The Sensitivity Encoding (SENSE) parallel reconstruction scheme for magnetic resonance imaging (MRI) is studied and implemented with gridding algorithm in this paper. In this paper, the sensitivity map profile, field ...The Sensitivity Encoding (SENSE) parallel reconstruction scheme for magnetic resonance imaging (MRI) is studied and implemented with gridding algorithm in this paper. In this paper, the sensitivity map profile, field map information and the spiral k-space data collected from an array of receiver coils are used to reconstruct un-aliased images from under-sampled data. The gridding algorithm is implemented with SENSE due to its ability in evaluating forward and adjoins operators with non-Cartesian sampled data. This paper also analyzes the performance of SENSE with real data set and identifies the computational issues that need to be improved for further research.展开更多
This paper presents an efficient algorithm for generating a spherical multiple-cell(SMC)grid.The algorithm adopts a recursive loop structure and provides two refinement methods:(1)an arbitrary area refinement method a...This paper presents an efficient algorithm for generating a spherical multiple-cell(SMC)grid.The algorithm adopts a recursive loop structure and provides two refinement methods:(1)an arbitrary area refinement method and(2)a nearshore refinement method.Numerical experiments are carried out,and the results show that compared with the existing grid generation algorithm,this algorithm is more flexible and operable.展开更多
In predictive direct power control(PDPC)system of three-phase pulse width modulation(PWM)rectifier,grid voltage sensor makes the whole system more complex and costly.Therefore,third-order generalized integrator(TOGI)i...In predictive direct power control(PDPC)system of three-phase pulse width modulation(PWM)rectifier,grid voltage sensor makes the whole system more complex and costly.Therefore,third-order generalized integrator(TOGI)is used to generate orthogonal signals with the same frequency to estimate the grid voltage.In addition,in view of the deviation between actual and reference power in the three-phase PWM rectifier traditional PDPC strategy,a power correction link is designed to correct the power reference value.The grid voltage sensor free algorithm based on TOGI and the corrected PDPC strategy are applied to three-phase PWM rectifier and simulated on the simulation platform.Simulation results show that the proposed method can effectively eliminate the power tracking deviation and the grid voltage.The effectiveness of the proposed method is verified by comparing the simulation results.展开更多
To solve the topology optimization of complicated multi-objective continuous/discrete design variables in aircmit structure design, a Parallel Pareto Genetic Algorithm (PPGA) is presented based on grid platform in t...To solve the topology optimization of complicated multi-objective continuous/discrete design variables in aircmit structure design, a Parallel Pareto Genetic Algorithm (PPGA) is presented based on grid platform in this paper. In the algorithm, the commercial finite element analysis (FEA) software is integrated as the calculating tool for analyzing the objective functions and the filter of Pareto solution set based on weight information is introduced to deal with the relationships among all objectives. Grid technology is utilized in PPGA to realize the distributed computations and the user interface is developed to realize the job submission and job management locally/remotely. Taking the aero-elastic tailoring of a composite wing for optimization as an example, a set of Pareto solutions are obtained for the decision-maker. The numerical results show that the aileron reversal problem can be solved by adding the limited skin weight in this system. The algorithm can be used to solve complicated topology optimization for composite structures in engineering and the computation efficiency can be improved greatly by using the grid platform that aggregates numerous idle resources.展开更多
This article gives the algorithm of the sector in which the development coefficient is, and the steps to simultaneously calculate the development coefficient and combination coefficient of background value. Unifying t...This article gives the algorithm of the sector in which the development coefficient is, and the steps to simultaneously calculate the development coefficient and combination coefficient of background value. Unifying the development coefficient and the background value's coefficient of combination to optimize the model together, avoiding the malpractice to separate the two in traditional method, and avoiding the error brought out by matrix multiplication because of matrix's illness and so on in the traditional way, therefore increases the precision of the model.展开更多
The trajectory of a shipbome radar target has a certain complexity, randomness, and diversity. Tracking a strong maneuvering target timely, accurately, and effectively is a key technology for a shipbome radar tracking...The trajectory of a shipbome radar target has a certain complexity, randomness, and diversity. Tracking a strong maneuvering target timely, accurately, and effectively is a key technology for a shipbome radar tracking system. Combining a variable structure interacting multiple model with an adaptive grid algorithm, we present a variable structure adaptive grid inter- acting multiple model maneuvering target tracking method. Tracking experiments are performed using the proposed method for five maneuvering targets, including a uniform motion - uniform acceleration motion target, a uniform acceleration motion - uni- form motion target, a serpentine locomotion target, and two variable acceleration motion targets. Experimental results show that the target position, velocity, and acceleration tracking errors for the five typical target trajectories are small. The method has high tracking precision, good stability, and flexible adaptability.展开更多
This paper develops a Smolyak-type sparse-grid stochastic collocation method(SGSCM) for uncertainty quantification of nonlinear stochastic dynamic equations.The solution obtained by the method is a linear combination ...This paper develops a Smolyak-type sparse-grid stochastic collocation method(SGSCM) for uncertainty quantification of nonlinear stochastic dynamic equations.The solution obtained by the method is a linear combination of tensor product formulas for multivariate polynomial interpolation.By choosing the collocation point sets to coincide with cubature point sets of quadrature rules,we derive quadrature formulas to estimate the expectations of the solution.The method does not suffer from the curse of dimensionality in the sense that the computational cost does not increase exponentially with the number of input random variables.Numerical analysis of a nonlinear elastic oscillator subjected to a discretized band-limited white noise process demonstrates the computational efficiency and accuracy of the developed method.展开更多
文摘The Sensitivity Encoding (SENSE) parallel reconstruction scheme for magnetic resonance imaging (MRI) is studied and implemented with gridding algorithm in this paper. In this paper, the sensitivity map profile, field map information and the spiral k-space data collected from an array of receiver coils are used to reconstruct un-aliased images from under-sampled data. The gridding algorithm is implemented with SENSE due to its ability in evaluating forward and adjoins operators with non-Cartesian sampled data. This paper also analyzes the performance of SENSE with real data set and identifies the computational issues that need to be improved for further research.
基金The National Key Research and Development Program of China under contract No.2018YFC1407000.
文摘This paper presents an efficient algorithm for generating a spherical multiple-cell(SMC)grid.The algorithm adopts a recursive loop structure and provides two refinement methods:(1)an arbitrary area refinement method and(2)a nearshore refinement method.Numerical experiments are carried out,and the results show that compared with the existing grid generation algorithm,this algorithm is more flexible and operable.
基金National Natural Science Foundation of China(Nos.51767013,52067013)。
文摘In predictive direct power control(PDPC)system of three-phase pulse width modulation(PWM)rectifier,grid voltage sensor makes the whole system more complex and costly.Therefore,third-order generalized integrator(TOGI)is used to generate orthogonal signals with the same frequency to estimate the grid voltage.In addition,in view of the deviation between actual and reference power in the three-phase PWM rectifier traditional PDPC strategy,a power correction link is designed to correct the power reference value.The grid voltage sensor free algorithm based on TOGI and the corrected PDPC strategy are applied to three-phase PWM rectifier and simulated on the simulation platform.Simulation results show that the proposed method can effectively eliminate the power tracking deviation and the grid voltage.The effectiveness of the proposed method is verified by comparing the simulation results.
文摘To solve the topology optimization of complicated multi-objective continuous/discrete design variables in aircmit structure design, a Parallel Pareto Genetic Algorithm (PPGA) is presented based on grid platform in this paper. In the algorithm, the commercial finite element analysis (FEA) software is integrated as the calculating tool for analyzing the objective functions and the filter of Pareto solution set based on weight information is introduced to deal with the relationships among all objectives. Grid technology is utilized in PPGA to realize the distributed computations and the user interface is developed to realize the job submission and job management locally/remotely. Taking the aero-elastic tailoring of a composite wing for optimization as an example, a set of Pareto solutions are obtained for the decision-maker. The numerical results show that the aileron reversal problem can be solved by adding the limited skin weight in this system. The algorithm can be used to solve complicated topology optimization for composite structures in engineering and the computation efficiency can be improved greatly by using the grid platform that aggregates numerous idle resources.
文摘This article gives the algorithm of the sector in which the development coefficient is, and the steps to simultaneously calculate the development coefficient and combination coefficient of background value. Unifying the development coefficient and the background value's coefficient of combination to optimize the model together, avoiding the malpractice to separate the two in traditional method, and avoiding the error brought out by matrix multiplication because of matrix's illness and so on in the traditional way, therefore increases the precision of the model.
基金Project (No. 61105020) supported by the National Natural Science Foundation of China
文摘The trajectory of a shipbome radar target has a certain complexity, randomness, and diversity. Tracking a strong maneuvering target timely, accurately, and effectively is a key technology for a shipbome radar tracking system. Combining a variable structure interacting multiple model with an adaptive grid algorithm, we present a variable structure adaptive grid inter- acting multiple model maneuvering target tracking method. Tracking experiments are performed using the proposed method for five maneuvering targets, including a uniform motion - uniform acceleration motion target, a uniform acceleration motion - uni- form motion target, a serpentine locomotion target, and two variable acceleration motion targets. Experimental results show that the target position, velocity, and acceleration tracking errors for the five typical target trajectories are small. The method has high tracking precision, good stability, and flexible adaptability.
基金the Scientific Research Foundation of State Education Ministry for the Returned Overseas Scholars(No.14Z102050011)
文摘This paper develops a Smolyak-type sparse-grid stochastic collocation method(SGSCM) for uncertainty quantification of nonlinear stochastic dynamic equations.The solution obtained by the method is a linear combination of tensor product formulas for multivariate polynomial interpolation.By choosing the collocation point sets to coincide with cubature point sets of quadrature rules,we derive quadrature formulas to estimate the expectations of the solution.The method does not suffer from the curse of dimensionality in the sense that the computational cost does not increase exponentially with the number of input random variables.Numerical analysis of a nonlinear elastic oscillator subjected to a discretized band-limited white noise process demonstrates the computational efficiency and accuracy of the developed method.