Self-rooted apple stock is widely used for apple production.However,the shallowness of the adventitious roots in self-rooted apple stock leads to poor performance in the barren orchards of China.This is because of the...Self-rooted apple stock is widely used for apple production.However,the shallowness of the adventitious roots in self-rooted apple stock leads to poor performance in the barren orchards of China.This is because of the considerable difference in the development of a gravitropic set-point angle(GSA)between self-rooted apple stock and seedling rootstock.Therefore,it is crucial to study the molecular mechanism of adventitious root GSA in self-rooted apple stock for breeding self-rooted and deep-rooted apple rootstock cultivars.An apple auxin response factor MdARF19 functioned to establish the adventitious root GSA of self-rooted apple stock in response to gravity and auxin signals.MdARF19 bound directly to the MdPIN7 promoter,activating its transcriptional expression and thus regulating the formation of the adventitious root GSA in 12-2 self-rooted apple stock.However,MdARF19 influenced the expression of auxin efflux carriers(MdPIN3 and MdPIN10)and the establishment of adventitious root GSA of self-rooted apple stock in response to gravity signals by direct activation of MdFLP.Our findings provide new information on the transcriptional regulation of MdPIN7 by auxin response factor MdARF19 in the regulation of the adventitious root GSA of self-rooted apple stock in response to gravity and auxin signals.展开更多
INDETERMINATE-DOMAIN proteins(IDDs)are a plant-specific transcription factor family characterized by a conserved ID domain with four zinc finger motifs.Previous studies have demonstrated that IDDs coordinate a diversi...INDETERMINATE-DOMAIN proteins(IDDs)are a plant-specific transcription factor family characterized by a conserved ID domain with four zinc finger motifs.Previous studies have demonstrated that IDDs coordinate a diversity of physiological processes and functions in plant growth and development,including floral transition,plant architecture,seed and root development,and hormone signaling.In this review,we especially summarized the latest knowledge on the functions and working models of IDD members in Arabidopsis,rice,and maize,particularly focusing on their role in the regulatory network of biotic and abiotic environmental responses,such as gravity,temperature,water,and pathogens.Understanding these mechanisms underlying the function of IDD proteins in these processes is important for improving crop yields by manipulating their activity.Overall,the review offers valuable insights into the functions and mechanisms of IDD proteins in plants,providing a foundation for further research and potential applications in agriculture.展开更多
Tiller angle of rice (Oryza sativa L.) is an important agronomic trait that contributes to grain production, and has long attracted attentions of breeders for achieving ideal plant architecture to improve grain yiel...Tiller angle of rice (Oryza sativa L.) is an important agronomic trait that contributes to grain production, and has long attracted attentions of breeders for achieving ideal plant architecture to improve grain yield. Although enormous efforts have been made over the past decades to study mutants with extremely spreading or compact tillers, the molecular mechanism underlying the control of tiller angle of cereal crops remains unknown. Here we report the cloning of the LAZY1 (LA1) gene that regulates shoot gravitropism by which the rice tiller angle is controlled. We show that LA1, a novel grass-specific gene, is temporally and spatially expressed, and plays a negative role in polar auxin transport (PAT). Loss-of-function of LA1 enhances PAT greatly and thus alters the endogenous IAA distribution in shoots, leading to the reduced gravitropism, and therefore the tiller-spreading phenotype of rice plants.展开更多
Inositol polyphosphate 5-phosphatases (5PTases) are enzymes of phosphatidylinositol metabolism that affect various aspects of plant growth and development. Arabidopsis 5PTasel3 regulates auxin homeostasis and hormon...Inositol polyphosphate 5-phosphatases (5PTases) are enzymes of phosphatidylinositol metabolism that affect various aspects of plant growth and development. Arabidopsis 5PTasel3 regulates auxin homeostasis and hormonerelated cotyledon vein development, and here we demonstrate that its knockout mutant 5pt13 has elevated sensitivity to gravistimulation in root gravitropic responses. The altered responses of 5pt13 mutants to 1-N-naphthylphthalamic acid (an auxin transport inhibitor) indicate that 5PTase13 might be involved in the regulation of auxin transport. Indeed, the auxin efflux carrier PIN2 is expressed more broadly under 5PTasel3 deficiency, and observations of the internalization of the membrane-selective dye FM4-64 reveal altered vesicle trafficking in 5pt13 mutants. Compared with wild-type, 5pt13 mutant seedlings are less sensitive to the inhibition by brefeldin A of vesicle cycling, seedling growth, and the intracellular cycling of the PIN1 and PIN2 proteins. Further, auxin redistribution upon gravitropic stimulation is stimulated under 5PTasel3 deficiency. These results suggest that 5PTasel3 may modulate auxin transport by regulating vesicle trafficking and thereby play a role in root gravitropism.展开更多
A gravitropism-deficient mutant M96 was isolated from a mutant bank, generated by ethyl methane sulfonate(EMS) mutagenesis of indica rice accession ZJ100. The mutant was characterized as prostrate growth at the beginn...A gravitropism-deficient mutant M96 was isolated from a mutant bank, generated by ethyl methane sulfonate(EMS) mutagenesis of indica rice accession ZJ100. The mutant was characterized as prostrate growth at the beginning of germination, and the prostrate growth phenotype ran through the whole life duration. Tiller angle and tiller number of M96 increased significantly in comparison with the wild type. Tissue section observation analysis indicated that asymmetric stem growth around the second node occurred in M96. Genetic analysis and gene mapping showed that M96 was controlled by a single recessive nuclear gene, tentatively termed as gravitropism-deficient M96(gd M96), which was mapped to a region of 506 kb flanked by markers RM5960 and In Del8 on the long arm of chromosome 11. Sequencing analysis of the open reading frames in this region revealed a nucleotide substitution from G to T in the third exon of LOC_Os11g29840. Additionally, real-time fluorescence quantitative PCR analysis showed that the expression level of LOC_Os11g29840 in the stems was much higher than in the roots and leaves in M96. Furthermore, the expression level was more than four times in M96 stem than in the wild type stem. Our results suggested that the mutant gene was likely a new allele to the reported gene LAZY1. Isolation of this new allele would facilitate the further characterization of LAZY1.展开更多
Root system architecture is influenced by gravity.How the root senses gravity and directs its orientation,so-called gravitropism,is not only a fundamental question in plant biology but also theoretically important for...Root system architecture is influenced by gravity.How the root senses gravity and directs its orientation,so-called gravitropism,is not only a fundamental question in plant biology but also theoretically important for genetic improvement of crop root architecture.However,the mechanism has not been elucidated in most crops.We characterized a rice agravitropism allele,wavy root 1(war1),a loss-of-function allele in OsPIN2,which encodes an auxin efflux transporter.With loss of OsPIN2 function,war1 leads to altered root system architecture including wavy root,larger root distribution angle,and shallower root system due to the loss of gravitropic perception in root tips.In the war1 mutant,polar auxin transport was disrupted in the root tip,leading to abnormal auxin levels and disturbed auxin transport and distribution in columella cells.Amyloplast sedimentation,an important process in gravitropic sensing,was also decreased in root tip columella cells.The results indicated that OsPIN2 controls gravitropism by finely regulating auxin transport,distribution and levels,and amyloplast sedimentation in root tips.We identified a novel role of OsPIN2 in regulating ABA biosynthesis and response pathways.Loss of OsPIN2 function in the war1 resulted in increased sensitivity to ABA in seed germination,increased ABA level,changes in ABA-associated genes in roots,and decreased drought tolerance in the seedlings.These results suggest that the auxin transporter OsPIN2 not only modulates auxin transport to control root gravitropism,but also functions in ABA signaling to affect seed germination and root development,probably by mediating crosstalk between auxin and ABA pathways.展开更多
The phytochrome gene family, which is in Arabidopsis thaliana, consists of phytochromes A-E(phyA to phyE), regulates plant responses to ambient light environments. PhyA and phyB have been characterized in detail, bu...The phytochrome gene family, which is in Arabidopsis thaliana, consists of phytochromes A-E(phyA to phyE), regulates plant responses to ambient light environments. PhyA and phyB have been characterized in detail, but studies on phyC to phyE have reported discrepant functions. In this study, we show that phyD regulates the Arabidopsis gravitropic response by inhibiting negative gravitropism of hypocotyls under red light condition. PhyD had only a limited effect on the gravitropic response of roots in red light condition. PhyD also enhanced phyB-regulated gravitropic responses in hypocotyls. Moreover, the regulation of hypocotyl gravitropic responses by phyD was dependent upon the red light fluence rate.展开更多
Rice tiller angle,as a component of plant architecture,affects rice grain yield via plant density.However,the molecular mechanism underlying rice tiller angle remains elusive.We report that the key domestication gene ...Rice tiller angle,as a component of plant architecture,affects rice grain yield via plant density.However,the molecular mechanism underlying rice tiller angle remains elusive.We report that the key domestication gene PROSTRATE GROWTH 1(PROG1)controls rice tiller angle by regulating shoot gravitropism and LAZY1(LA1)-mediated asymmetric distribution of auxin.Acting as a transcriptional repressor,PROG1 negatively regulates the expression of LA1 in light-grown rice seedlings.Overexpression of LA1 partially rescued the larger tiller angle of the PROG1 complementation transgenic plant(prog1-D).Double-mutant analysis showed that PROG1 acts upstream of LA1 to regulate shoot gravitropism and tiller angle.Mutation of Suppressors of lazy1(SOL1),encoding DWARF3(D3)acting in the strigolactone signal pathway,suppressed the large tiller angle of prog1-D by rescuing the transcription of LA1.The discovery of a light-sensitive PROG1-LA1 transcription regulatory module controlling rice shoot gravitropism and tiller angle sheds light on the genetic control of rice tiller angle.展开更多
Light and gravity coordinately regulate the directional growth of plants.Arabidopsis Gravitropic in the Light 1(GIL1)inhibits the negative gravitropism of hypocotyls in red and far-red light,but the underlying molecul...Light and gravity coordinately regulate the directional growth of plants.Arabidopsis Gravitropic in the Light 1(GIL1)inhibits the negative gravitropism of hypocotyls in red and far-red light,but the underlying molecular mechanisms remain elusive.Our study found that GIL1 is a plasma membrane-localized protein.In endodermal cells of the upper part of hypocotyls,GIL1 controls the negative gravitropism of hypocotyls.GIL1 directly interacts with PIN3 and inhibits the auxin transport activity of PIN3.Mutation of PIN3 suppresses the abnormal gravitropic response of gil1 mutant.The GIL1 protein is unstable in darkness but it is stabilized by red and far-red light.Together,our data suggest that light-stabilized GIL1 inhibits the negative gravitropism of hypocotyls by suppressing the activity of the auxin transporter PIN3,thereby enhancing the emergence of young seedlings from the soil.展开更多
Rice tiller angle is a key agronomic trait that has significant effects on the establishment of a high-yield rice population.However,the molecular mechanism underlying the control of rice tiller angle remains to be cl...Rice tiller angle is a key agronomic trait that has significant effects on the establishment of a high-yield rice population.However,the molecular mechanism underlying the control of rice tiller angle remains to be clarified.Here,we characterized the novel tiller-angle gene LAZY4(LA4)in rice through map-based cloning.LA4 encodes a C3H2C3-type RING zinc-finger E3 ligase localized in the nucleus,and an in vitro ubiquitination assay revealed that the conserved RING finger domain is essential for its E3 ligase activity.We found that expression of LA4 can be induced by gravistimulation and that loss of LA4 function leads to defective shoot gravitropism caused by impaired asymmetric auxin redistribution upon gravistimulation.Genetic analysis demonstrated that LA4 acts in a distinct pathway from the starch biosynthesis regulators LA2 and LA3,which function in the starch-statolith-dependent pathway.Further genetic analysis showed that LA4 regulates shoot gravitropism and tiller angle by acting upstream of LA1 to mediate lateral auxin transport upon gravistimulation.Our studies reveal that LA4 regulates shoot gravitropism and tiller angle upstream of LA1 through a novel pathway independent of the LA2-LA3-mediated gravity-sensing mechanism,providing new insights into the rice tiller-angle regulatory network.展开更多
基金the National Natural Science Foundation of China(Grant Nos.32102310,32202484,and 32072520)the Shandong Key Research and Development Program,China(Grant Nos.2021LZGC007 and 2022TZXD009).
文摘Self-rooted apple stock is widely used for apple production.However,the shallowness of the adventitious roots in self-rooted apple stock leads to poor performance in the barren orchards of China.This is because of the considerable difference in the development of a gravitropic set-point angle(GSA)between self-rooted apple stock and seedling rootstock.Therefore,it is crucial to study the molecular mechanism of adventitious root GSA in self-rooted apple stock for breeding self-rooted and deep-rooted apple rootstock cultivars.An apple auxin response factor MdARF19 functioned to establish the adventitious root GSA of self-rooted apple stock in response to gravity and auxin signals.MdARF19 bound directly to the MdPIN7 promoter,activating its transcriptional expression and thus regulating the formation of the adventitious root GSA in 12-2 self-rooted apple stock.However,MdARF19 influenced the expression of auxin efflux carriers(MdPIN3 and MdPIN10)and the establishment of adventitious root GSA of self-rooted apple stock in response to gravity signals by direct activation of MdFLP.Our findings provide new information on the transcriptional regulation of MdPIN7 by auxin response factor MdARF19 in the regulation of the adventitious root GSA of self-rooted apple stock in response to gravity and auxin signals.
基金the National Natural Science Foundation of China(31800225 and 32370363)the Natural Science Foundation of Shandong Province(ZR2020MC027 and ZR2021QC213).
文摘INDETERMINATE-DOMAIN proteins(IDDs)are a plant-specific transcription factor family characterized by a conserved ID domain with four zinc finger motifs.Previous studies have demonstrated that IDDs coordinate a diversity of physiological processes and functions in plant growth and development,including floral transition,plant architecture,seed and root development,and hormone signaling.In this review,we especially summarized the latest knowledge on the functions and working models of IDD members in Arabidopsis,rice,and maize,particularly focusing on their role in the regulatory network of biotic and abiotic environmental responses,such as gravity,temperature,water,and pathogens.Understanding these mechanisms underlying the function of IDD proteins in these processes is important for improving crop yields by manipulating their activity.Overall,the review offers valuable insights into the functions and mechanisms of IDD proteins in plants,providing a foundation for further research and potential applications in agriculture.
基金grants from the Ministry of Science and Technology of China(2005CB 1208)the National Natural Science Foundation of China(30330040 and 30570161).
文摘Tiller angle of rice (Oryza sativa L.) is an important agronomic trait that contributes to grain production, and has long attracted attentions of breeders for achieving ideal plant architecture to improve grain yield. Although enormous efforts have been made over the past decades to study mutants with extremely spreading or compact tillers, the molecular mechanism underlying the control of tiller angle of cereal crops remains unknown. Here we report the cloning of the LAZY1 (LA1) gene that regulates shoot gravitropism by which the rice tiller angle is controlled. We show that LA1, a novel grass-specific gene, is temporally and spatially expressed, and plays a negative role in polar auxin transport (PAT). Loss-of-function of LA1 enhances PAT greatly and thus alters the endogenous IAA distribution in shoots, leading to the reduced gravitropism, and therefore the tiller-spreading phenotype of rice plants.
文摘Inositol polyphosphate 5-phosphatases (5PTases) are enzymes of phosphatidylinositol metabolism that affect various aspects of plant growth and development. Arabidopsis 5PTasel3 regulates auxin homeostasis and hormonerelated cotyledon vein development, and here we demonstrate that its knockout mutant 5pt13 has elevated sensitivity to gravistimulation in root gravitropic responses. The altered responses of 5pt13 mutants to 1-N-naphthylphthalamic acid (an auxin transport inhibitor) indicate that 5PTase13 might be involved in the regulation of auxin transport. Indeed, the auxin efflux carrier PIN2 is expressed more broadly under 5PTasel3 deficiency, and observations of the internalization of the membrane-selective dye FM4-64 reveal altered vesicle trafficking in 5pt13 mutants. Compared with wild-type, 5pt13 mutant seedlings are less sensitive to the inhibition by brefeldin A of vesicle cycling, seedling growth, and the intracellular cycling of the PIN1 and PIN2 proteins. Further, auxin redistribution upon gravitropic stimulation is stimulated under 5PTasel3 deficiency. These results suggest that 5PTasel3 may modulate auxin transport by regulating vesicle trafficking and thereby play a role in root gravitropism.
基金supported by the National High Technology Research and Development Program of China(Grant No.2014AA10A603)
文摘A gravitropism-deficient mutant M96 was isolated from a mutant bank, generated by ethyl methane sulfonate(EMS) mutagenesis of indica rice accession ZJ100. The mutant was characterized as prostrate growth at the beginning of germination, and the prostrate growth phenotype ran through the whole life duration. Tiller angle and tiller number of M96 increased significantly in comparison with the wild type. Tissue section observation analysis indicated that asymmetric stem growth around the second node occurred in M96. Genetic analysis and gene mapping showed that M96 was controlled by a single recessive nuclear gene, tentatively termed as gravitropism-deficient M96(gd M96), which was mapped to a region of 506 kb flanked by markers RM5960 and In Del8 on the long arm of chromosome 11. Sequencing analysis of the open reading frames in this region revealed a nucleotide substitution from G to T in the third exon of LOC_Os11g29840. Additionally, real-time fluorescence quantitative PCR analysis showed that the expression level of LOC_Os11g29840 in the stems was much higher than in the roots and leaves in M96. Furthermore, the expression level was more than four times in M96 stem than in the wild type stem. Our results suggested that the mutant gene was likely a new allele to the reported gene LAZY1. Isolation of this new allele would facilitate the further characterization of LAZY1.
基金supported by the National Natural Science Foundation of China(32070197,31570181 and 31200148)Chinese Universities Scientific Fund(2452018149)。
文摘Root system architecture is influenced by gravity.How the root senses gravity and directs its orientation,so-called gravitropism,is not only a fundamental question in plant biology but also theoretically important for genetic improvement of crop root architecture.However,the mechanism has not been elucidated in most crops.We characterized a rice agravitropism allele,wavy root 1(war1),a loss-of-function allele in OsPIN2,which encodes an auxin efflux transporter.With loss of OsPIN2 function,war1 leads to altered root system architecture including wavy root,larger root distribution angle,and shallower root system due to the loss of gravitropic perception in root tips.In the war1 mutant,polar auxin transport was disrupted in the root tip,leading to abnormal auxin levels and disturbed auxin transport and distribution in columella cells.Amyloplast sedimentation,an important process in gravitropic sensing,was also decreased in root tip columella cells.The results indicated that OsPIN2 controls gravitropism by finely regulating auxin transport,distribution and levels,and amyloplast sedimentation in root tips.We identified a novel role of OsPIN2 in regulating ABA biosynthesis and response pathways.Loss of OsPIN2 function in the war1 resulted in increased sensitivity to ABA in seed germination,increased ABA level,changes in ABA-associated genes in roots,and decreased drought tolerance in the seedlings.These results suggest that the auxin transporter OsPIN2 not only modulates auxin transport to control root gravitropism,but also functions in ABA signaling to affect seed germination and root development,probably by mediating crosstalk between auxin and ABA pathways.
基金supported by funds from the Genetically Modified Organisms Breeding Major Projects of China (2011ZX08010-002)the National Natural Science Foundation of China (30871438 and 31170267)the Natural Science Foundation of Xinjiang, China (2012211B49)
文摘The phytochrome gene family, which is in Arabidopsis thaliana, consists of phytochromes A-E(phyA to phyE), regulates plant responses to ambient light environments. PhyA and phyB have been characterized in detail, but studies on phyC to phyE have reported discrepant functions. In this study, we show that phyD regulates the Arabidopsis gravitropic response by inhibiting negative gravitropism of hypocotyls under red light condition. PhyD had only a limited effect on the gravitropic response of roots in red light condition. PhyD also enhanced phyB-regulated gravitropic responses in hypocotyls. Moreover, the regulation of hypocotyl gravitropic responses by phyD was dependent upon the red light fluence rate.
基金supported by the Top Talents Program"One Case One Discussion(Yishiyiyi)"of Shandong Province and the Natural Science Foundation of Shandong Province(ZR2022MC082).
文摘Rice tiller angle,as a component of plant architecture,affects rice grain yield via plant density.However,the molecular mechanism underlying rice tiller angle remains elusive.We report that the key domestication gene PROSTRATE GROWTH 1(PROG1)controls rice tiller angle by regulating shoot gravitropism and LAZY1(LA1)-mediated asymmetric distribution of auxin.Acting as a transcriptional repressor,PROG1 negatively regulates the expression of LA1 in light-grown rice seedlings.Overexpression of LA1 partially rescued the larger tiller angle of the PROG1 complementation transgenic plant(prog1-D).Double-mutant analysis showed that PROG1 acts upstream of LA1 to regulate shoot gravitropism and tiller angle.Mutation of Suppressors of lazy1(SOL1),encoding DWARF3(D3)acting in the strigolactone signal pathway,suppressed the large tiller angle of prog1-D by rescuing the transcription of LA1.The discovery of a light-sensitive PROG1-LA1 transcription regulatory module controlling rice shoot gravitropism and tiller angle sheds light on the genetic control of rice tiller angle.
基金supported by the National Natural Science Foundation of China (32350001, 32370306, 32022005)Tsinghua University Dushi Program+1 种基金the Tsinghua-Peking Center for Life Sciencesfunded by grants from the Swiss National Funds (project 31003A_165877 and 310030_197563)
文摘Light and gravity coordinately regulate the directional growth of plants.Arabidopsis Gravitropic in the Light 1(GIL1)inhibits the negative gravitropism of hypocotyls in red and far-red light,but the underlying molecular mechanisms remain elusive.Our study found that GIL1 is a plasma membrane-localized protein.In endodermal cells of the upper part of hypocotyls,GIL1 controls the negative gravitropism of hypocotyls.GIL1 directly interacts with PIN3 and inhibits the auxin transport activity of PIN3.Mutation of PIN3 suppresses the abnormal gravitropic response of gil1 mutant.The GIL1 protein is unstable in darkness but it is stabilized by red and far-red light.Together,our data suggest that light-stabilized GIL1 inhibits the negative gravitropism of hypocotyls by suppressing the activity of the auxin transporter PIN3,thereby enhancing the emergence of young seedlings from the soil.
基金supported by grants from the National Key Research and Development Program of China(2022YFF1002903 to Y.W.)the Strategic Priority Research Program“Molecular Mechanism of Plant Growth and Development”of CAS(XDB27010100 to Y.W.)+1 种基金the National Natural Science Foundation of China(32372075 to L.H.)the Top Talents Program“One Case One Discussion”(Yishiyiyi to Y.W.)from Shandong Province。
文摘Rice tiller angle is a key agronomic trait that has significant effects on the establishment of a high-yield rice population.However,the molecular mechanism underlying the control of rice tiller angle remains to be clarified.Here,we characterized the novel tiller-angle gene LAZY4(LA4)in rice through map-based cloning.LA4 encodes a C3H2C3-type RING zinc-finger E3 ligase localized in the nucleus,and an in vitro ubiquitination assay revealed that the conserved RING finger domain is essential for its E3 ligase activity.We found that expression of LA4 can be induced by gravistimulation and that loss of LA4 function leads to defective shoot gravitropism caused by impaired asymmetric auxin redistribution upon gravistimulation.Genetic analysis demonstrated that LA4 acts in a distinct pathway from the starch biosynthesis regulators LA2 and LA3,which function in the starch-statolith-dependent pathway.Further genetic analysis showed that LA4 regulates shoot gravitropism and tiller angle by acting upstream of LA1 to mediate lateral auxin transport upon gravistimulation.Our studies reveal that LA4 regulates shoot gravitropism and tiller angle upstream of LA1 through a novel pathway independent of the LA2-LA3-mediated gravity-sensing mechanism,providing new insights into the rice tiller-angle regulatory network.