This work proposes a 12 kW three-phase grid-connected single stage PWM DC-AC converter destined to process the energy provided by a photovoltaic array composed of 57 KC200GT PV modules with high power factor for any s...This work proposes a 12 kW three-phase grid-connected single stage PWM DC-AC converter destined to process the energy provided by a photovoltaic array composed of 57 KC200GT PV modules with high power factor for any solar radiation. The PWM inverter modeling and the control strategy, using dqO transformation, are proposed in order to also allow the system operation as an active power filter, capable to compensate harmonic components and react power generated by the non-linear loads connected to the mains grid. An input voltage clamping technique is proposed to impose the photovoltaic operation on the maximum power point. Simulation and experimental results are presented to validate the proposed methodology for grid connected photovoltaic generation system.展开更多
For a standalone PV (photovoltaic) power generation system, the author previously proposed a new MPPT (maximum power point tracking) control method in which the I-V characteristics are scanned with a detection int...For a standalone PV (photovoltaic) power generation system, the author previously proposed a new MPPT (maximum power point tracking) control method in which the I-V characteristics are scanned with a detection interval control that operates at specified intervals and monitors the maximum power point. The author has obtained satisfactory results using this new MPPT control method. This paper investigates the application of the new MPPT control method for a PCS (power conditioning system) in a grid-connected type PV power generation system. The experimental results clearly demonstrate that the developed PCS offers outstanding effectiveness in tracking the maximum power point in partially shaded environments.展开更多
Frequency support capability for the grid-connected converter(GCC)is one of the basic safeguards for the stability of renewables-dominated power systems.In this paper,analogous to the motion equation of a synchronous ...Frequency support capability for the grid-connected converter(GCC)is one of the basic safeguards for the stability of renewables-dominated power systems.In this paper,analogous to the motion equation of a synchronous generator(SG),an inertial phase-locked loop(iPLL)is proposed for GCC to achieve fast frequency support.The iPLL introduces the inertial and damping loops into the classic PLL structure to emulate the natural frequency regulation characteristics of a SG.Compared with the existing methods,the iPLL has a faster frequency response and is simpler in design and implementation.Finally,the proposed iPLL method is validated by experiments.Index Terms-Frequency support,grid-connected converter,inertial phase-locked loop(iPLL),synchronous generation(SG).展开更多
A novel topology of the current-source grid-connected inverter is proposed based on the immittance converter theory. A control strategy of sine-sine pulse width modulation (PWM) is studied. Compared with the traditi...A novel topology of the current-source grid-connected inverter is proposed based on the immittance converter theory. A control strategy of sine-sine pulse width modulation (PWM) is studied. Compared with the traditional current-source inverter, the power frequency inductors and power frequency transformer are replaced with high frequency inductors and a high frequency transformer. Thus, the proposed inverter has advantages of small volume, low cost, low total harmonic distortion (THD), low power losses, high power factor (PF) and simple control. Furthermore, grid voltage cannot influence output current of the grid-connected inverter and the current-source inverter with a high PF that approaches one has been realized. Finally, validity of the theory analysis and feasibility of the control scheme are shown by simulation and experimental results.展开更多
The power grid in a typical micro distribution system is non-ideal,presenting itself as a voltage source with significant impedance.Thus,grid-connected converters interact with each other via the non-ideal grid.In thi...The power grid in a typical micro distribution system is non-ideal,presenting itself as a voltage source with significant impedance.Thus,grid-connected converters interact with each other via the non-ideal grid.In this study,we consider the practical scenario of voltage-source converters connected to a three-phase voltage source with significant impedance.We show that stability can be compromised in the interacting converters.Specifically,the stable operating regions in selected parameter space may be reduced when grid-connected converters interact under certain conditions.In this paper,we develop bifurcation boundaries in the parameter space with respect to Hopftype instability.A small-signal model in the dq-frame is adopted to analyze the system using an impedance-based approach.Moreover,results are presented in design-oriented forms so as to facilitate the identification of variation trends of the parameter ranges that guarantee stable operation.展开更多
This paper proposes a current control scheme for a grid-connected pulse width modulator(PWM) voltage source converter(GC-VSC) under imbalanced and distorted supply voltage conditions.The control scheme is implemented ...This paper proposes a current control scheme for a grid-connected pulse width modulator(PWM) voltage source converter(GC-VSC) under imbalanced and distorted supply voltage conditions.The control scheme is implemented in the positive synchronously rotating reference frame and composed of a single proportional integral(PI) regulator and multi-frequency resonant controllers tuned at the frequencies of 2ω and 6ω,respectively.The experimental results,with the target of eliminating the active power oscillations and current harmonics on a prototype GC-VSC system,validate the feasibility of the proposed current control scheme during supply voltage imbalance and distortion.展开更多
—With the increase of converter-based renewable energy generation connected into the power grid, the interaction between renewable energy and grid impedance has introduced lots of new issues, among which the sub-and ...—With the increase of converter-based renewable energy generation connected into the power grid, the interaction between renewable energy and grid impedance has introduced lots of new issues, among which the sub-and super-synchronous oscillation phenomenon makes a big concern. The linear active disturbance rejection control(LADRC) is a potential way to improve the damping characteristics of the grid-connected system, but the key factors and influencing mechanism on system stability are unknown. This paper establishes the equivalent impedance and coupling admittance models of a typical three-phase grid-connected converter. Then, the influence of the key factors such as the bandwidth of the LADRC and grid impedance on the stability and frequency coupling effect is assessed in detail. Finally, the theoretical analysis results are verified by simulations and experiments.展开更多
The grid-connected converter(GCC) is widely used as the interface between various distributed generations and the utility grid. To achieve precise power control for GCC, this paper presents a model predictive direct p...The grid-connected converter(GCC) is widely used as the interface between various distributed generations and the utility grid. To achieve precise power control for GCC, this paper presents a model predictive direct power control(MPDPC)with consideration of the unbalanced filter inductance and grid conditions. First, the characteristics of GCC with unbalanced filter inductance are analyzed and a modified voltage control function is derived. On this basis, to compensate for the power oscillation caused by unbalanced filter inductance, a novel power compensation method is proposed for MPDPC to eliminate the DC-side current ripple while maintaining sinusoidal grid current. Besides, to improve the control robustness against mismatched filter inductance, a filter inductance identification scheme is proposed. Through this scheme, the estimated value of filter inductance is updated in each control period and applied in the proposed MPDPC. Finally, simulation results in PSCAD/EMTDC confirm the validity of the proposed MPDPC and the filter inductance identification scheme.展开更多
Solar energy has been widely used in power generation.With the development of solar energy,the distributed photovoltaic power generation and the distributed grid-connected PV systems become the center of attention.Thi...Solar energy has been widely used in power generation.With the development of solar energy,the distributed photovoltaic power generation and the distributed grid-connected PV systems become the center of attention.This paper provided a brief introduction to distribution-level solar energy.Firstly,the development of solar energy was analyzed,and the distributed photovoltaic power generation was discussed.Secondly,the distributed grid-connected PV systems and basic theory of photovoltaic solar channel were analyzed.In order to ensure PV power is connected to grid stably and reliably,some related aspects such as the establishment of mathematical model for solar photovoltaic cell,the analysis of I-V characteristics of solar photovoltaic cell,and the tracking of its maximum power point(MPPT)to control the behaviour of the DC/DC converter were discussed.Finally,a simulation model was necessary to be established by using PSCAD/EMTDC function module to verify and simulate the mathematical model and control strategies,and some suggestions were put forward for the sustainable development of solar energy.展开更多
This paper presents an improved virtual synchronous control(VSynC) for the grid-connected voltage source converter(VSC) so as to continuously operate under the grid voltage with steady unbalance.The improved VSynC int...This paper presents an improved virtual synchronous control(VSynC) for the grid-connected voltage source converter(VSC) so as to continuously operate under the grid voltage with steady unbalance.The improved VSynC introduces the negative sequence power controls on basis of conventional VSynC.The improved VSynC is capable of regulating the negative sequence internal voltage to reduce the negative-sequence injected currents and oscillated powers of the VSC aroused by the negative-sequence grid voltage.Three alternative local control objectives for the VSC itself under steady state unbalanced grid conditions and their corresponding power references are deduced and computed.Simulated and experimental results are presented to validate the correctness and effectiveness of the proposed improved VSynC to enhance the continuous operation performance of VSynC-based VSCs during grid voltage steady-state unbalance.展开更多
In this study, a novel approach for dynamic modeling and closed-loop control of hybrid grid-connected renewable energy system with multi-input multi-output(MIMO) controller is proposed. The studied converter includes ...In this study, a novel approach for dynamic modeling and closed-loop control of hybrid grid-connected renewable energy system with multi-input multi-output(MIMO) controller is proposed. The studied converter includes two parallel DC-DC boost converters, which are connected into the power grid through a single-phase H-bridge inverter. The proposed MIMO controller is developed for maximum power point tracking of photovoltaic(PV)/fuel-cell(FC) input power sources and output power control of the grid-connected DC-AC inverter. Considering circuit topology of the system, a unique MIMO model is proposed for the analysis of the entire system. A unique model of the system includes all of the circuit state variables in DCDC and DC-AC converters. In fact, from the viewpoint of closed-loop controller design, the hybrid grid-connected energy system is an MIMO system. The control inputs of the system are duty cycles of the DC-DC boost converters and the amplitude modulation index of DC-AC inverters. Furthermore, the control outputs are the output power of the PV/FC input power sources as well as AC power injected into the power grid. After the development of the unique model for the entire system, a decoupling network is introduced for system input-output linearization due to inherent connection of the control outputs with all of the system inputs. Considering the decoupled model and small signal linearization, the required linear controllers are designed to adjust the outputs. Finally, to evaluate the accuracy and effectiveness of the designed controllers, the PV/FC based grid-connected system is simulated using the MATLAB/Simulink toolbox.展开更多
The Virtual Resistor based Active Damping(VR-AD) is widely employed in converters connected to the grid via LCL filters in order to mitigate the inherent resonance of the filters. Nevertheless, in digitally controlled...The Virtual Resistor based Active Damping(VR-AD) is widely employed in converters connected to the grid via LCL filters in order to mitigate the inherent resonance of the filters. Nevertheless, in digitally controlled systems, the PWM and the calculating delays modify the system characteristics in terms of frequency and phase, thus destabilizing the system and degrading the VR-AD performances, mainly in low switching frequencies. Moreover, the stability of the system is greatly affected under weak grid operation characterized by large grid impedance variation. This paper solves these problems by proposing a systematic, robust and optimized design procedure of voltage oriented PI control(VOC) with VRAD. The considered design procedure ensures robust control(sufficient stability margins) and high quality of grid current(reduced steady-state error and minimized THD value) despite the negative impact of digital time delay, grid impedance variation and filter parameters change. Simulation and experimental results are presented to show robustness and efficiency of the suggested design procedure.展开更多
This paper focuses on the wind energy conversion system (WECS) with the three main electrical aspects: 1) wind turbine generators (WTGs), 2) power electronics converters (PECs) and 3) grid-connection issues. The curre...This paper focuses on the wind energy conversion system (WECS) with the three main electrical aspects: 1) wind turbine generators (WTGs), 2) power electronics converters (PECs) and 3) grid-connection issues. The current state of wind turbine generators are discussed and compared in some criteria along with the trends in the current WECS market, which are ‘Variable Speed’, ‘Multi-MW’ and ‘Offshore’. In addition, the other crucial component in the WECS, PECs will be discussed with its topologies available in the current WECS market along with their modulation strategies. Moreover, three main issues of the WECS associating with the grid-connection, fault-ride through (FRT) capability, harmonics/interharmonics emission and flicker, which are the power quality issues, will be discussed due to the increasing responsibility of WECS as utility power station. Some key findings from the review such as the attractiveness of BDFRG are presented in the conclusion of this paper.展开更多
Many conventional switching power supplies in input AC line voltage and filtering it with large electrolytic computers and low power motor drive systems operate by rectifying the capacitors. This results in undesirabl...Many conventional switching power supplies in input AC line voltage and filtering it with large electrolytic computers and low power motor drive systems operate by rectifying the capacitors. This results in undesirable side effects such as the generation of distorted input current waveform. The input power factor is also poor. Further, the input current has the shape of narrow pulses, which in turn increases its value. The reduction in input current harmonics and improved power factor operation of motor drive systems and switching power supplies are important from the energy saving point of view and also to satisfy the harmonic standards. This paper proposes a full bridge PWM rectifier with load current feedforward. The proposed approach has some advantages, including a quick response for the load fluctuation, the reduction of the number of sensors and simplified control, as compared with the conventional methods. From simulated results, it is clarified that the proposed control method is effective and useful.展开更多
In practical operations,low-frequency oscillation(LFO)occurs and leads to converter blocking when multiple electrical rail vehicles at the platform are powered by the traction network.This paper proposes a small-signa...In practical operations,low-frequency oscillation(LFO)occurs and leads to converter blocking when multiple electrical rail vehicles at the platform are powered by the traction network.This paper proposes a small-signal model in state-space form for multiple vehicle-grid systems based on a dynamic phasor.This model uses the phasor amplitude and phase as variables to accurately describe the dynamics of the converter phase-domain control.An eigenvalue based-method is introduced to investigate the LFO with advantages of acquiring all oscillatory modes and analyzing participation factors.Two low-frequency dominant modes are identified by eigenvalues.Mode shape reveals that one of the modes involves the oscillations between the grid-connected converters and the traction network,and the other one involves the oscillations among these converters.Then the sensitivities of these two low-frequency modes to different system parameters are analyzed.Participation factors of system state variables,when the number of connected vehicle increases,are compared.Finally,the theoretical analysis is verified by nonlinear time-domain simulations and the modal analysis based on the estimation of signal parameters via the rotational invariance techniques(ESPRIT)method.展开更多
This paper proposes a new hybrid maximum power point tracking(MPPT)control strategy for grid-connected solar systems based on Incremental conductance—Particle Swarm Optimization and Model Predictive Controller(IncCon...This paper proposes a new hybrid maximum power point tracking(MPPT)control strategy for grid-connected solar systems based on Incremental conductance—Particle Swarm Optimization and Model Predictive Controller(IncCond-PSOMPC).The purpose of the suggested method is to create as much power as feasible from a PV system during environmental changes,then transfer it to the power grid.To accomplish this,a hybrid combination of incremental conductance(IncCond)and particle swarm optimization(PSO)is proposed to locate maximum power,followed by model predictive control(MPC)to track maximum power and control the boost converter to achieve high performance regardless of parameter variations.A two-level inverter,likewise,controlled by Model Predictive Control,is employed to inject the PV power generated.In this application,the MPC is based on minimizing the difference between the reference and prediction powers,which is computed to select the switching state of the inverter.The proposed system is simulated and evaluated in a variety of dynamic conditions using Matlab/Simulink.Results reveal that the proposed control mechanism is effective at tracking the maximum power point(MPP)with fewer power oscillations.展开更多
This paper presents modeling and control of a photovoltaie generator (PVG) connected to the grid. The parameters of the PVG have been identified in previous work (series and parallel resistance, reverse saturation ...This paper presents modeling and control of a photovoltaie generator (PVG) connected to the grid. The parameters of the PVG have been identified in previous work (series and parallel resistance, reverse saturation current and thermal voltage) using Newton-Raphston and the gradient algorithm. The electrical energy from a PVG is transferred to the grid via two static converters (DC/DC and DC/AC). The objective of the proposed control strategy is to maximize energy captured from the PVG. The adapted control law for extracting maximum power from the PVG is based on the incremental conductance algorithm. The developed algorithm has the capability of searching the maximum photovoltaic power under variable irradiation and temperature. To control the DC/AC inverter, an intelligent system based on two structures is constructed: a current source control structure and a voltage source control structure. The system has been validated by numerical simulation using data obtained from the PVG installed in the laboratory research (INSAT, Tunisia).展开更多
文摘This work proposes a 12 kW three-phase grid-connected single stage PWM DC-AC converter destined to process the energy provided by a photovoltaic array composed of 57 KC200GT PV modules with high power factor for any solar radiation. The PWM inverter modeling and the control strategy, using dqO transformation, are proposed in order to also allow the system operation as an active power filter, capable to compensate harmonic components and react power generated by the non-linear loads connected to the mains grid. An input voltage clamping technique is proposed to impose the photovoltaic operation on the maximum power point. Simulation and experimental results are presented to validate the proposed methodology for grid connected photovoltaic generation system.
文摘For a standalone PV (photovoltaic) power generation system, the author previously proposed a new MPPT (maximum power point tracking) control method in which the I-V characteristics are scanned with a detection interval control that operates at specified intervals and monitors the maximum power point. The author has obtained satisfactory results using this new MPPT control method. This paper investigates the application of the new MPPT control method for a PCS (power conditioning system) in a grid-connected type PV power generation system. The experimental results clearly demonstrate that the developed PCS offers outstanding effectiveness in tracking the maximum power point in partially shaded environments.
基金supported in part by the National Natural Science Foundation of China under Grant 52277180in part by the Delta Power Electronics Science and Education Development Program of Delta Group under Grant DREG2021005。
文摘Frequency support capability for the grid-connected converter(GCC)is one of the basic safeguards for the stability of renewables-dominated power systems.In this paper,analogous to the motion equation of a synchronous generator(SG),an inertial phase-locked loop(iPLL)is proposed for GCC to achieve fast frequency support.The iPLL introduces the inertial and damping loops into the classic PLL structure to emulate the natural frequency regulation characteristics of a SG.Compared with the existing methods,the iPLL has a faster frequency response and is simpler in design and implementation.Finally,the proposed iPLL method is validated by experiments.Index Terms-Frequency support,grid-connected converter,inertial phase-locked loop(iPLL),synchronous generation(SG).
基金supported by the Shanghai Leading Academic Discipline Project (Grant No.T0103)
文摘A novel topology of the current-source grid-connected inverter is proposed based on the immittance converter theory. A control strategy of sine-sine pulse width modulation (PWM) is studied. Compared with the traditional current-source inverter, the power frequency inductors and power frequency transformer are replaced with high frequency inductors and a high frequency transformer. Thus, the proposed inverter has advantages of small volume, low cost, low total harmonic distortion (THD), low power losses, high power factor (PF) and simple control. Furthermore, grid voltage cannot influence output current of the grid-connected inverter and the current-source inverter with a high PF that approaches one has been realized. Finally, validity of the theory analysis and feasibility of the control scheme are shown by simulation and experimental results.
文摘现有工程运行数据显示,并网变流器(grid-connected converter,GCC)的动态特性与工作点密切相关。受新能源出力波动、负载投切等外部因素的影响,变流器工作点呈现随机时变特性。因此,分析整个工作区间中所有工作点的系统稳定性具有重要意义。传统阻抗/导纳分析方法可以有效分析GCC运行于特定工作点时的稳定性,但考虑系统所有可能工作点时则需重复分析,工作量大且难度较高。为解决这一难题,提出一种考虑工作点变量的多元建模方法。将工作点变量引入导纳模型,通过控制环路重构,建立GCC的多变量单输入单输出(single input single output,SISO)模型。所提模型直接包含工作点变量,因此可以有效分析变流器全工作区间动态特性。此外,综合考虑变流器最大传输限制和动态特性,提出一种基于安全运行域的稳定性分析方法,以实现多维工作区间中系统稳定性的直观表征。仿真和实验验证了所提多变量SISO模型和基于安全运行域的分析方法的正确性。所提模型和方法在分析电力电子装置运行极限、指导变流器设计和辅助功率器件发挥极限性能等工程场景中具有广泛应用潜力。
基金The work was supported by Hong Kong Poly-technic University Grants G-U866 and G-YJ32.
文摘The power grid in a typical micro distribution system is non-ideal,presenting itself as a voltage source with significant impedance.Thus,grid-connected converters interact with each other via the non-ideal grid.In this study,we consider the practical scenario of voltage-source converters connected to a three-phase voltage source with significant impedance.We show that stability can be compromised in the interacting converters.Specifically,the stable operating regions in selected parameter space may be reduced when grid-connected converters interact under certain conditions.In this paper,we develop bifurcation boundaries in the parameter space with respect to Hopftype instability.A small-signal model in the dq-frame is adopted to analyze the system using an impedance-based approach.Moreover,results are presented in design-oriented forms so as to facilitate the identification of variation trends of the parameter ranges that guarantee stable operation.
基金supported by the National Natural Science Foundation of China(No.50907057)the National High-Tech Research and Development Program (863) of China(No.2007AA05Z419)
文摘This paper proposes a current control scheme for a grid-connected pulse width modulator(PWM) voltage source converter(GC-VSC) under imbalanced and distorted supply voltage conditions.The control scheme is implemented in the positive synchronously rotating reference frame and composed of a single proportional integral(PI) regulator and multi-frequency resonant controllers tuned at the frequencies of 2ω and 6ω,respectively.The experimental results,with the target of eliminating the active power oscillations and current harmonics on a prototype GC-VSC system,validate the feasibility of the proposed current control scheme during supply voltage imbalance and distortion.
基金supported in part by the National Natural Science Foundation of China (No. 52077222)the Fundamental Research Funds for the Central Universities (No. 19CX02016A)。
文摘—With the increase of converter-based renewable energy generation connected into the power grid, the interaction between renewable energy and grid impedance has introduced lots of new issues, among which the sub-and super-synchronous oscillation phenomenon makes a big concern. The linear active disturbance rejection control(LADRC) is a potential way to improve the damping characteristics of the grid-connected system, but the key factors and influencing mechanism on system stability are unknown. This paper establishes the equivalent impedance and coupling admittance models of a typical three-phase grid-connected converter. Then, the influence of the key factors such as the bandwidth of the LADRC and grid impedance on the stability and frequency coupling effect is assessed in detail. Finally, the theoretical analysis results are verified by simulations and experiments.
基金supported by the Science and Technology Projects of State Grid Corporation of China “Key Technologies and Demonstration Application of Distributed Power Clusters Regulation”(No. 52153220000U)。
文摘The grid-connected converter(GCC) is widely used as the interface between various distributed generations and the utility grid. To achieve precise power control for GCC, this paper presents a model predictive direct power control(MPDPC)with consideration of the unbalanced filter inductance and grid conditions. First, the characteristics of GCC with unbalanced filter inductance are analyzed and a modified voltage control function is derived. On this basis, to compensate for the power oscillation caused by unbalanced filter inductance, a novel power compensation method is proposed for MPDPC to eliminate the DC-side current ripple while maintaining sinusoidal grid current. Besides, to improve the control robustness against mismatched filter inductance, a filter inductance identification scheme is proposed. Through this scheme, the estimated value of filter inductance is updated in each control period and applied in the proposed MPDPC. Finally, simulation results in PSCAD/EMTDC confirm the validity of the proposed MPDPC and the filter inductance identification scheme.
文摘Solar energy has been widely used in power generation.With the development of solar energy,the distributed photovoltaic power generation and the distributed grid-connected PV systems become the center of attention.This paper provided a brief introduction to distribution-level solar energy.Firstly,the development of solar energy was analyzed,and the distributed photovoltaic power generation was discussed.Secondly,the distributed grid-connected PV systems and basic theory of photovoltaic solar channel were analyzed.In order to ensure PV power is connected to grid stably and reliably,some related aspects such as the establishment of mathematical model for solar photovoltaic cell,the analysis of I-V characteristics of solar photovoltaic cell,and the tracking of its maximum power point(MPPT)to control the behaviour of the DC/DC converter were discussed.Finally,a simulation model was necessary to be established by using PSCAD/EMTDC function module to verify and simulate the mathematical model and control strategies,and some suggestions were put forward for the sustainable development of solar energy.
基金supported by National Natural Science Foundation of China (No.51607130)National Key Research and Development Program (No.2016YFB0900104)National Natural Science Fund for Excellent Young Scholars (No.51322704)
文摘This paper presents an improved virtual synchronous control(VSynC) for the grid-connected voltage source converter(VSC) so as to continuously operate under the grid voltage with steady unbalance.The improved VSynC introduces the negative sequence power controls on basis of conventional VSynC.The improved VSynC is capable of regulating the negative sequence internal voltage to reduce the negative-sequence injected currents and oscillated powers of the VSC aroused by the negative-sequence grid voltage.Three alternative local control objectives for the VSC itself under steady state unbalanced grid conditions and their corresponding power references are deduced and computed.Simulated and experimental results are presented to validate the correctness and effectiveness of the proposed improved VSynC to enhance the continuous operation performance of VSynC-based VSCs during grid voltage steady-state unbalance.
基金supported by Islamic Azad University–Ardabil Branch。
文摘In this study, a novel approach for dynamic modeling and closed-loop control of hybrid grid-connected renewable energy system with multi-input multi-output(MIMO) controller is proposed. The studied converter includes two parallel DC-DC boost converters, which are connected into the power grid through a single-phase H-bridge inverter. The proposed MIMO controller is developed for maximum power point tracking of photovoltaic(PV)/fuel-cell(FC) input power sources and output power control of the grid-connected DC-AC inverter. Considering circuit topology of the system, a unique MIMO model is proposed for the analysis of the entire system. A unique model of the system includes all of the circuit state variables in DCDC and DC-AC converters. In fact, from the viewpoint of closed-loop controller design, the hybrid grid-connected energy system is an MIMO system. The control inputs of the system are duty cycles of the DC-DC boost converters and the amplitude modulation index of DC-AC inverters. Furthermore, the control outputs are the output power of the PV/FC input power sources as well as AC power injected into the power grid. After the development of the unique model for the entire system, a decoupling network is introduced for system input-output linearization due to inherent connection of the control outputs with all of the system inputs. Considering the decoupled model and small signal linearization, the required linear controllers are designed to adjust the outputs. Finally, to evaluate the accuracy and effectiveness of the designed controllers, the PV/FC based grid-connected system is simulated using the MATLAB/Simulink toolbox.
基金supported by the Tunisian Ministry of High Education and Research under Grant LSE-ENIT-LR11ES15
文摘The Virtual Resistor based Active Damping(VR-AD) is widely employed in converters connected to the grid via LCL filters in order to mitigate the inherent resonance of the filters. Nevertheless, in digitally controlled systems, the PWM and the calculating delays modify the system characteristics in terms of frequency and phase, thus destabilizing the system and degrading the VR-AD performances, mainly in low switching frequencies. Moreover, the stability of the system is greatly affected under weak grid operation characterized by large grid impedance variation. This paper solves these problems by proposing a systematic, robust and optimized design procedure of voltage oriented PI control(VOC) with VRAD. The considered design procedure ensures robust control(sufficient stability margins) and high quality of grid current(reduced steady-state error and minimized THD value) despite the negative impact of digital time delay, grid impedance variation and filter parameters change. Simulation and experimental results are presented to show robustness and efficiency of the suggested design procedure.
文摘This paper focuses on the wind energy conversion system (WECS) with the three main electrical aspects: 1) wind turbine generators (WTGs), 2) power electronics converters (PECs) and 3) grid-connection issues. The current state of wind turbine generators are discussed and compared in some criteria along with the trends in the current WECS market, which are ‘Variable Speed’, ‘Multi-MW’ and ‘Offshore’. In addition, the other crucial component in the WECS, PECs will be discussed with its topologies available in the current WECS market along with their modulation strategies. Moreover, three main issues of the WECS associating with the grid-connection, fault-ride through (FRT) capability, harmonics/interharmonics emission and flicker, which are the power quality issues, will be discussed due to the increasing responsibility of WECS as utility power station. Some key findings from the review such as the attractiveness of BDFRG are presented in the conclusion of this paper.
文摘Many conventional switching power supplies in input AC line voltage and filtering it with large electrolytic computers and low power motor drive systems operate by rectifying the capacitors. This results in undesirable side effects such as the generation of distorted input current waveform. The input power factor is also poor. Further, the input current has the shape of narrow pulses, which in turn increases its value. The reduction in input current harmonics and improved power factor operation of motor drive systems and switching power supplies are important from the energy saving point of view and also to satisfy the harmonic standards. This paper proposes a full bridge PWM rectifier with load current feedforward. The proposed approach has some advantages, including a quick response for the load fluctuation, the reduction of the number of sensors and simplified control, as compared with the conventional methods. From simulated results, it is clarified that the proposed control method is effective and useful.
基金This work was supported in part by the Fundamental Research Funds for the Central Universities of China(No.2682019CX20)in part by the Applied Basic Research Program of Science and Technology Plan Project of Sichuan Province of China(No.2020YJ0252)。
文摘In practical operations,low-frequency oscillation(LFO)occurs and leads to converter blocking when multiple electrical rail vehicles at the platform are powered by the traction network.This paper proposes a small-signal model in state-space form for multiple vehicle-grid systems based on a dynamic phasor.This model uses the phasor amplitude and phase as variables to accurately describe the dynamics of the converter phase-domain control.An eigenvalue based-method is introduced to investigate the LFO with advantages of acquiring all oscillatory modes and analyzing participation factors.Two low-frequency dominant modes are identified by eigenvalues.Mode shape reveals that one of the modes involves the oscillations between the grid-connected converters and the traction network,and the other one involves the oscillations among these converters.Then the sensitivities of these two low-frequency modes to different system parameters are analyzed.Participation factors of system state variables,when the number of connected vehicle increases,are compared.Finally,the theoretical analysis is verified by nonlinear time-domain simulations and the modal analysis based on the estimation of signal parameters via the rotational invariance techniques(ESPRIT)method.
文摘This paper proposes a new hybrid maximum power point tracking(MPPT)control strategy for grid-connected solar systems based on Incremental conductance—Particle Swarm Optimization and Model Predictive Controller(IncCond-PSOMPC).The purpose of the suggested method is to create as much power as feasible from a PV system during environmental changes,then transfer it to the power grid.To accomplish this,a hybrid combination of incremental conductance(IncCond)and particle swarm optimization(PSO)is proposed to locate maximum power,followed by model predictive control(MPC)to track maximum power and control the boost converter to achieve high performance regardless of parameter variations.A two-level inverter,likewise,controlled by Model Predictive Control,is employed to inject the PV power generated.In this application,the MPC is based on minimizing the difference between the reference and prediction powers,which is computed to select the switching state of the inverter.The proposed system is simulated and evaluated in a variety of dynamic conditions using Matlab/Simulink.Results reveal that the proposed control mechanism is effective at tracking the maximum power point(MPP)with fewer power oscillations.
文摘This paper presents modeling and control of a photovoltaie generator (PVG) connected to the grid. The parameters of the PVG have been identified in previous work (series and parallel resistance, reverse saturation current and thermal voltage) using Newton-Raphston and the gradient algorithm. The electrical energy from a PVG is transferred to the grid via two static converters (DC/DC and DC/AC). The objective of the proposed control strategy is to maximize energy captured from the PVG. The adapted control law for extracting maximum power from the PVG is based on the incremental conductance algorithm. The developed algorithm has the capability of searching the maximum photovoltaic power under variable irradiation and temperature. To control the DC/AC inverter, an intelligent system based on two structures is constructed: a current source control structure and a voltage source control structure. The system has been validated by numerical simulation using data obtained from the PVG installed in the laboratory research (INSAT, Tunisia).