[Objectives] This study was conducted to improve the nutritional value of soybean milk, enrich the variety and taste of soybean milk, and find healthy food that is more conducive to people s nutritional needs. [Method...[Objectives] This study was conducted to improve the nutritional value of soybean milk, enrich the variety and taste of soybean milk, and find healthy food that is more conducive to people s nutritional needs. [Methods] Whole soybean milk was prepared by grinding with a grinding wheel at a low concentration (low-concentration grinding) and a stainless steel mill at a high concentration (high-concentration grinding). The sensory, physical and chemical characteristics and anti-nutritional factors of whole soybean milk produced by different grinding methods were studied. [Results] Compared with low-concentration grinding, the protein content in soybean milk prepared by high-concentration grinding increased by 24%, and the dietary fiber content increased by 74.7%. Before and after high-pressure homogenization, the particle size D(4, 3) of soybean milk prepared by low-concentration grinding was 212.1 and 93.59 μm, respectively, and the particle size D(4, 3) of soybean milk prepared by high-concentration grinding was 134.0 and 64.64 μm, respectively. The trypsin inhibitor activity and phytic acid content of soybean milk prepared by high-concentration grinding were significantly lower than those of soybean milk prepared by low-concentration grinding. [Conclusions] This study improves the diet structure of the broad masses of people, strengthens people s physique, and provides a new idea for the implementation and development of China s "Soybean Action Programme".展开更多
Minimum quantity Lubrication(MQL)is a sustainable lubrication system that is famous in many machining systems.It involve the spray of an infinitesimal amount of mist-like lubricants during machining processes.The MQL ...Minimum quantity Lubrication(MQL)is a sustainable lubrication system that is famous in many machining systems.It involve the spray of an infinitesimal amount of mist-like lubricants during machining processes.The MQL system is affirmed to exhibit an excellent machining performance,and it is highly economical.The nanofluids are understood to exhibit excellent lubricity and heat evacuation capability,compared to pure oil-based MQL system.Studies have shown that the surface quality and amount of energy expended in the grinding operations can be reduced considerably due to the positive effect of these nanofluids.This work presents an experimental study on the tribological performance of SiO_(2)nanofluid during grinding of Si_(3)N_(4)ceramic.The effect different grinding modes and lubrication systems during the grinding operation was also analyzed.Different concentrations of the SiO_(2)nanofluid was manufactured using canola,corn and sunflower oils.The quantitative evaluation of the grinding process was done based on the amount of grinding forces,specific grinding energy,frictional coefficient,and surface integrity.It was found that the canola oil exhibits optimal lubrication performance compared to corn oil,sunflower oil,and traditional lubrication systems.Additionally,the introduction of ultrasonic vibrations with the SiO_(2)nanofluid in MQL system was found to reduce the specific grinding energy,normal grinding forces,tangential grinding forces,and surface roughness by 65%,57%,65%,and 18%respectively.Finally,regression analysis was used to obtain an optimum parameter combinations.The observations from this work will aid the smooth transition towards ecofriendly and sustainable machining of engineering ceramics.展开更多
The surface morphology and roughness of a workpiece are crucial parameters in grinding processes.Accurate prediction of these parameters is essential for maintaining the workpiece’s surface integrity.However,the rand...The surface morphology and roughness of a workpiece are crucial parameters in grinding processes.Accurate prediction of these parameters is essential for maintaining the workpiece’s surface integrity.However,the randomness of abrasive grain shapes and workpiece surface formation behaviors poses significant challenges,and accuracy in current physical mechanism-based predictive models is needed.To address this problem,by using the random plane method and accounting for the random morphology and distribution of abrasive grains,this paper proposes a novel method to model CBN grinding wheels and predict workpiece surface roughness.First,a kinematic model of a single abrasive grain is developed to accurately capture the three-dimensional morphology of the grinding wheel.Next,by formulating an elastic deformation and formation model of the workpiece surface based on Hertz theory,the variation in grinding arc length at different grinding depths is revealed.Subsequently,a predictive model for the surface morphology of the workpiece ground by a single abrasive grain is devised.This model integrates the normal distribution model of abrasive grain size and the spatial distribution model of abrasive grain positions,to elucidate how the circumferential and axial distribution of abrasive grains influences workpiece surface formation.Lastly,by integrating the dynamic effective abrasive grain model,a predictive model for the surface morphology and roughness of the grinding wheel is established.To examine the impact of changing the grit size of the grinding wheel and grinding depth on workpiece surface roughness,and to validate the accuracy of the model,experiments are conducted.Results indicate that the predicted three-dimensional morphology of the grinding wheel and workpiece surfaces closely matches the actual grinding wheel and ground workpiece surfaces,with surface roughness prediction deviations as small as 2.3%.展开更多
Cubic boron nitride(cBN)grinding wheels play a pivotal role in precision machining,serving as indispensable tools for achieving exceptional surface quality.Ensuring the sharpness of cBN grains and optimizing the grind...Cubic boron nitride(cBN)grinding wheels play a pivotal role in precision machining,serving as indispensable tools for achieving exceptional surface quality.Ensuring the sharpness of cBN grains and optimizing the grinding wheel’s chip storage capacity are critical factors.This paper presents a study on the metal-bonded segments and single cBN grain samples using the vacuum sintering method.It investigates the impact of blasting parameters-specifically silicon carbide(SiC)abrasive size,blasting distance,and blasting time-on the erosive wear characteristics of both the metal bond and abrasive.The findings indicate that the abrasive size and blasting distance significantly affect the erosive wear performance of the metal bond.Following a comprehensive analysis of the material removal rate of the metal bond and the erosive wear condition of cBN grains,optimal parameters for the working layer are determined:a blasting distance of 60 mm,a blasting time of 15 s,and SiC particle size of 100#.Furthermore,an advanced simulation model investigates the dressing process of abrasive blasting,revealing that the metal bond effectively inhibits crack propagation within cBN abrasive grains,thereby enhancing fracture toughness and impact resistance.Additionally,a comparative analysis is conducted between the grinding performance of porous cBN grinding wheels and vitrified cBN grinding wheels.The results demonstrate that using porous cBN grinding wheels significantly reduces grinding force,temperature,and chip adhesion,thereby enhancing the surface quality of the workpiece.展开更多
Elucidating the complex interactions between the work material and abrasives during grinding of gallium nitride(GaN)single crystals is an active and challenging research area.In this study,molecular dynamics simulatio...Elucidating the complex interactions between the work material and abrasives during grinding of gallium nitride(GaN)single crystals is an active and challenging research area.In this study,molecular dynamics simulations were performed on double-grits interacted grinding of GaN crystals;and the grinding force,coefficient of friction,stress distribution,plastic damage behaviors,and abrasive damage were systematically investigated.The results demonstrated that the interacted distance in both radial and transverse directions achieved better grinding quality than that in only one direction.The grinding force,grinding induced stress,subsurface damage depth,and abrasive wear increase as the transverse interacted distance increases.However,there was no clear correlation between the interaction distance and the number of atoms in the phase transition and dislocation length.Appropriate interacted distances between abrasives can decrease grinding force,coefficient of friction,grinding induced stress,subsurface damage depth,and abrasive wear during the grinding process.The results of grinding tests combined with cross-sectional transmission electron micrographs validated the simulated damage results,i.e.amorphous atoms,high-pressure phase transition,dislocations,stacking faults,and lattice distortions.The results of this study will deepen our understanding of damage accumulation and material removal resulting from coupling between abrasives during grinding and can be used to develop a feasible approach to the wheel design of ordered abrasives.展开更多
Grinding,a critical precision machining process for difficult-to-cut alloys,has undergone continual technological advancements to improve machining efficiency.However,the sustainability of this process is gaining heig...Grinding,a critical precision machining process for difficult-to-cut alloys,has undergone continual technological advancements to improve machining efficiency.However,the sustainability of this process is gaining heightened attention due to significant challenges associated with the substantial specific grinding energy and the extensive heat generated when working with difficult-to-cut alloys,renowned for their exceptional physical and mechanical properties.In response to these challenges,the widespread application of massive coolant in manufacturing industries to dissipate grinding heat has led to complex post-cleaning and disposal processes.This,in turn,has resulted in issues such as large energy consumption,a considerable carbon footprint,and concerns related to worker health and safety,which have become the main factors that restrict the development of grinding technology.This paper provides a holistic review of sustainability in grinding difficult-to-cut alloys,encompassing current trends and future directions.The examination extends to developing grinding technologies explicitly tailored for these alloys,comprehensively evaluating their sustainability performance.Additionally,the exploration delves into innovative sustainable technologies,such as heat pipe/oscillating heat pipe grinding wheels,minimum quantity lubrication,cryogenic cooling,and others.These groundbreaking technologies aim to reduce dependence on hazardous coolants,minimizing energy and resource consumption and carbon emissions associated with coolant-related or subsequent disposal processes.The essence of these technologies lies in their potential to revolutionize traditional grinding practices,presenting environmentally friendly alternatives.Finally,future development trends and research directions are put forward to pursue the current limitation of sustainable grinding for difficult-to-cut alloys.This paper can guide future research and development efforts toward more environmentally friendly grinding operations by understanding the current state of sustainable grinding and identifying emerging trends.展开更多
Ceramic matrix composites(CMCs)are highly promising materials for the next generation of aero-engines.However,machining of CMCs suffers from low efficiency and poor surfacefinish,which presents an obstacle to their wide...Ceramic matrix composites(CMCs)are highly promising materials for the next generation of aero-engines.However,machining of CMCs suffers from low efficiency and poor surfacefinish,which presents an obstacle to their wider application.To overcome these problems,this study investigates high-efficiency deep grinding of CMCs,focusing on the effects of grinding depth.The results show that both the sur-face roughness and the depth of subsurface damage(SSD)are insensitive to grinding depth.The material removal rate can be increased sixfold by increasing the grinding depth,while the surface roughness and SSD depth increase by only about 10%.Moreover,it is found that the behavior of material removal is strongly dependent on grinding depth.As the grinding depth is increased,fibers are removed in smaller sizes,with thefiber length in chips being reduced by about 34%.However,too large a grinding depth will result in blockage by chip powder,which leads to a dramatic increase in the ratio of tangential to normal grinding forces.This study demonstrates that increasing the depth of cut is an effective approach to improve the machining efficiency of CMCs,while maintaining a good surfacefin-ish.It provides the basis for the further development of high-performance grinding methods for CMCs,which should facilitate their wider application.展开更多
Fatigue properties are crucial for critical aero-engine components in extreme serviceenvironments,which are significantly affected by surface integrity(SI)indexes(especially surface topography,residual stressσ_(res),...Fatigue properties are crucial for critical aero-engine components in extreme serviceenvironments,which are significantly affected by surface integrity(SI)indexes(especially surface topography,residual stressσ_(res),and microhardness)after machining processes.Normal-direction ultrasonic vibration-assisted face grinding(ND-UVAFG)has advantages in improving the machinability of Inconel 718,but there is a competitive relationship between higher compressiveσ_(res)and higher surface roughness R_(a)in affecting fatigue strength.The lack of a quantitative relationship between multiple SI indexes and fatigue strength makes theindeterminacy of a regulatory strategy for improving fatigue properties.In this work,a model of fatigue strength(σ_f)_(sur)considering multiple SI indexes was developed.Then,high-cycle fatigue tests were carried out on Inconel 718 samples with different SI characteristics,and the influence of ND-UVAFG process parameters on SI was analyzed.Based on SI indexes data,the(σ_f)_(sur)distribution in the grinding surface layer for ND-UVAFG Inconel 718 samples was determined using the developed model,and then the fatigue crack initiation(FCI)sites were furtherpredicted.The predicted FCI sites corresponded well with the experimental results,therebyverifying this model.A strategy for improving the fatigue life was proposed in this work,which was to transfer the fatigue source from the machined surface to the bulk material by controlling the SI indexes.Finally,a critical condition of SI indexes that FCI sites appeared on the surface or in bulk material was given by fitting the predicted results.According to the critical condition,an SI field where FCI sites appeared in the bulk material could be obtained.In this field,thefatigue life of Inconel 718 samples could be improved by approximately 140%.展开更多
BACKGROUND Extraction of impacted third molars often leads to severe complications caused by damage to the inferior alveolar nerve(IAN).AIM To proposes a method for the partial grinding of an impacted mandibular third...BACKGROUND Extraction of impacted third molars often leads to severe complications caused by damage to the inferior alveolar nerve(IAN).AIM To proposes a method for the partial grinding of an impacted mandibular third molar(IMM3)near the IAN to prevent IAN injury during IMM3 extraction.METHODS Between January 1996 and March 2022,25 patients with IMM3 roots near the IAN were enrolled.The first stage of the operation consisted of grinding a major part of the IMM3 crown with a high-speed turbine dental drill to achieve sufficient space between the mandibular second molar and IMM3.After 6 months,when the root tips were observed to be away from the IAN on X-ray examination,the remaining part of the IMM3 was completely removed.RESULTS All IMM3s were extracted easily without symptoms of IAN injury after extraction.CONCLUSION Partial IMM3 grinding may be a good alternative treatment option to avoid IAN injury in high-risk cases.展开更多
There is less research on vertical sculptured grinding technology. Especially in high vertical surface grinding process with the cup abrasive wheel, the thermal damage is prone to happen and undermine the grinding sur...There is less research on vertical sculptured grinding technology. Especially in high vertical surface grinding process with the cup abrasive wheel, the thermal damage is prone to happen and undermine the grinding surface integrity. This problem limits to improve the grinding efficiency and the grinding ratio greatly. Through the analysis of vertical surface grinding process and features in depth, this paper revealed the inherent mechanism of higher grinding temperature in the process of vertical sculptured grinding using the cup wheel. Based on the previous research achievements, the grinding experiments on TC4 (Ti-6A1-4V) and GH4169 are carried out utilizing the self-inhaling internal cooling wheel. The experimental results show that the self-inhaling internal cooling wheel can efficiently reduce the grinding surface temperature. Moreover, the inherent mechanism of reducing the grinding temperature using the internal cooling method is revealed. Meanwhile, under the same grinding conditions, the grinding ratio during the experiments on GH4169 using self-inhaling internal cooling method is about 3 times as high as using conventional external cooling method. And the grinding forces can be reduced by about 20%. This research revealed the inherent mechanism of higher grinding temperature in the process of vertical sculptured grinding using the cup wheel, which provides theoretical basis for the design and application of self-inhaling internal cooling wheel. At the same time, an efficient and non-invasive surface grinding method of TC4 and GH4169 is presented.展开更多
In order to grind the ceramic blade surface with the Numerical Control contour evolution ultrasonic grinding method using the simple shape grinding wheel, primary comparative experiments of creep feed grinding with an...In order to grind the ceramic blade surface with the Numerical Control contour evolution ultrasonic grinding method using the simple shape grinding wheel, primary comparative experiments of creep feed grinding with and without ultrasonic vibration were carried out to grind Al2O3 ceramics so as to implore the effects of different process parameters on the machined surface quality. It can be concluded that when the direction of ultrasonic vibration is parallel to the direction of creep feed, the value of the surface roughness will be decreased; otherwise the surface quality will become worse. With the ultrasonic grinding method, the slower feed-rate, the smaller grinding depth, the higher grinding speed and the compound feed grinding method should be applied in order to improve the surface quality. The creep feed grinding meehanisms with and without ultrasonic vibration were analyzed theoretically from the experimental results. With the selected grinding parameters resulted from the experiments, the feasibility experiment of ultrasonic grinding ceramic blade surface was cartied out.展开更多
The purpose of this study is to investigate the effect of graphite lubricant on the dry grinding performance of Ti-6Al-4Valloy,using graphite-coated,brazed monolayer,cubic boron nitride(cBN)wheels.Brazed monolayer cBN...The purpose of this study is to investigate the effect of graphite lubricant on the dry grinding performance of Ti-6Al-4Valloy,using graphite-coated,brazed monolayer,cubic boron nitride(cBN)wheels.Brazed monolayer cBN wheels both with and without a coating of polymer-based graphite lubricant are fabricated and subsequently compared for grinding performance based on measurements of grinding temperature,surface microstructure and grinding.In terms of grinding temperature,considerable improvement in dry grinding performance of titanium alloy is achieved using coated brazed monolayer cBN wheels,with 42%—47%reduction in grinding temperature as opposed to uncoated wheels.The grinding force ratio with the coated wheels is observed to remain between 1.45to1.85despite material removal rates reaching up to 1 950mm3/mm.No tangible change in ground titanium surface microstructure is noted as a result of grinding with the graphite coated wheels as opposed to the uncoated ones.展开更多
The regrinding error is the main factor affecting the eligible length of hob tooth,how to decrease the regrinding error is a hot issue in the research area of hob grinding.At present,researches focus on changing the t...The regrinding error is the main factor affecting the eligible length of hob tooth,how to decrease the regrinding error is a hot issue in the research area of hob grinding.At present,researches focus on changing the trajectory of relief moving,because of no unified relief grinding path planning method,the research result is restricted in the practical application.For solving the problem,the calculation model of the hob relief angle is established with the Archimedes relieving motion to analyze the interaction between the increasing relief angle of the hob and the accelerating tooth profile errors.Based on it,the improved relief grinding method of gear hob is proposed with equal relief angle(ERA).Furthermore,the relief grinding method with ERA is developed with the following two steps.Firstly,the convergence numerical solution algorithm of the tooth top curve is designed to form the wheel motion path which is compared with that of traditional grinding.The second step is to establish the solution model of ERA grinding wheel.In order to verify the effect of the method,hob grinding simulation system of 3D solid was built under the AutoCAD environment.The regrinding errors is analyzed by intercepting the hob axial profiles of the various regrinding angles with Boolean operations and further converting it to basic rack tooth,then the simulation example of zero rake straight flute hob is used to compare the regrinding errors between ERA grinding and traditional grinding.Finally,the experiments were implemented on the five-axis CNC relief grinder with the relief motion of ERA grinding driven by cam.The results of experiments show that the method can effectively reduce the regrinding errors of hob and grind expediently gear hob of AA rank and over.This research provide an effective model of relief moving path plan reducing regrinding error,and have practicable value in CNC relief grinder.展开更多
A creative conception is proposed to enhance heat transfer in grinding contact zone through jet impinging on the basis of analysis on the mechanism of burn during creep feed grinding, and a new apparatus of slotted &a...A creative conception is proposed to enhance heat transfer in grinding contact zone through jet impinging on the basis of analysis on the mechanism of burn during creep feed grinding, and a new apparatus of slotted & perforated electroplated CBN grinding wheel with radial jet is developed, the effect on heat transfer is studied through the experiment of intermitted creep feed grinding. Experimental results show that the technology of enhancing heat transfer through jet impinging is valid to raise the efficiency of heat transfer in grinding contact zone and it is widely applied to solve the problem in grinding burn for difficult to machine materials.展开更多
The working principle of cement roller press and current development of wear resistance on the cement grinding system status at home and abroad was described. The main improvement of previous research on the wear resi...The working principle of cement roller press and current development of wear resistance on the cement grinding system status at home and abroad was described. The main improvement of previous research on the wear resistance of roller press was proposed from three aspects of wear-resistant material, roller press roller structure, and surface morphology.展开更多
To obtain accurate forms and surfaces in free surface grinding, it is important to provide grinding conditions suitable for a curved surface. A grinding support system for the free surface (GSX-F) is proposed to hel...To obtain accurate forms and surfaces in free surface grinding, it is important to provide grinding conditions suitable for a curved surface. A grinding support system for the free surface (GSX-F) is proposed to help the operator grind a free surface with the high accuracy and the high productivity. To succeed in free surface grinding, the property of a ball type wheel must be known. Therefore, a basic study of free surface grinding with a ball type wheel is carried out based on the grinding center (GC). Some working points for achieving sufficient accuracy in free surface grinding are discussed. GSX-F is constructed using the patch division method and is used to test grinding. Reasonable results are obtained.展开更多
The selected modifications to the construction of grinding wheels were described which facilitate an increase in the material removal rate (grinding wheels with conic chamfer and grinding wheels with microdiscontinui...The selected modifications to the construction of grinding wheels were described which facilitate an increase in the material removal rate (grinding wheels with conic chamfer and grinding wheels with microdiscontinuities on the active surface). Using these background details, a suggested thesis was put forward regarding the need to develop a device which will allow for the shaping of the macrogeometry of the grinding wheel (cylindrical and conical surfaces) and the microdiscontinuities within the dressing operation simultaneously. The device was presented and prepared in two functional variants (horizontal and vertical mounting of the motor), then a prototype was described. An example of the grinding wheel active surface, shaped by using this device, was also presented. The theoretical analysis and experimental verification performed determine that the error of shaping the conic chamfer angle within the range of 0-1.5°, using the developed device, is approximately ±3%.展开更多
To meet the increasing demand on the quality and co st of precision components for the semiconductor industries, extensive studies on high efficiency and precision machining of ceramic materials have been conducted ov...To meet the increasing demand on the quality and co st of precision components for the semiconductor industries, extensive studies on high efficiency and precision machining of ceramic materials have been conducted over the past several years. It is found that the effects of grinding pressure and rotational speed of spindle in the machining for the ceramic materials are v ery significant on the quality of the grinding process. In order to achieve stab le grinding conditions for improved performance, a new grinding control scheme i n which the grinding pressure is maintained constant throughout the grinding pro cess was carried out in the present study. The surface quality of ground ceramics depends on the mechanism of material remo val in the vertical grinding process. For grinding of Si 3N 4 and glass under the condition of constant pressure, increasing pressure enhances material remova l rate, and at the same time causes more machining-induced microcracks on the g round surfaces. Along with the analysis of tangential forces, specific grinding energy, and the micro observations on ground surfaces, it can be found that low pressure and high wheel speed should be selected to high efficiently remove cera mics in ductile mode in the vertical grinding. From the theoretically analytical and measured grinding temperatures in the vert ical grinding of ceramics, it is found that the analytical temperature profile w ithε= 55% has the same trend with the measured one. The measured temperature is higher that the analytical one at the beginning stage of grinding process, whic h might be contributed to the unstable grinding condition of this stage. The gri nding temperatures in the vertical grinding of ceramics under a constant are not high enough for glassy phase formation, and may not reduce surface fracture as expected. However, the temperature in dry grinding may cause thermal damage to t he resin bond diamond wheel, thereby resulting in low quality workpiece surface.展开更多
As is known to all, grinding force is one of the most important parameters to evaluate the whole process of grinding. Generally, the grinding force is resolved to three component forces, namely, normal grinding force ...As is known to all, grinding force is one of the most important parameters to evaluate the whole process of grinding. Generally, the grinding force is resolved to three component forces, namely, normal grinding force F n, tangential grinding force F t and a component force acting along the direction of longitudinal feed which is usually neglected because of insignificance. The normal grinding force F n has influence upon surface deformation and roughness of workpiece, while the tangential grinding force F t mainly affect power consumption and service life of grinding wheel. In order to study deep into the process of the unsteady state grinding, we set up a measurement system to monitor the change of grinding force during the course of grinding and try to find some difference in the change of grinding force between the steady state grinding and unsteady state grinding. In the test, the normal and tangential grinding forces, F n and F t were measured by using a set of equipments including sensor, amplifier, oscilloscope and computer monitor. From the results, we can conclude that: 1) In the unsteady state grinding process, the values of the grinding forces are much lower than those of the steady state grinding process and the grinding force ratio showed a nonlinear fluctuation. 2) The tendency of the grinding forces in the process of the unsteady state grinding proved the existence of the cutting and micro-cutting actions. 3) Because the grinding force signals of the unsteady state grinding are much weaker than those of the steady state grinding, to obtain accurate value of the grinding forces, wave filtering is needed to be done. The whole process to filter the perturbation wave can be separated into three steps in order, changing the grinding force signals from analog signals into digital signals, FFT (fast Fourier transform) treatment to the digital signals, and IFFT(inversion fast Fourier transform) treatment to the digital signals after spectrum limitation.展开更多
The grinding characteristics of two or multi-component material of cli nker with limestone, blast furnace slag and fly ash were studied. Investigation was carried out on the particle size distribution, the Blaine fin...The grinding characteristics of two or multi-component material of cli nker with limestone, blast furnace slag and fly ash were studied. Investigation was carried out on the particle size distribution, the Blaine fineness and the s ieve residue of the separate and interground products. The relative contents of clinker and limestone in different size fractions of the interground product wer e examined, and the interaction of two components, which have different grindabi lities, was analyzed. The results show there exists a selective grinding effect during intergrinding, one component can help or hinder the grinding of the other . Making good use of this interaction appropriately not only enhances the grinda bilities of two or multi-component mixtures, which can promote the grinding pro cess of clinker with industrial wastes, but also improves their particle size di stribution and properties.展开更多
基金Supported by the Scientific Research Fund of Hunan Provincial Education Department(21A048)Graduate Student Research Innovation Project of Shaoyang University(CX2022SY080)Transverse project of Shaoyang University(2023HX37,2023HX43)。
文摘[Objectives] This study was conducted to improve the nutritional value of soybean milk, enrich the variety and taste of soybean milk, and find healthy food that is more conducive to people s nutritional needs. [Methods] Whole soybean milk was prepared by grinding with a grinding wheel at a low concentration (low-concentration grinding) and a stainless steel mill at a high concentration (high-concentration grinding). The sensory, physical and chemical characteristics and anti-nutritional factors of whole soybean milk produced by different grinding methods were studied. [Results] Compared with low-concentration grinding, the protein content in soybean milk prepared by high-concentration grinding increased by 24%, and the dietary fiber content increased by 74.7%. Before and after high-pressure homogenization, the particle size D(4, 3) of soybean milk prepared by low-concentration grinding was 212.1 and 93.59 μm, respectively, and the particle size D(4, 3) of soybean milk prepared by high-concentration grinding was 134.0 and 64.64 μm, respectively. The trypsin inhibitor activity and phytic acid content of soybean milk prepared by high-concentration grinding were significantly lower than those of soybean milk prepared by low-concentration grinding. [Conclusions] This study improves the diet structure of the broad masses of people, strengthens people s physique, and provides a new idea for the implementation and development of China s "Soybean Action Programme".
文摘Minimum quantity Lubrication(MQL)is a sustainable lubrication system that is famous in many machining systems.It involve the spray of an infinitesimal amount of mist-like lubricants during machining processes.The MQL system is affirmed to exhibit an excellent machining performance,and it is highly economical.The nanofluids are understood to exhibit excellent lubricity and heat evacuation capability,compared to pure oil-based MQL system.Studies have shown that the surface quality and amount of energy expended in the grinding operations can be reduced considerably due to the positive effect of these nanofluids.This work presents an experimental study on the tribological performance of SiO_(2)nanofluid during grinding of Si_(3)N_(4)ceramic.The effect different grinding modes and lubrication systems during the grinding operation was also analyzed.Different concentrations of the SiO_(2)nanofluid was manufactured using canola,corn and sunflower oils.The quantitative evaluation of the grinding process was done based on the amount of grinding forces,specific grinding energy,frictional coefficient,and surface integrity.It was found that the canola oil exhibits optimal lubrication performance compared to corn oil,sunflower oil,and traditional lubrication systems.Additionally,the introduction of ultrasonic vibrations with the SiO_(2)nanofluid in MQL system was found to reduce the specific grinding energy,normal grinding forces,tangential grinding forces,and surface roughness by 65%,57%,65%,and 18%respectively.Finally,regression analysis was used to obtain an optimum parameter combinations.The observations from this work will aid the smooth transition towards ecofriendly and sustainable machining of engineering ceramics.
基金Supported by Special Fund of Taishan Scholars Project(Grant No.tsqn202211179)National Natural Science Foundation of China(Grant No.52105457)+2 种基金Shandong Provincial Young Talent of Lifting Engineering for Science and Technology(Grant No.SDAST2021qt12)National Natural Science Foundation of China(Grant No.52375447)China Postdoctoral Science Foundation Funded Project(Grant No.2023M732826).
文摘The surface morphology and roughness of a workpiece are crucial parameters in grinding processes.Accurate prediction of these parameters is essential for maintaining the workpiece’s surface integrity.However,the randomness of abrasive grain shapes and workpiece surface formation behaviors poses significant challenges,and accuracy in current physical mechanism-based predictive models is needed.To address this problem,by using the random plane method and accounting for the random morphology and distribution of abrasive grains,this paper proposes a novel method to model CBN grinding wheels and predict workpiece surface roughness.First,a kinematic model of a single abrasive grain is developed to accurately capture the three-dimensional morphology of the grinding wheel.Next,by formulating an elastic deformation and formation model of the workpiece surface based on Hertz theory,the variation in grinding arc length at different grinding depths is revealed.Subsequently,a predictive model for the surface morphology of the workpiece ground by a single abrasive grain is devised.This model integrates the normal distribution model of abrasive grain size and the spatial distribution model of abrasive grain positions,to elucidate how the circumferential and axial distribution of abrasive grains influences workpiece surface formation.Lastly,by integrating the dynamic effective abrasive grain model,a predictive model for the surface morphology and roughness of the grinding wheel is established.To examine the impact of changing the grit size of the grinding wheel and grinding depth on workpiece surface roughness,and to validate the accuracy of the model,experiments are conducted.Results indicate that the predicted three-dimensional morphology of the grinding wheel and workpiece surfaces closely matches the actual grinding wheel and ground workpiece surfaces,with surface roughness prediction deviations as small as 2.3%.
基金Supported by National Natural Science Foundation of China(Grant Nos.92160301,92060203,52175415,52205475,and 52205493)Science Center for Gas Turbine Project(Grant Nos.P2022-AB-IV-002-001 and P2023-B-IV-003-001)+3 种基金Jiangsu Provincial Natural Science Foundation(Grant No.BK20210295)the Huaqiao University Engineering Research Center of Brittle Materials Machining(Grant No.2023IME-001)Foundation of Graduate Innovation Centre in NUAA(Grant No.XCXJH20230509)Fundamental Research Funds for the Central Universities(Grant Nos.NS2023028 and NG2024015).
文摘Cubic boron nitride(cBN)grinding wheels play a pivotal role in precision machining,serving as indispensable tools for achieving exceptional surface quality.Ensuring the sharpness of cBN grains and optimizing the grinding wheel’s chip storage capacity are critical factors.This paper presents a study on the metal-bonded segments and single cBN grain samples using the vacuum sintering method.It investigates the impact of blasting parameters-specifically silicon carbide(SiC)abrasive size,blasting distance,and blasting time-on the erosive wear characteristics of both the metal bond and abrasive.The findings indicate that the abrasive size and blasting distance significantly affect the erosive wear performance of the metal bond.Following a comprehensive analysis of the material removal rate of the metal bond and the erosive wear condition of cBN grains,optimal parameters for the working layer are determined:a blasting distance of 60 mm,a blasting time of 15 s,and SiC particle size of 100#.Furthermore,an advanced simulation model investigates the dressing process of abrasive blasting,revealing that the metal bond effectively inhibits crack propagation within cBN abrasive grains,thereby enhancing fracture toughness and impact resistance.Additionally,a comparative analysis is conducted between the grinding performance of porous cBN grinding wheels and vitrified cBN grinding wheels.The results demonstrate that using porous cBN grinding wheels significantly reduces grinding force,temperature,and chip adhesion,thereby enhancing the surface quality of the workpiece.
基金supported by the National Natural Science Foundation of China(52375420,52005134 and51675453)Natural Science Foundation of Heilongjiang Province of China(YQ2023E014)+5 种基金Self-Planned Task(No.SKLRS202214B)of State Key Laboratory of Robotics and System(HIT)China Postdoctoral Science Foundation(2022T150163)Young Elite Scientists Sponsorship Program by CAST(No.YESS20220463)State Key Laboratory of Robotics and System(HIT)(SKLRS-2022-ZM-14)Open Fund of Key Laboratory of Microsystems and Microstructures Manufacturing(HIT)(2022KM004)Fundamental Research Funds for the Central Universities(Grant Nos.HIT.OCEF.2022024 and FRFCU5710051122)。
文摘Elucidating the complex interactions between the work material and abrasives during grinding of gallium nitride(GaN)single crystals is an active and challenging research area.In this study,molecular dynamics simulations were performed on double-grits interacted grinding of GaN crystals;and the grinding force,coefficient of friction,stress distribution,plastic damage behaviors,and abrasive damage were systematically investigated.The results demonstrated that the interacted distance in both radial and transverse directions achieved better grinding quality than that in only one direction.The grinding force,grinding induced stress,subsurface damage depth,and abrasive wear increase as the transverse interacted distance increases.However,there was no clear correlation between the interaction distance and the number of atoms in the phase transition and dislocation length.Appropriate interacted distances between abrasives can decrease grinding force,coefficient of friction,grinding induced stress,subsurface damage depth,and abrasive wear during the grinding process.The results of grinding tests combined with cross-sectional transmission electron micrographs validated the simulated damage results,i.e.amorphous atoms,high-pressure phase transition,dislocations,stacking faults,and lattice distortions.The results of this study will deepen our understanding of damage accumulation and material removal resulting from coupling between abrasives during grinding and can be used to develop a feasible approach to the wheel design of ordered abrasives.
基金Supported by National Natural Science Foundation of China(Nos.52205476,92160301)Youth Talent Support Project of Jiangsu Provincial Association of Science and Technology of China(Grant No.TJ-2023-070)+2 种基金Science Center for Gas Turbine Project(Grant No.P2023-B-IV-003-001)Fund of Prospective Layout of Scientific Research for the Nanjing University of Aeronautics and Astronautics of China(Grant No.1005-ILB23025-1A)Fund of Jiangsu Key Laboratory of Precision and Micro-Manufacturing Technology of China(Grant No.1005-ZAA20003-14).
文摘Grinding,a critical precision machining process for difficult-to-cut alloys,has undergone continual technological advancements to improve machining efficiency.However,the sustainability of this process is gaining heightened attention due to significant challenges associated with the substantial specific grinding energy and the extensive heat generated when working with difficult-to-cut alloys,renowned for their exceptional physical and mechanical properties.In response to these challenges,the widespread application of massive coolant in manufacturing industries to dissipate grinding heat has led to complex post-cleaning and disposal processes.This,in turn,has resulted in issues such as large energy consumption,a considerable carbon footprint,and concerns related to worker health and safety,which have become the main factors that restrict the development of grinding technology.This paper provides a holistic review of sustainability in grinding difficult-to-cut alloys,encompassing current trends and future directions.The examination extends to developing grinding technologies explicitly tailored for these alloys,comprehensively evaluating their sustainability performance.Additionally,the exploration delves into innovative sustainable technologies,such as heat pipe/oscillating heat pipe grinding wheels,minimum quantity lubrication,cryogenic cooling,and others.These groundbreaking technologies aim to reduce dependence on hazardous coolants,minimizing energy and resource consumption and carbon emissions associated with coolant-related or subsequent disposal processes.The essence of these technologies lies in their potential to revolutionize traditional grinding practices,presenting environmentally friendly alternatives.Finally,future development trends and research directions are put forward to pursue the current limitation of sustainable grinding for difficult-to-cut alloys.This paper can guide future research and development efforts toward more environmentally friendly grinding operations by understanding the current state of sustainable grinding and identifying emerging trends.
基金supported by the National Natural Science Foundation of China(Grant Nos.92060203,52105453,and 92360304)the Science Center for Gas Turbine Project(No.P2022-A-IV-002-001).
文摘Ceramic matrix composites(CMCs)are highly promising materials for the next generation of aero-engines.However,machining of CMCs suffers from low efficiency and poor surfacefinish,which presents an obstacle to their wider application.To overcome these problems,this study investigates high-efficiency deep grinding of CMCs,focusing on the effects of grinding depth.The results show that both the sur-face roughness and the depth of subsurface damage(SSD)are insensitive to grinding depth.The material removal rate can be increased sixfold by increasing the grinding depth,while the surface roughness and SSD depth increase by only about 10%.Moreover,it is found that the behavior of material removal is strongly dependent on grinding depth.As the grinding depth is increased,fibers are removed in smaller sizes,with thefiber length in chips being reduced by about 34%.However,too large a grinding depth will result in blockage by chip powder,which leads to a dramatic increase in the ratio of tangential to normal grinding forces.This study demonstrates that increasing the depth of cut is an effective approach to improve the machining efficiency of CMCs,while maintaining a good surfacefin-ish.It provides the basis for the further development of high-performance grinding methods for CMCs,which should facilitate their wider application.
基金support from the National Science Fund of China(52325506)the National Science and Technology Major Project(2017-VII-0002-0095)Fundamental Research Funds for the Central Universities(DUT22LAB501)。
文摘Fatigue properties are crucial for critical aero-engine components in extreme serviceenvironments,which are significantly affected by surface integrity(SI)indexes(especially surface topography,residual stressσ_(res),and microhardness)after machining processes.Normal-direction ultrasonic vibration-assisted face grinding(ND-UVAFG)has advantages in improving the machinability of Inconel 718,but there is a competitive relationship between higher compressiveσ_(res)and higher surface roughness R_(a)in affecting fatigue strength.The lack of a quantitative relationship between multiple SI indexes and fatigue strength makes theindeterminacy of a regulatory strategy for improving fatigue properties.In this work,a model of fatigue strength(σ_f)_(sur)considering multiple SI indexes was developed.Then,high-cycle fatigue tests were carried out on Inconel 718 samples with different SI characteristics,and the influence of ND-UVAFG process parameters on SI was analyzed.Based on SI indexes data,the(σ_f)_(sur)distribution in the grinding surface layer for ND-UVAFG Inconel 718 samples was determined using the developed model,and then the fatigue crack initiation(FCI)sites were furtherpredicted.The predicted FCI sites corresponded well with the experimental results,therebyverifying this model.A strategy for improving the fatigue life was proposed in this work,which was to transfer the fatigue source from the machined surface to the bulk material by controlling the SI indexes.Finally,a critical condition of SI indexes that FCI sites appeared on the surface or in bulk material was given by fitting the predicted results.According to the critical condition,an SI field where FCI sites appeared in the bulk material could be obtained.In this field,thefatigue life of Inconel 718 samples could be improved by approximately 140%.
文摘BACKGROUND Extraction of impacted third molars often leads to severe complications caused by damage to the inferior alveolar nerve(IAN).AIM To proposes a method for the partial grinding of an impacted mandibular third molar(IMM3)near the IAN to prevent IAN injury during IMM3 extraction.METHODS Between January 1996 and March 2022,25 patients with IMM3 roots near the IAN were enrolled.The first stage of the operation consisted of grinding a major part of the IMM3 crown with a high-speed turbine dental drill to achieve sufficient space between the mandibular second molar and IMM3.After 6 months,when the root tips were observed to be away from the IAN on X-ray examination,the remaining part of the IMM3 was completely removed.RESULTS All IMM3s were extracted easily without symptoms of IAN injury after extraction.CONCLUSION Partial IMM3 grinding may be a good alternative treatment option to avoid IAN injury in high-risk cases.
基金supported by National Natural Science Foundation of China(Grant No.51105024)
文摘There is less research on vertical sculptured grinding technology. Especially in high vertical surface grinding process with the cup abrasive wheel, the thermal damage is prone to happen and undermine the grinding surface integrity. This problem limits to improve the grinding efficiency and the grinding ratio greatly. Through the analysis of vertical surface grinding process and features in depth, this paper revealed the inherent mechanism of higher grinding temperature in the process of vertical sculptured grinding using the cup wheel. Based on the previous research achievements, the grinding experiments on TC4 (Ti-6A1-4V) and GH4169 are carried out utilizing the self-inhaling internal cooling wheel. The experimental results show that the self-inhaling internal cooling wheel can efficiently reduce the grinding surface temperature. Moreover, the inherent mechanism of reducing the grinding temperature using the internal cooling method is revealed. Meanwhile, under the same grinding conditions, the grinding ratio during the experiments on GH4169 using self-inhaling internal cooling method is about 3 times as high as using conventional external cooling method. And the grinding forces can be reduced by about 20%. This research revealed the inherent mechanism of higher grinding temperature in the process of vertical sculptured grinding using the cup wheel, which provides theoretical basis for the design and application of self-inhaling internal cooling wheel. At the same time, an efficient and non-invasive surface grinding method of TC4 and GH4169 is presented.
基金Jiangsu Natural Science Fund of China (BK2001048)
文摘In order to grind the ceramic blade surface with the Numerical Control contour evolution ultrasonic grinding method using the simple shape grinding wheel, primary comparative experiments of creep feed grinding with and without ultrasonic vibration were carried out to grind Al2O3 ceramics so as to implore the effects of different process parameters on the machined surface quality. It can be concluded that when the direction of ultrasonic vibration is parallel to the direction of creep feed, the value of the surface roughness will be decreased; otherwise the surface quality will become worse. With the ultrasonic grinding method, the slower feed-rate, the smaller grinding depth, the higher grinding speed and the compound feed grinding method should be applied in order to improve the surface quality. The creep feed grinding meehanisms with and without ultrasonic vibration were analyzed theoretically from the experimental results. With the selected grinding parameters resulted from the experiments, the feasibility experiment of ultrasonic grinding ceramic blade surface was cartied out.
基金Supported by the State Major Science and Technology Special Projects(2010ZX04003081-03)
文摘The purpose of this study is to investigate the effect of graphite lubricant on the dry grinding performance of Ti-6Al-4Valloy,using graphite-coated,brazed monolayer,cubic boron nitride(cBN)wheels.Brazed monolayer cBN wheels both with and without a coating of polymer-based graphite lubricant are fabricated and subsequently compared for grinding performance based on measurements of grinding temperature,surface microstructure and grinding.In terms of grinding temperature,considerable improvement in dry grinding performance of titanium alloy is achieved using coated brazed monolayer cBN wheels,with 42%—47%reduction in grinding temperature as opposed to uncoated wheels.The grinding force ratio with the coated wheels is observed to remain between 1.45to1.85despite material removal rates reaching up to 1 950mm3/mm.No tangible change in ground titanium surface microstructure is noted as a result of grinding with the graphite coated wheels as opposed to the uncoated ones.
基金supported by the Fundamental Research Funds for the Central Universities (Grant No. CDJZR10110025)
文摘The regrinding error is the main factor affecting the eligible length of hob tooth,how to decrease the regrinding error is a hot issue in the research area of hob grinding.At present,researches focus on changing the trajectory of relief moving,because of no unified relief grinding path planning method,the research result is restricted in the practical application.For solving the problem,the calculation model of the hob relief angle is established with the Archimedes relieving motion to analyze the interaction between the increasing relief angle of the hob and the accelerating tooth profile errors.Based on it,the improved relief grinding method of gear hob is proposed with equal relief angle(ERA).Furthermore,the relief grinding method with ERA is developed with the following two steps.Firstly,the convergence numerical solution algorithm of the tooth top curve is designed to form the wheel motion path which is compared with that of traditional grinding.The second step is to establish the solution model of ERA grinding wheel.In order to verify the effect of the method,hob grinding simulation system of 3D solid was built under the AutoCAD environment.The regrinding errors is analyzed by intercepting the hob axial profiles of the various regrinding angles with Boolean operations and further converting it to basic rack tooth,then the simulation example of zero rake straight flute hob is used to compare the regrinding errors between ERA grinding and traditional grinding.Finally,the experiments were implemented on the five-axis CNC relief grinder with the relief motion of ERA grinding driven by cam.The results of experiments show that the method can effectively reduce the regrinding errors of hob and grind expediently gear hob of AA rank and over.This research provide an effective model of relief moving path plan reducing regrinding error,and have practicable value in CNC relief grinder.
文摘A creative conception is proposed to enhance heat transfer in grinding contact zone through jet impinging on the basis of analysis on the mechanism of burn during creep feed grinding, and a new apparatus of slotted & perforated electroplated CBN grinding wheel with radial jet is developed, the effect on heat transfer is studied through the experiment of intermitted creep feed grinding. Experimental results show that the technology of enhancing heat transfer through jet impinging is valid to raise the efficiency of heat transfer in grinding contact zone and it is widely applied to solve the problem in grinding burn for difficult to machine materials.
基金Supported by the Planning Project of Science and Technology Development of Jilin Province (09ZDGG001)~~
文摘The working principle of cement roller press and current development of wear resistance on the cement grinding system status at home and abroad was described. The main improvement of previous research on the wear resistance of roller press was proposed from three aspects of wear-resistant material, roller press roller structure, and surface morphology.
文摘To obtain accurate forms and surfaces in free surface grinding, it is important to provide grinding conditions suitable for a curved surface. A grinding support system for the free surface (GSX-F) is proposed to help the operator grind a free surface with the high accuracy and the high productivity. To succeed in free surface grinding, the property of a ball type wheel must be known. Therefore, a basic study of free surface grinding with a ball type wheel is carried out based on the grinding center (GC). Some working points for achieving sufficient accuracy in free surface grinding are discussed. GSX-F is constructed using the patch division method and is used to test grinding. Reasonable results are obtained.
文摘The selected modifications to the construction of grinding wheels were described which facilitate an increase in the material removal rate (grinding wheels with conic chamfer and grinding wheels with microdiscontinuities on the active surface). Using these background details, a suggested thesis was put forward regarding the need to develop a device which will allow for the shaping of the macrogeometry of the grinding wheel (cylindrical and conical surfaces) and the microdiscontinuities within the dressing operation simultaneously. The device was presented and prepared in two functional variants (horizontal and vertical mounting of the motor), then a prototype was described. An example of the grinding wheel active surface, shaped by using this device, was also presented. The theoretical analysis and experimental verification performed determine that the error of shaping the conic chamfer angle within the range of 0-1.5°, using the developed device, is approximately ±3%.
文摘To meet the increasing demand on the quality and co st of precision components for the semiconductor industries, extensive studies on high efficiency and precision machining of ceramic materials have been conducted over the past several years. It is found that the effects of grinding pressure and rotational speed of spindle in the machining for the ceramic materials are v ery significant on the quality of the grinding process. In order to achieve stab le grinding conditions for improved performance, a new grinding control scheme i n which the grinding pressure is maintained constant throughout the grinding pro cess was carried out in the present study. The surface quality of ground ceramics depends on the mechanism of material remo val in the vertical grinding process. For grinding of Si 3N 4 and glass under the condition of constant pressure, increasing pressure enhances material remova l rate, and at the same time causes more machining-induced microcracks on the g round surfaces. Along with the analysis of tangential forces, specific grinding energy, and the micro observations on ground surfaces, it can be found that low pressure and high wheel speed should be selected to high efficiently remove cera mics in ductile mode in the vertical grinding. From the theoretically analytical and measured grinding temperatures in the vert ical grinding of ceramics, it is found that the analytical temperature profile w ithε= 55% has the same trend with the measured one. The measured temperature is higher that the analytical one at the beginning stage of grinding process, whic h might be contributed to the unstable grinding condition of this stage. The gri nding temperatures in the vertical grinding of ceramics under a constant are not high enough for glassy phase formation, and may not reduce surface fracture as expected. However, the temperature in dry grinding may cause thermal damage to t he resin bond diamond wheel, thereby resulting in low quality workpiece surface.
文摘As is known to all, grinding force is one of the most important parameters to evaluate the whole process of grinding. Generally, the grinding force is resolved to three component forces, namely, normal grinding force F n, tangential grinding force F t and a component force acting along the direction of longitudinal feed which is usually neglected because of insignificance. The normal grinding force F n has influence upon surface deformation and roughness of workpiece, while the tangential grinding force F t mainly affect power consumption and service life of grinding wheel. In order to study deep into the process of the unsteady state grinding, we set up a measurement system to monitor the change of grinding force during the course of grinding and try to find some difference in the change of grinding force between the steady state grinding and unsteady state grinding. In the test, the normal and tangential grinding forces, F n and F t were measured by using a set of equipments including sensor, amplifier, oscilloscope and computer monitor. From the results, we can conclude that: 1) In the unsteady state grinding process, the values of the grinding forces are much lower than those of the steady state grinding process and the grinding force ratio showed a nonlinear fluctuation. 2) The tendency of the grinding forces in the process of the unsteady state grinding proved the existence of the cutting and micro-cutting actions. 3) Because the grinding force signals of the unsteady state grinding are much weaker than those of the steady state grinding, to obtain accurate value of the grinding forces, wave filtering is needed to be done. The whole process to filter the perturbation wave can be separated into three steps in order, changing the grinding force signals from analog signals into digital signals, FFT (fast Fourier transform) treatment to the digital signals, and IFFT(inversion fast Fourier transform) treatment to the digital signals after spectrum limitation.
基金Funded by Committee on Science and Technology Foundation of Guangdong (C11305)
文摘The grinding characteristics of two or multi-component material of cli nker with limestone, blast furnace slag and fly ash were studied. Investigation was carried out on the particle size distribution, the Blaine fineness and the s ieve residue of the separate and interground products. The relative contents of clinker and limestone in different size fractions of the interground product wer e examined, and the interaction of two components, which have different grindabi lities, was analyzed. The results show there exists a selective grinding effect during intergrinding, one component can help or hinder the grinding of the other . Making good use of this interaction appropriately not only enhances the grinda bilities of two or multi-component mixtures, which can promote the grinding pro cess of clinker with industrial wastes, but also improves their particle size di stribution and properties.