期刊文献+
共找到2,616篇文章
< 1 2 131 >
每页显示 20 50 100
基于Apriori算法的煤矿安全事故分析 被引量:2
1
作者 景国勋 秦洪利 蒋方 《安全与环境学报》 CAS CSCD 北大核心 2024年第6期2313-2320,共8页
为分析煤矿事故报告中的危险致因因素,统计分析了2018—2022年全国煤矿事故报告数据,采用Apriori关联规则算法,并利用Gephi进行关联规则可视化,探究各个致因之间的复杂关系。首先对数据进行预处理,计算词频-逆向文件频率(Term Frequency... 为分析煤矿事故报告中的危险致因因素,统计分析了2018—2022年全国煤矿事故报告数据,采用Apriori关联规则算法,并利用Gephi进行关联规则可视化,探究各个致因之间的复杂关系。首先对数据进行预处理,计算词频-逆向文件频率(Term Frequency-Inverse Document Frequency, TF-IDF),提取了78个煤矿事故致因因素,其中人因层包括31个因素,设备层包括9个因素,管理层包括31个因素,环境层包括7个因素;然后,经过关联规则挖掘算法,得到了585条关联规则,绘制了其支持度、置信度和提升度的散点图;最后,根据Gephi生成的事故致因复杂网络图,分别分析了高支持度、高置信度和高提升度关联规则致因因素。结果表明:基于Apriori算法的煤矿事故致因分析,得到了人因层、管理层、设备层和环境层4个方面的关键致因因素;对煤矿关键致因因素进行直观、多视图的展现,有助于提高煤矿安全管理水平。 展开更多
关键词 安全工程 煤矿事故 事故原因 APRIORI算法 复杂网络图
下载PDF
多任务联合学习的图卷积神经网络推荐 被引量:1
2
作者 王永贵 邹赫宇 《计算机工程与应用》 CSCD 北大核心 2024年第4期306-314,共9页
基于图神经网络的协同过滤推荐可以更有效地挖掘用户项目之间的交互信息,但其性能依然受到数据稀疏和表征学习质量不高问题的影响,因此提出一种多任务联合学习的图卷积神经网络推荐(multi-task joint learning for graph convolutional ... 基于图神经网络的协同过滤推荐可以更有效地挖掘用户项目之间的交互信息,但其性能依然受到数据稀疏和表征学习质量不高问题的影响,因此提出一种多任务联合学习的图卷积神经网络推荐(multi-task joint learning for graph convolutional neural network recommendations,MTJL-GCN)模型。利用图神经网络在用户-项目交互图上所聚集到的同质结构信息与初始嵌入信息形成结构邻居关系,设计节点邻居关系的对比学习辅助任务来缓解数据稀疏问题;向节点的原始表征添加随机的统一噪声进行表征级数据增强,构建节点表征关系的对比学习辅助任务,并提出直接优化对齐性和均匀性两个属性的学习目标来提高表征学习质量;将图协同过滤推荐任务与对比学习辅助任务和直接优化学习目标进行联合训练,从而提升推荐性能。在Amazon-books和Yelp2018两个公开数据集上进行实验,该模型在Recall@k和NDCG@k两个推荐性能指标上的表现均优于基线模型,证明了MTJL-GCN模型的有效性。 展开更多
关键词 推荐算法 图卷积神经网络 对比学习 表征学习 数据稀疏 协同过滤
下载PDF
基于DGLPP-SVDD算法的化工过程故障检测 被引量:1
3
作者 孙四通 李师庆 《化工自动化及仪表》 CAS 2024年第2期310-318,共9页
为解决传统全局局部保留投影算法(GLPP)不能充分利用已有故障数据进行特征提取的缺点,提出了判别全局局部保留投影算法(DGLPP)。在数据降维处理后,为应对高斯和非高斯混合分布的过程数据特性,通过支持向量数据描述算法(SVDD)构建故障检... 为解决传统全局局部保留投影算法(GLPP)不能充分利用已有故障数据进行特征提取的缺点,提出了判别全局局部保留投影算法(DGLPP)。在数据降维处理后,为应对高斯和非高斯混合分布的过程数据特性,通过支持向量数据描述算法(SVDD)构建故障检测统计量。将两种算法相结合提出基于DGLPP-SVDD的故障检测方法。将DGLPP-SVDD算法应用于TE过程仿真,并与GLPP算法对比,结果表明:DGLPP-SVDD算法具有更短的故障检测滞后时间和更高的故障检测率。 展开更多
关键词 特征提取 DGLPP-SVDD算法 图嵌入 故障检测 全局局部保留投影 支持向量数据描述
下载PDF
基于RoBERTa和图增强Transformer的序列推荐方法 被引量:2
4
作者 王明虎 石智奎 +1 位作者 苏佳 张新生 《计算机工程》 CAS CSCD 北大核心 2024年第4期121-131,共11页
自推荐系统出现以来,有限的数据信息就一直制约着推荐算法的进一步发展。为降低数据稀疏性的影响,增强非评分数据的利用率,基于神经网络的文本推荐模型相继被提出,但主流的卷积或循环神经网络在文本语义理解和长距离关系捕捉方面存在明... 自推荐系统出现以来,有限的数据信息就一直制约着推荐算法的进一步发展。为降低数据稀疏性的影响,增强非评分数据的利用率,基于神经网络的文本推荐模型相继被提出,但主流的卷积或循环神经网络在文本语义理解和长距离关系捕捉方面存在明显劣势。为了更好地挖掘用户与商品之间的深层潜在特征,进一步提高推荐质量,提出一种基于Ro BERTa和图增强Transformer的序列推荐(RGT)模型。引入评论文本数据,首先利用预训练的Ro BERTa模型捕获评论文本中的字词语义特征,初步建模用户的个性化兴趣,然后根据用户与商品的历史交互信息,构建具有时序特性的商品关联图注意力机制网络模型,通过图增强Transformer的方法将图模型学习到的各个商品的特征表示以序列的形式输入Transformer编码层,最后将得到的输出向量与之前捕获的语义表征以及计算得到的商品关联图的全图表征输入全连接层,以捕获用户全局的兴趣偏好,实现用户对商品的预测评分。在3组真实亚马逊公开数据集上的实验结果表明,与Deep FM、Conv MF等经典文本推荐模型相比,RGT模型在均方根误差(RMSE)和平均绝对误差(MAE)2种指标上有显著提升,相较于最优对比模型最高分别提升4.7%和5.3%。 展开更多
关键词 推荐算法 评论文本 RoBERTa模型 图注意力机制 Transformer机制
下载PDF
融合简化可视图和A^(*)算法的矿用车辆全局路径规划算法
5
作者 张传伟 芦思颜 +5 位作者 秦沛霖 周睿 赵瑞祺 杨佳佳 张天乐 赵聪 《工矿自动化》 CSCD 北大核心 2024年第10期12-20,共9页
针对矿用车辆在狭窄、弯曲及有未知障碍物的井下巷道中的路径规划效率低的问题,提出了一种融合简化可视图(SVG)和A^(*)算法的全局路径规划算法DVGA^(*)。在构建真实环境点云地图基础上,连接车辆在不同视点下的可视切点,动态生成SVG;将... 针对矿用车辆在狭窄、弯曲及有未知障碍物的井下巷道中的路径规划效率低的问题,提出了一种融合简化可视图(SVG)和A^(*)算法的全局路径规划算法DVGA^(*)。在构建真实环境点云地图基础上,连接车辆在不同视点下的可视切点,动态生成SVG;将可视切点依次存入OPEN表作为节点,根据A^(*)算法估价函数选取路径最短情况下的节点加入CLOSED表,得到最优路径点并存储路径,同时删除OPEN表中的其余节点,循环此过程,直到OPEN表中出现终点;最后利用路径平滑算法进一步减少路径节点数量,从而提高路径规划效率。实验结果表明,与完整可视图+A^(*)算法、SVG+A^(*)算法及SVGCA^(*)算法对比,DVGA^(*)算法对复杂长距离路径的规划时间最短,平均路径长度分别缩短了10.79%,6.26%和2.86%,具有更强的适应性和更高的规划成功率。井下试验结果表明:在巷道宽度变换区域和躲避静态障碍物时,相比SVGCA^(*)算法,DVGA^(*)算法规划的路径更加平滑;躲避动态障碍物时,DVGA^(*)算法能够及时进行路径纠正,保证了路径规划的时效性和稳定性;在复杂多变的巷道环境中,DVGA^(*)算法的规划时间和路径长度相比SVGCA^(*)算法分别减少了11.51%和1.54%,具有更高的环境适应性和稳定性。 展开更多
关键词 井下无人驾驶 全局路径规划 简化可视图 A^(*)算法 路径平滑
下载PDF
动量余弦相似度梯度优化图卷积神经网络 被引量:1
6
作者 闫建红 段运会 《计算机工程与应用》 CSCD 北大核心 2024年第14期133-143,共11页
传统梯度下降算法仅对历史梯度进行指数加权累加,没有利用梯度的局部变化,造成优化过程越过全局最优解,即使收敛到最优解也会在最优解附近震荡,其训练图卷积神经网络会造成收敛速度慢、测试准确度低。利用相邻两次梯度的余弦相似度,动... 传统梯度下降算法仅对历史梯度进行指数加权累加,没有利用梯度的局部变化,造成优化过程越过全局最优解,即使收敛到最优解也会在最优解附近震荡,其训练图卷积神经网络会造成收敛速度慢、测试准确度低。利用相邻两次梯度的余弦相似度,动态调整学习率,提出余弦相似度梯度下降(SimGrad)算法。为进一步提升图卷积神经网络训练的收敛速度和测试准确度,减少震荡,结合动量思想提出动量余弦相似度梯度下降(NSimGrad)算法。通过收敛性分析,证明SimGrad算法、NSimGrad算法都具有O(√T)的遗憾界。在构建的三个非凸函数进行测试,并结合图卷积神经网络在四个数据集上进行实验,结果表明SimGrad算法保证了图卷积神经网络的收敛性,NSimGrad算法进一步提高图卷积神经网络训练的收敛速度和测试准确度,SimGrad、NSimGrad算法相较于Adam、Nadam具有更好的全局收敛性和优化能力。 展开更多
关键词 梯度下降类算法 余弦相似度 图卷积神经网络 遗憾界 全局收敛性
下载PDF
k阶采样和图注意力网络的知识图谱表示模型
7
作者 刘文杰 姚俊飞 陈亮 《计算机工程与应用》 CSCD 北大核心 2024年第2期113-120,共8页
知识图谱表示(KGE)旨在将知识图谱中的实体和关系映射到低维度向量空间而获得其向量表示。现有的KGE模型只考虑一阶近邻,这影响了知识图谱中推理和预测任务的准确性。为了解决这一问题,提出了一种基于k阶采样算法和图注意力网络的KGE模... 知识图谱表示(KGE)旨在将知识图谱中的实体和关系映射到低维度向量空间而获得其向量表示。现有的KGE模型只考虑一阶近邻,这影响了知识图谱中推理和预测任务的准确性。为了解决这一问题,提出了一种基于k阶采样算法和图注意力网络的KGE模型。k阶采样算法通过聚集剪枝子图中的k阶邻域来获取中心实体的邻居特征。引入图注意力网络来学习中心实体邻居的注意力值,通过邻居特征加权和得到新的实体向量表示。利用ConvKB作为解码器来分析三元组的全局表示特征。在WN18RR、FB15k-237、NELL-995、Kinship数据集上的评价实验表明,该模型在链接预测任务上的性能明显优于最新的模型。此外,还讨论了阶数k和采样系数b的改变对模型命中率的影响。 展开更多
关键词 知识图谱表示 k阶采样算法 图注意力网络 剪枝子图 链接预测
下载PDF
基于注意力机制和用户属性的图卷积网络推荐模型
8
作者 张荣梅 李甜甜 张佳惠 《传感器与微系统》 CSCD 北大核心 2024年第5期129-132,共4页
为进一步提高图卷积网络(GCN)的推荐精度和模型的收敛速度,提出了基于注意力机制和用户属性的GCN推荐模型。该模型通过轻量级GCN学习用户和项目的高阶关联信息;然后,利用注意力机制对不同邻域特征嵌入加权求和得到用户、项目潜在特征向... 为进一步提高图卷积网络(GCN)的推荐精度和模型的收敛速度,提出了基于注意力机制和用户属性的GCN推荐模型。该模型通过轻量级GCN学习用户和项目的高阶关联信息;然后,利用注意力机制对不同邻域特征嵌入加权求和得到用户、项目潜在特征向量,利用多层感知机提取的用户属性特征向量融合到用户潜在特征向量中;最后,用户、项目潜在特征向量的内积作为预测结果进行推荐。通过在Movielens-1M数据集上实验验证,结果表明:该模型的推荐效果均优于基线模型。 展开更多
关键词 推荐算法 图卷积网络 用户属性 注意力机制
下载PDF
基于知识图谱的SMT产线工艺推荐与优化
9
作者 刘潇龙 李鑫 +1 位作者 朱孟达 黄文艳 《机械设计与制造工程》 2024年第6期122-126,共5页
面向复杂电路板组件产品,依赖人工经验设计表面贴装技术(SMT)工艺的传统方法存在准确度与适配度低、设计效率低、实物试错成本高等问题,提出了一种基于知识图谱的SMT产线工艺推荐与优化算法。建立知识图谱系统描述SMT产线工艺参数之间... 面向复杂电路板组件产品,依赖人工经验设计表面贴装技术(SMT)工艺的传统方法存在准确度与适配度低、设计效率低、实物试错成本高等问题,提出了一种基于知识图谱的SMT产线工艺推荐与优化算法。建立知识图谱系统描述SMT产线工艺参数之间的关系,利用随机森林算法计算各个参数重要度,更新参数权重推荐合适参数,并与完全平均加权法对比,验证了其准确性与稳定性。 展开更多
关键词 表面贴装技术 工艺参数 知识图谱 随机森林算法
下载PDF
最省刻度尺设计的组合差集递推算法
10
作者 唐保祥 任韩 《浙江大学学报(理学版)》 CAS CSCD 北大核心 2024年第2期178-185,共8页
在长度为n(n≥2为正整数)的直尺上最少刻多少个刻度就能度量1到n的所有长度,这便是至今未解决的最省刻度尺问题。阐明了最省刻度尺与极小优美图之间的关系,给出了计算最省刻度尺的所有最省刻度值的组合差集递推算法,得到长度为3~40的最... 在长度为n(n≥2为正整数)的直尺上最少刻多少个刻度就能度量1到n的所有长度,这便是至今未解决的最省刻度尺问题。阐明了最省刻度尺与极小优美图之间的关系,给出了计算最省刻度尺的所有最省刻度值的组合差集递推算法,得到长度为3~40的最省刻度尺的所有最省刻度值,同时,结合图论模型,给出了长度为41~82的最省刻度尺的最省刻度值。 展开更多
关键词 最省刻度尺 优美标号 极小优美图 优美标号算法 组合差集递推算法
下载PDF
一种MAKLINK图多节点链路建模的路径规划研究
11
作者 孙培刚 张全禹 许春和 《电子设计工程》 2024年第4期140-143,148,共5页
针对传统MAKLINK图规划路径线路改变时,其最优化路径易与环境约束条件冲突的问题,提出了在MAKLINK图中各链路上增加节点数目的方法,以提高系统建模的适应性和鲁棒性。设计的多节点链路通过dijkstra算法得到更为理想的次优化路径,由蚁群... 针对传统MAKLINK图规划路径线路改变时,其最优化路径易与环境约束条件冲突的问题,提出了在MAKLINK图中各链路上增加节点数目的方法,以提高系统建模的适应性和鲁棒性。设计的多节点链路通过dijkstra算法得到更为理想的次优化路径,由蚁群算法进行迭代计算获得最优化路径,实现了在保证路径适应度的前提下,提高优化路径对环境约束条件的适应性。实验结果表明,与基本MAKLINK图路径规划算法相比,多节点链路的建模路径规划算法可有效提高次优路径的建模精度,最优路径的适应度值较单节点链路减小了1.43%,具有一定的建模优势。 展开更多
关键词 MAKLINK图 多节点链路 DIJKSTRA算法 蚁群算法
下载PDF
知识图谱视角下我国股票市场风险传染研究
12
作者 贺毅岳 戴欣远 高妮 《运筹与管理》 CSSCI CSCD 北大核心 2024年第2期151-157,共7页
以我国A股上市公司大数据为基础,深入分析上市公司之间的多层网络关联关系,构建上市公司关联知识图谱,进而提出基于个性化PageRank算法的风险随机游走模型,对风险传染过程进行模拟。首先,运用爬虫技术获取上市公司的多维度关联数据,进... 以我国A股上市公司大数据为基础,深入分析上市公司之间的多层网络关联关系,构建上市公司关联知识图谱,进而提出基于个性化PageRank算法的风险随机游走模型,对风险传染过程进行模拟。首先,运用爬虫技术获取上市公司的多维度关联数据,进而通过实体消歧和实体统一处理实现知识的获取和融合,构建A股上市公司的关联知识图谱;其次,运用图论基本原理将关联图谱转化为风险传染图谱,并将个性化PageRank风险随机游走模型引入到风险图谱中,对突发风险事件的传染过程进行高效的可视模拟和预测。本文所构建的知识图谱包含约15万个节点、18万条关系,支持可视化查询、智能化推理和风险传染模拟多重功能,从人工智能视角为金融风险传染这一复杂过程的模拟计算和高效预警提供了新的研究思路和方法,可为金融风险智能监管等研究提供有益参考。 展开更多
关键词 上市公司 知识图谱 风险传染模拟 个性化PageRank
下载PDF
图神经网络研究综述 被引量:2
13
作者 侯磊 刘金环 +1 位作者 于旭 杜军威 《计算机科学》 CSCD 北大核心 2024年第6期282-298,共17页
随着人工智能的快速发展,深度学习已经在图像、文本和语音等可在欧氏空间表示的数据中取得了巨大成功,但却一直无法很好地应用于非欧氏空间。近年来,图神经网络在非欧几里得空间中展现出了强大的表示学习能力,并广泛应用于推荐系统、自... 随着人工智能的快速发展,深度学习已经在图像、文本和语音等可在欧氏空间表示的数据中取得了巨大成功,但却一直无法很好地应用于非欧氏空间。近年来,图神经网络在非欧几里得空间中展现出了强大的表示学习能力,并广泛应用于推荐系统、自然语言处理以及机器视觉等众多领域。图神经网络模型基于信息的传播机制,具体地,图中的目标节点通过聚合邻居节点的信息来更新自身的嵌入表示。利用图神经网络,可将众多现实问题(如社交网络、知识图谱和药物化学成分等)抽象成图网络,借助图中的连接边,对不同节点之间的依赖关系进行合理建模。鉴于此,对图神经网络进行了系统综述,首先介绍了图结构数据方面的基础知识,然后对图游走算法和不同类型的图神经网络模型进行了系统梳理。进一步地,详细阐述了当前图神经网络的通用框架和应用领域,最后对图神经网络的未来进行了总结与展望。 展开更多
关键词 图结构数据 图游走算法 图卷积神经网络 图注意力网络 图残差网络 图递归网络
下载PDF
行人重识别模型的多任务损失设计
14
作者 白宗文 张哲 《西安科技大学学报》 CAS 北大核心 2024年第2期400-408,共9页
行人重识别是一项利用计算机视觉技术判断图像中是否存在特定行人的任务。为研究Re-ID模型使用身份标签不能有效地学习不同行人之间的相似局部外观问题,提出了一种基于多任务损失的Re-ID方法。首先,通过主干网络提取全局特征以及局部特... 行人重识别是一项利用计算机视觉技术判断图像中是否存在特定行人的任务。为研究Re-ID模型使用身份标签不能有效地学习不同行人之间的相似局部外观问题,提出了一种基于多任务损失的Re-ID方法。首先,通过主干网络提取全局特征以及局部特征,借助姿态估计算法检测行人身体部位,将身体部位的特征与局部特征组进行融合形成人体姿态引导特征;其次,通过多任务损失方法指导模型对人体姿态引导特征以及全局特征进行优化,从而增强模型对遮挡以及不具有区分性局部外观的鲁棒性。结果表明:多任务损失方法在Occluded-Duke、Market 1501和DukeMTMC-reID数据集上的mAP/Rank-1的精度分别达到了59.7%/67.9%,88.4%/94.9%和80.6%/89.9%。为避免训练集与测试集数据之间分布的差异性导致预训练模型产生次优检索结果的问题,提出了一种基于图卷积网络的重排序方法,该方法利用图卷积算子在图上将行人的最近邻特征传播,从而优化了每个图像的表示,以获得更优的检索结果。 展开更多
关键词 行人重识别 姿态估计算法 多任务损失 图卷积算子 重排序
下载PDF
基于知识图谱与用户兴趣的推荐算法 被引量:1
15
作者 许天月 柳先辉 赵卫东 《计算机科学》 CSCD 北大核心 2024年第2期55-62,共8页
为了解决协同过滤推荐算法中存在的冷启动以及数据稀疏性等问题,文中引入了具有丰富语义信息和路径信息的知识图谱。基于其结构特征,将图神经网络应用于知识图谱的推荐算法得到了研究者的青睐。推荐算法的核心在于获取物品特征和用户特... 为了解决协同过滤推荐算法中存在的冷启动以及数据稀疏性等问题,文中引入了具有丰富语义信息和路径信息的知识图谱。基于其结构特征,将图神经网络应用于知识图谱的推荐算法得到了研究者的青睐。推荐算法的核心在于获取物品特征和用户特征,然而,该方面研究的重点在于更好地表达物品特征,而忽略了用户特征的表示。文中在知识图谱图神经网络的基础上,提出了一种基于知识图谱与用户兴趣的推荐算法。该算法通过引入一个独立的用户兴趣捕获模块,来学习用户历史信息,引入了用户兴趣,使得推荐算法在用户和物品两个方面都得到了良好表征。实验结果表明,在MovieLens数据集上,基于知识图谱与用户兴趣的推荐算法实现了数据的充分利用,具有良好的效果,对推荐准确性起到了促进作用。 展开更多
关键词 推荐算法 知识图谱 图神经网络 用户兴趣
下载PDF
异构多平台信号处理任务调度研究 被引量:1
16
作者 李宇东 马金全 +1 位作者 谢宗甫 沈小龙 《电子科技》 2024年第1期24-32,共9页
简单的并行计算或单一异构平台已经无法满足计算量大、复杂度高的信号处理和任务调度需求,异构多平台系统已经成为信号处理和任务调度的发展趋势。针对提高平台的吞吐量、处理器的利用率以及任务的感知等问题,文中对异构多平台信号处理... 简单的并行计算或单一异构平台已经无法满足计算量大、复杂度高的信号处理和任务调度需求,异构多平台系统已经成为信号处理和任务调度的发展趋势。针对提高平台的吞吐量、处理器的利用率以及任务的感知等问题,文中对异构多平台信号处理模型进行了研究,并利用有向无环图对调度任务和软硬件资源建模。基于已提出的调度算法,对任务调度进行了归纳总结、对比分析,发现基于任务感知的混合调度算法能够较好地满足平台调度需求。利用基于任务感知的混合调度算法解决信号处理中的任务调度将是未来研究发展的趋势。 展开更多
关键词 异构多平台信号处理 软件体系 硬件架构 任务调度 任务感知 算法分类 有向无环图 混合算法
下载PDF
基于知识图谱的兴趣捕捉推荐算法 被引量:2
17
作者 金宇 陈红梅 罗川 《计算机科学》 CSCD 北大核心 2024年第1期133-142,共10页
知识图谱作为一种辅助信息,可以为推荐系统提供更多的上下文信息和语义关联信息,从而提高推荐的准确性和可解释性。通过将项目映射到知识图谱中,推荐系统可以将从知识图谱中学习到的外部知识注入到用户和项目的表示中,进而增强用户和项... 知识图谱作为一种辅助信息,可以为推荐系统提供更多的上下文信息和语义关联信息,从而提高推荐的准确性和可解释性。通过将项目映射到知识图谱中,推荐系统可以将从知识图谱中学习到的外部知识注入到用户和项目的表示中,进而增强用户和项目的表示。但在学习用户偏好时,基于图神经网络的知识图谱推荐主要通过项目实体利用知识图谱中的属性信息和关系信息等知识信息。由于用户节点并不与知识图谱直接相连,这就导致不同的关系信息和属性信息在语义上和用户偏好方面是独立的,缺乏关联。这表明,基于知识图谱的推荐难以根据知识图谱中的信息来准确捕获用户的细粒度偏好。因此,针对用户细粒度兴趣难以捕捉的问题,提出了一种基于知识图谱的兴趣捕捉推荐算法。该算法利用知识图谱中的关系和属性信息来学习用户的兴趣,并增强用户和项目的嵌入表示。为了充分利用知识图谱中的关系信息,设计了关系兴趣模块以学习用户对不同关系的细粒度兴趣。该模块将每个兴趣表示为知识图谱中关系向量的组合,并利用图卷积神经网络在用户项目图和知识图谱中传递用户兴趣以学习用户和项目的嵌入表示。此外,还设计了属性兴趣模块以学习用户对不同属性的细粒度兴趣。该模块采用切分嵌入的方法为用户和项目匹配与之相似的属性,并使用与关系兴趣模块中相似的方法进行消息传播。最终,在两个基准数据集上进行实验,实验结果验证了该方法的有效性和可行性。 展开更多
关键词 推荐算法 深度学习 知识图谱 图神经网络
下载PDF
基于有向无环图的通风管道消声设计算法
18
作者 徐彦喆 刘斌 +2 位作者 李楠 苏想 王祉涵 《科学技术与工程》 北大核心 2024年第24期10429-10438,共10页
传统的暖通空调(heating, ventilation and air conditioning, HVAC)系统声学设计多依赖于设计人员的经验,重复性工作多,自动化水平低。为实现智能化设计,应用有向无环图、带权有向邻接矩阵、科学计算可视化等方法将通风管道消声系统的... 传统的暖通空调(heating, ventilation and air conditioning, HVAC)系统声学设计多依赖于设计人员的经验,重复性工作多,自动化水平低。为实现智能化设计,应用有向无环图、带权有向邻接矩阵、科学计算可视化等方法将通风管道消声系统的声学设计过程系统化。提出一种能够自动计算管道内任意处噪音及特定的房间内噪声值的算法,包括三维模型构建,噪声衰减图生成,声学路径确定,声学单元解算,声学结果可视化等关键环节。实验结果表明:该系统鲁棒性强,计算结果准确,响应快速。所提算法结果与设计人员利用传统方法计算出的结果误差不超过±2%,计算时长均小于0.2 s,常见的中小规模的通风系统计算时间则在0.1 s以内。基于此算法计算得出的噪声值结果能够与三维模型结合,直观展示噪声分布情况,在通风空调系统设计过程中提供参考依据。 展开更多
关键词 通风管道 声学设计算法 有向无环图 算法实现
下载PDF
基于知识图谱卷积网络的学习资源推荐 被引量:1
19
作者 汤志康 武毓琦 +1 位作者 李春英 汤庸 《计算机工程》 CAS CSCD 北大核心 2024年第9期153-160,共8页
针对现有知识图谱卷积网络(KGCN)推荐模型随机采样选择邻域容易导致推荐结果不稳定的缺点,构建基于结构洞和共同邻居的重要性排序采样模型(SHCN),结合KGCN处理高维异构数据的优势,提出基于结构洞和共同邻居的KGCN推荐模型(KGCN-SHCN)。... 针对现有知识图谱卷积网络(KGCN)推荐模型随机采样选择邻域容易导致推荐结果不稳定的缺点,构建基于结构洞和共同邻居的重要性排序采样模型(SHCN),结合KGCN处理高维异构数据的优势,提出基于结构洞和共同邻居的KGCN推荐模型(KGCN-SHCN)。首先使用SHCN模型对知识图谱中的实体邻域进行排序采样,其次根据图卷积网络将实体信息与邻域采样信息进行聚合得到学习资源的特征表示,最后将学习者的特征表示和学习资源的特征表示依据预测函数得到交互概率。在3个学习资源数据集上的实验结果表明,所提模型尤其是使用求和聚合(Sum)方式时,评价指标AUC和ACC总体优于KGCN、RippleNet等基于知识图谱的推荐模型,证明了所提KGCN-SHCN模型的有效性。 展开更多
关键词 知识图谱 图卷积网络 图采样 推荐算法 学习资源
下载PDF
基于属性图的社区搜索模式及其分类体系
20
作者 赵丹枫 孔万仔 +1 位作者 黄冬梅 刘国华 《智能系统学报》 CSCD 北大核心 2024年第4期791-806,共16页
当前在属性图中的社区搜索方法较多、类型繁杂,没有系统的分类方式,约束了社区搜索的应用。为明确属性图社区搜索的类别,对属性图社区搜索分类方法进行研究。首先,首次提出属性图社区搜索模式的概念,深入分析属性图社区搜索模式之间存... 当前在属性图中的社区搜索方法较多、类型繁杂,没有系统的分类方式,约束了社区搜索的应用。为明确属性图社区搜索的类别,对属性图社区搜索分类方法进行研究。首先,首次提出属性图社区搜索模式的概念,深入分析属性图社区搜索模式之间存在的联系,提出属性图社区搜索模式的等价、从属、交叉、全异4种关系;其次,以搜索模式的输入图属性、输出图拓扑结构和各属性图社区搜索模式的实际意义为基础,构建两层分类体系,第1层是由输入属性图相同的模式集合构成的集族,这里的输入属性图包括时序、空间、关键字、权值、空属性图,第2层是由输出图拓扑结构及实际意义定位到的每一个具体的属性图社区搜索模式;然后,针对第2层中每一种模式,给出对应社区搜索算法的对比分析结果;最后,对所有属性图社区搜索模式的特性集中分析。总体而言,属性图社区搜索模式不仅为理解和分析复杂网络结构提供有力工具,也为解决实际问题提供新的视角和方法。 展开更多
关键词 图论 属性图 社区搜索 模式 内聚性 拓扑结构 关系 社区搜索算法
下载PDF
上一页 1 2 131 下一页 到第
使用帮助 返回顶部