In this paper,we investigate spacelike graphs defined over a domain Ω⊂M^(n) in the Lorentz manifold M^(n)×ℝ with the metric−ds^(2)+σ,where M^(n) is a complete Riemannian n-manifold with the metricσ,Ωhas piece...In this paper,we investigate spacelike graphs defined over a domain Ω⊂M^(n) in the Lorentz manifold M^(n)×ℝ with the metric−ds^(2)+σ,where M^(n) is a complete Riemannian n-manifold with the metricσ,Ωhas piecewise smooth boundary,and ℝ denotes the Euclidean 1-space.We prove an interesting stability result for translating spacelike graphs in M^(n)×ℝ under a conformal transformation.展开更多
Given a graph g=( V,A ) , we define a space of subgraphs M with the binary operation of union and the unique decomposition property into blocks. This space allows us to discuss a notion of minimal subgraphs (minimal c...Given a graph g=( V,A ) , we define a space of subgraphs M with the binary operation of union and the unique decomposition property into blocks. This space allows us to discuss a notion of minimal subgraphs (minimal coalitions) that are of interest for the game. Additionally, a partition of the game is defined in terms of the gain of each block, and subsequently, a solution to the game is defined based on distributing to each player (node and edge) present in each block a payment proportional to their contribution to the coalition.展开更多
As a core part of battlefield situational awareness,air target intention recognition plays an important role in modern air operations.Aiming at the problems of insufficient feature extraction and misclassification in ...As a core part of battlefield situational awareness,air target intention recognition plays an important role in modern air operations.Aiming at the problems of insufficient feature extraction and misclassification in intention recognition,this paper designs an air target intention recognition method(KGTLIR)based on Knowledge Graph and Deep Learning.Firstly,the intention recognition model based on Deep Learning is constructed to mine the temporal relationship of intention features using dilated causal convolution and the spatial relationship of intention features using a graph attention mechanism.Meanwhile,the accuracy,recall,and F1-score after iteration are introduced to dynamically adjust the sample weights to reduce the probability of misclassification.After that,an intention recognition model based on Knowledge Graph is constructed to predict the probability of the occurrence of different intentions of the target.Finally,the results of the two models are fused by evidence theory to obtain the target’s operational intention.Experiments show that the intention recognition accuracy of the KGTLIRmodel can reach 98.48%,which is not only better than most of the air target intention recognition methods,but also demonstrates better interpretability and trustworthiness.展开更多
In this paper, we investigate a blow-up phenomenon for a semilinear parabolic system on locally finite graphs. Under some appropriate assumptions on the curvature condition CDE’(n,0), the polynomial volume growth of ...In this paper, we investigate a blow-up phenomenon for a semilinear parabolic system on locally finite graphs. Under some appropriate assumptions on the curvature condition CDE’(n,0), the polynomial volume growth of degree m, the initial values, and the exponents in absorption terms, we prove that every non-negative solution of the semilinear parabolic system blows up in a finite time. Our current work extends the results achieved by Lin and Wu (Calc Var Partial Differ Equ, 2017, 56: Art 102) and Wu (Rev R Acad Cien Serie A Mat, 2021, 115: Art 133).展开更多
Let k be a positive integer and G a bipartite graph with bipartition (X,Y). A perfect 1-k matching is an edge subset M of G such that each vertex in Y is incident with exactly one edge in M and each vertex in X is inc...Let k be a positive integer and G a bipartite graph with bipartition (X,Y). A perfect 1-k matching is an edge subset M of G such that each vertex in Y is incident with exactly one edge in M and each vertex in X is incident with exactly k edges in M. A perfect 1-k matching is an optimal semi-matching related to the load-balancing problem, where a semi-matching is an edge subset M such that each vertex in Y is incident with exactly one edge in M, and a vertex in X can be incident with an arbitrary number of edges in M. In this paper, we give three sufficient and necessary conditions for the existence of perfect 1-k matchings and for the existence of 1-k matchings covering | X |−dvertices in X, respectively, and characterize k-elementary bipartite graph which is a graph such that the subgraph induced by all k-allowed edges is connected, where an edge is k-allowed if it is contained in a perfect 1-k matching.展开更多
大型语言模型(Large Language Models,LLM)已经成为现今主流的研究热点,而垂直领域行业大模型则成为落地应用的关键点,以医疗为代表的大型语言模型有着可解释性、可靠性、高安全性等要求。针对这类问题,提出MedKGGPT模型,一个基于ChatGL...大型语言模型(Large Language Models,LLM)已经成为现今主流的研究热点,而垂直领域行业大模型则成为落地应用的关键点,以医疗为代表的大型语言模型有着可解释性、可靠性、高安全性等要求。针对这类问题,提出MedKGGPT模型,一个基于ChatGLM的模型,并提出一种面向医疗领域的知识图谱(Knowledge Graphs,KGs)和LLM相结合的框架。框架主要包含两个部分:首先,通过KG三元组中的实体和关系,提出了一种基于KG结构数据的提示工程方法,使得LLM更加具有医学领域的专用知识,提高LLM的可解释性;其次,提出一种利用KG来对齐LLM的方法,将LLM的输出与KG的相关知识进行比较,验证LLM输出结果的一致性和准确性,从而增强了LLM在医疗领域的安全性。实验结果表明,最终生成的MedKGGPT模型能够输出更加具有安全性的结果,说明KG能够有效增强LLM的可解释性,为LLM应用在医疗领域提供了帮助。展开更多
This research investigates the comparative efficacy of generating zero divisor graphs (ZDGs) of the ring of integers ℤ<sub>n</sub> modulo n using MAPLE algorithm. Zero divisor graphs, pivotal in the study ...This research investigates the comparative efficacy of generating zero divisor graphs (ZDGs) of the ring of integers ℤ<sub>n</sub> modulo n using MAPLE algorithm. Zero divisor graphs, pivotal in the study of ring theory, depict relationships between elements of a ring that multiply to zero. The paper explores the development and implementation of algorithms in MAPLE for constructing these ZDGs. The comparative study aims to discern the strengths, limitations, and computational efficiency of different MAPLE algorithms for creating zero divisor graphs offering insights for mathematicians, researchers, and computational enthusiasts involved in ring theory and mathematical computations.展开更多
全国知识图谱与语义计算大会和知识图谱国际联合会议联办,是由第十八届全国知识图谱与语义计算大会2024(China Conference on Knowledge Graph and Semantic Computing,CCKS 2024)和第十三届知识图谱国际联合会议2024(International Joi...全国知识图谱与语义计算大会和知识图谱国际联合会议联办,是由第十八届全国知识图谱与语义计算大会2024(China Conference on Knowledge Graph and Semantic Computing,CCKS 2024)和第十三届知识图谱国际联合会议2024(International Joint Conference of Knowledge Graph,IJCKG 2024)联合举办。展开更多
This paper focuses on optimally determining the existence of connected paths between some given nodes in random ring-based graphs.Serving as a fundamental underlying structure in network modeling,ring topology appears...This paper focuses on optimally determining the existence of connected paths between some given nodes in random ring-based graphs.Serving as a fundamental underlying structure in network modeling,ring topology appears as commonplace in many realistic scenarios.Regarding this,we consider graphs composed of rings,with some possible connected paths between them.Without prior knowledge of the exact node permutations on rings,the existence of each edge can be unraveled through edge testing at a unit cost in one step.The problem examined is that of determining whether the given nodes are connected by a path or separated by a cut,with the minimum expected costs involved.Dividing the problem into different cases based on different topologies of the ring-based networks,we propose the corresponding policies that aim to quickly seek the paths between nodes.A common feature shared by all those policies is that we stick to going in the same direction during edge searching,with edge testing in each step only involving the test between the source and the node that has been tested most.The simple searching rule,interestingly,can be interpreted as a delightful property stemming from the neat structure of ring-based networks,which makes the searching process not rely on any sophisticated behaviors.We prove the optimality of the proposed policies by calculating the expected cost incurred and making a comparison with the other class of strategies.The effectiveness of the proposed policies is also verified through extensive simulations,from which we even disclose three extra intriguing findings:i)in a onering network,the cost will grow drastically with the number of designated nodes when the number is small and will grow slightly when that number is large;ii)in ring-based network,Depth First is optimal in detecting the connectivity between designated nodes;iii)the problem of multi-ring networks shares large similarity with that of two-ring networks,and a larger number of ties between rings will not influence the expected cost.展开更多
Graph learning,when used as a semi-supervised learning(SSL)method,performs well for classification tasks with a low label rate.We provide a graph-based batch active learning pipeline for pixel/patch neighborhood multi...Graph learning,when used as a semi-supervised learning(SSL)method,performs well for classification tasks with a low label rate.We provide a graph-based batch active learning pipeline for pixel/patch neighborhood multi-or hyperspectral image segmentation.Our batch active learning approach selects a collection of unlabeled pixels that satisfy a graph local maximum constraint for the active learning acquisition function that determines the relative importance of each pixel to the classification.This work builds on recent advances in the design of novel active learning acquisition functions(e.g.,the Model Change approach in arXiv:2110.07739)while adding important further developments including patch-neighborhood image analysis and batch active learning methods to further increase the accuracy and greatly increase the computational efficiency of these methods.In addition to improvements in the accuracy,our approach can greatly reduce the number of labeled pixels needed to achieve the same level of the accuracy based on randomly selected labeled pixels.展开更多
With the rapid growth of the maritime Internet of Things(IoT)devices for Maritime Monitor Services(MMS),maritime traffic controllers could not handle a massive amount of data in time.For unmanned MMS,one of the key te...With the rapid growth of the maritime Internet of Things(IoT)devices for Maritime Monitor Services(MMS),maritime traffic controllers could not handle a massive amount of data in time.For unmanned MMS,one of the key technologies is situation understanding.However,the presence of slow-fast high maneuvering targets and track breakages due to radar blind zones make modeling the dynamics of marine multi-agents difficult,and pose significant challenges to maritime situation understanding.In order to comprehend the situation accurately and thus offer unmanned MMS,it is crucial to model the complex dynamics of multi-agents using IoT big data.Nevertheless,previous methods typically rely on complex assumptions,are plagued by unstructured data,and disregard the interactions between multiple agents and the spatial-temporal correlations.A deep learning model,Graph Spatial-Temporal Generative Adversarial Network(GraphSTGAN),is proposed in this paper,which uses graph neural network to model unstructured data and uses STGAN to learn the spatial-temporal dependencies and interactions.Extensive experiments show the effectiveness and robustness of the proposed method.展开更多
基金supported in part by the NSFC(11801496,11926352)the Fok Ying-Tung Education Foundation(China)the Hubei Key Laboratory of Applied Mathematics(Hubei University).
文摘In this paper,we investigate spacelike graphs defined over a domain Ω⊂M^(n) in the Lorentz manifold M^(n)×ℝ with the metric−ds^(2)+σ,where M^(n) is a complete Riemannian n-manifold with the metricσ,Ωhas piecewise smooth boundary,and ℝ denotes the Euclidean 1-space.We prove an interesting stability result for translating spacelike graphs in M^(n)×ℝ under a conformal transformation.
文摘Given a graph g=( V,A ) , we define a space of subgraphs M with the binary operation of union and the unique decomposition property into blocks. This space allows us to discuss a notion of minimal subgraphs (minimal coalitions) that are of interest for the game. Additionally, a partition of the game is defined in terms of the gain of each block, and subsequently, a solution to the game is defined based on distributing to each player (node and edge) present in each block a payment proportional to their contribution to the coalition.
基金funded by the Project of the National Natural Science Foundation of China,Grant Number 72071209.
文摘As a core part of battlefield situational awareness,air target intention recognition plays an important role in modern air operations.Aiming at the problems of insufficient feature extraction and misclassification in intention recognition,this paper designs an air target intention recognition method(KGTLIR)based on Knowledge Graph and Deep Learning.Firstly,the intention recognition model based on Deep Learning is constructed to mine the temporal relationship of intention features using dilated causal convolution and the spatial relationship of intention features using a graph attention mechanism.Meanwhile,the accuracy,recall,and F1-score after iteration are introduced to dynamically adjust the sample weights to reduce the probability of misclassification.After that,an intention recognition model based on Knowledge Graph is constructed to predict the probability of the occurrence of different intentions of the target.Finally,the results of the two models are fused by evidence theory to obtain the target’s operational intention.Experiments show that the intention recognition accuracy of the KGTLIRmodel can reach 98.48%,which is not only better than most of the air target intention recognition methods,but also demonstrates better interpretability and trustworthiness.
基金supported by the Zhejiang Provincial Natural Science Foundation of China(LY21A010016)the National Natural Science Foundation of China(11901550).
文摘In this paper, we investigate a blow-up phenomenon for a semilinear parabolic system on locally finite graphs. Under some appropriate assumptions on the curvature condition CDE’(n,0), the polynomial volume growth of degree m, the initial values, and the exponents in absorption terms, we prove that every non-negative solution of the semilinear parabolic system blows up in a finite time. Our current work extends the results achieved by Lin and Wu (Calc Var Partial Differ Equ, 2017, 56: Art 102) and Wu (Rev R Acad Cien Serie A Mat, 2021, 115: Art 133).
文摘Let k be a positive integer and G a bipartite graph with bipartition (X,Y). A perfect 1-k matching is an edge subset M of G such that each vertex in Y is incident with exactly one edge in M and each vertex in X is incident with exactly k edges in M. A perfect 1-k matching is an optimal semi-matching related to the load-balancing problem, where a semi-matching is an edge subset M such that each vertex in Y is incident with exactly one edge in M, and a vertex in X can be incident with an arbitrary number of edges in M. In this paper, we give three sufficient and necessary conditions for the existence of perfect 1-k matchings and for the existence of 1-k matchings covering | X |−dvertices in X, respectively, and characterize k-elementary bipartite graph which is a graph such that the subgraph induced by all k-allowed edges is connected, where an edge is k-allowed if it is contained in a perfect 1-k matching.
文摘大型语言模型(Large Language Models,LLM)已经成为现今主流的研究热点,而垂直领域行业大模型则成为落地应用的关键点,以医疗为代表的大型语言模型有着可解释性、可靠性、高安全性等要求。针对这类问题,提出MedKGGPT模型,一个基于ChatGLM的模型,并提出一种面向医疗领域的知识图谱(Knowledge Graphs,KGs)和LLM相结合的框架。框架主要包含两个部分:首先,通过KG三元组中的实体和关系,提出了一种基于KG结构数据的提示工程方法,使得LLM更加具有医学领域的专用知识,提高LLM的可解释性;其次,提出一种利用KG来对齐LLM的方法,将LLM的输出与KG的相关知识进行比较,验证LLM输出结果的一致性和准确性,从而增强了LLM在医疗领域的安全性。实验结果表明,最终生成的MedKGGPT模型能够输出更加具有安全性的结果,说明KG能够有效增强LLM的可解释性,为LLM应用在医疗领域提供了帮助。
文摘This research investigates the comparative efficacy of generating zero divisor graphs (ZDGs) of the ring of integers ℤ<sub>n</sub> modulo n using MAPLE algorithm. Zero divisor graphs, pivotal in the study of ring theory, depict relationships between elements of a ring that multiply to zero. The paper explores the development and implementation of algorithms in MAPLE for constructing these ZDGs. The comparative study aims to discern the strengths, limitations, and computational efficiency of different MAPLE algorithms for creating zero divisor graphs offering insights for mathematicians, researchers, and computational enthusiasts involved in ring theory and mathematical computations.
文摘全国知识图谱与语义计算大会和知识图谱国际联合会议联办,是由第十八届全国知识图谱与语义计算大会2024(China Conference on Knowledge Graph and Semantic Computing,CCKS 2024)和第十三届知识图谱国际联合会议2024(International Joint Conference of Knowledge Graph,IJCKG 2024)联合举办。
基金supported by NSF China(No.61960206002,62020106005,42050105,62061146002)Shanghai Pilot Program for Basic Research-Shanghai Jiao Tong University。
文摘This paper focuses on optimally determining the existence of connected paths between some given nodes in random ring-based graphs.Serving as a fundamental underlying structure in network modeling,ring topology appears as commonplace in many realistic scenarios.Regarding this,we consider graphs composed of rings,with some possible connected paths between them.Without prior knowledge of the exact node permutations on rings,the existence of each edge can be unraveled through edge testing at a unit cost in one step.The problem examined is that of determining whether the given nodes are connected by a path or separated by a cut,with the minimum expected costs involved.Dividing the problem into different cases based on different topologies of the ring-based networks,we propose the corresponding policies that aim to quickly seek the paths between nodes.A common feature shared by all those policies is that we stick to going in the same direction during edge searching,with edge testing in each step only involving the test between the source and the node that has been tested most.The simple searching rule,interestingly,can be interpreted as a delightful property stemming from the neat structure of ring-based networks,which makes the searching process not rely on any sophisticated behaviors.We prove the optimality of the proposed policies by calculating the expected cost incurred and making a comparison with the other class of strategies.The effectiveness of the proposed policies is also verified through extensive simulations,from which we even disclose three extra intriguing findings:i)in a onering network,the cost will grow drastically with the number of designated nodes when the number is small and will grow slightly when that number is large;ii)in ring-based network,Depth First is optimal in detecting the connectivity between designated nodes;iii)the problem of multi-ring networks shares large similarity with that of two-ring networks,and a larger number of ties between rings will not influence the expected cost.
基金supported by the UC-National Lab In-Residence Graduate Fellowship Grant L21GF3606supported by a DOD National Defense Science and Engineering Graduate(NDSEG)Research Fellowship+1 种基金supported by the Laboratory Directed Research and Development program of Los Alamos National Laboratory under project numbers 20170668PRD1 and 20210213ERsupported by the NGA under Contract No.HM04762110003.
文摘Graph learning,when used as a semi-supervised learning(SSL)method,performs well for classification tasks with a low label rate.We provide a graph-based batch active learning pipeline for pixel/patch neighborhood multi-or hyperspectral image segmentation.Our batch active learning approach selects a collection of unlabeled pixels that satisfy a graph local maximum constraint for the active learning acquisition function that determines the relative importance of each pixel to the classification.This work builds on recent advances in the design of novel active learning acquisition functions(e.g.,the Model Change approach in arXiv:2110.07739)while adding important further developments including patch-neighborhood image analysis and batch active learning methods to further increase the accuracy and greatly increase the computational efficiency of these methods.In addition to improvements in the accuracy,our approach can greatly reduce the number of labeled pixels needed to achieve the same level of the accuracy based on randomly selected labeled pixels.
基金supported by National Natural Science Foundation of China under Grants No.62076249,62022092,62293545.
文摘With the rapid growth of the maritime Internet of Things(IoT)devices for Maritime Monitor Services(MMS),maritime traffic controllers could not handle a massive amount of data in time.For unmanned MMS,one of the key technologies is situation understanding.However,the presence of slow-fast high maneuvering targets and track breakages due to radar blind zones make modeling the dynamics of marine multi-agents difficult,and pose significant challenges to maritime situation understanding.In order to comprehend the situation accurately and thus offer unmanned MMS,it is crucial to model the complex dynamics of multi-agents using IoT big data.Nevertheless,previous methods typically rely on complex assumptions,are plagued by unstructured data,and disregard the interactions between multiple agents and the spatial-temporal correlations.A deep learning model,Graph Spatial-Temporal Generative Adversarial Network(GraphSTGAN),is proposed in this paper,which uses graph neural network to model unstructured data and uses STGAN to learn the spatial-temporal dependencies and interactions.Extensive experiments show the effectiveness and robustness of the proposed method.