T3-L1 and NIH-3T3 and significantly down regulated the expression of CXC chemokine ligand 5 in 3T3-L1 at concentration 1 × 10^(-8)mol/L,indicating the possible involvement of nuclear factor-k B and cyclooxygenase 2 transcriptions modulation.Conclusions: Both GA and glabridin can serve as potential treatment for chronic inflammatory disease, and glabridin as an oncogenic inhibitor due to its anti-proliferative property.
文摘The aim of the current study was to investigate the pharmacological activity of glabridinon the isolated human saphenous vein (SV) and explore the underlying mechanisms. Samples of patients' SVs were removed during bypass surgery, and 4-mm lengths of the vessels were placedin Krebs solution at ±4℃ and hung in an isolated organ bath to assess their contraction/relaxationresponses. The contraction/relaxation responses were recorded to observe if the cyclic guanosinemonophosphate (cGMP)/protein kinase G (PKG) pathway mediates the relaxant effect of glabridinafter treatment with blockers like ODQ (a guanylate cyclase inhibitor), KT5823 (a PKG inhibitor),isobutylmethylxanthine [IBMX, a phosphodiesterase (PDE) inhibitor], and cantharidin [Cant,a myosin light-chain phosphatase (MLCP) inhibitor]. Moreover, nitric oxide (NO), cGMP, andPKG levels in SV tissues were determined by ELISA after incubation with glabridin, N(o)-nitro-L-arginine methyl ester (L-Name, a NO synthetase inhibitor), phenylephrine (PE), ODQ, IBMX,and KT5823. The results showed that glabridin relaxed the vascular smooth muscle of humanSV pretreated with PE in a dose-dependent manner, which was independent of the endothelium.The vasorelaxant effect of glabridin was only inhibited by iberiotoxin (IbTX), Cant, and KT5823.Glabridin increased cGMP and PKG levels in SV homogenates, whereas it did not alter the NOlevel. The enhancing efects of cGMP and PKG levels by glabridin were abolished by ODQ andKT5823. In conclusion, glabridin has a vasorelaxant effect, which is associated with the activationof BKc. channels and inhibition of PDE.
文摘Lung cancer is the leading cause of cancer related death in the United States killing over 130,000 people each year. While a combination of chemo and radiation therapy may be effective, surgery is still required for many patients. Without surgery, the disease may progress and lead to metastases. We sought to determine if treatment with anti-non-muscle myosin IIA antibody would inhibit movement of the cells in the presence and absence of glabridin (an isoflavonoid compound shown to inhibit cell migration by inhibiting myosin). We compared inhibition by glabridin to that of an anti-non-muscle myosin IIA antibody and a combination therapy of both at 12 and 24 hours post wound creation. Cells that took up the anti-non-muscle myosin IIA antibody were greatly inhibited in motility and exhibited no significant change in wound healing. Glabridin treatment resulted in a dramatic increase in wound size within 12 hours and regeneration within 24 hours. The greatest decrease in motility was observed in cells treated with the combination of both glabridin and anti-non-muscle myosin IIA antibody. By 24 hrs, cell migration had halted due to death of the cells resulting from this combination. Further testing needs to be done to determine a safe mode of delivery of the combination therapy to ensure only local distribution. Controlled release drug delivery depot systems have been used as a means to provide local release of drugs intra-tumorally or adjacent to the cancerous tissue after surgical resection and have great potential.
基金Supported by the Major Scientific Research Projects of Jilin Province, China(No.20140203025NY) and the Natural Science Foundation of Jilin Province, China(No. 3B812C201465).
文摘Transthyretin(TTR), as a tetrameric protein, functions as a neuroprotector. The native TTR homotetramer dissociates into dimers and monomers. Dimers and monomers self-assemble into amyloid fibrils, and this process can lead to some diseases. Native TTR homotetramer is a widely accepted model for TTR amyloid formation. In this study, simulations using molecular dynamics(MD) and steered MD(SMD) were performed to explore the mechanisms for glabridin(Glab), a specific inhibitor for TTR binding, for V30A mutant and wild-type(WT) TTR. MD simulation results indicate that, compared with Glab binding to WT and V30A mutant, the WT TTR could lead to the collapse of β-strands from Ser52 to His56 at chain A. This phenomenon facilitated the easy dissociation of chains A and C. Calculations of the binding free energy between the two chains showed that the V30A-Glab TTR complex displayed a lower binding energy than other systems(WT TTR and WT-Glab TTR). Then, SMD simulation was performed to ex- plore the unbinding pathway for Glab through the WT and V30A mutant TTR. The results show that Lysl 5(chain A) produced a hydrogen bond with Glab at the force peak via the WT TTR tunnel. Meanwhile, in the V30A TTR mutant, the hydrogen bond between Lysl 5(chain A) and Glab was broken at the force peak. This condition was beneficial for Glab to be taken off from the protein. Our theoretical results will be useful in designing a new specific inhibitor of TTR protein to control the TTR homotetramer dissociation.