期刊文献+
共找到30篇文章
< 1 2 >
每页显示 20 50 100
Influences of pre-existing fracture on ground deformation induced by normal faulting in mixed ground conditions 被引量:8
1
作者 蔡奇鹏 吴宏伟 +1 位作者 骆冠勇 胡平 《Journal of Central South University》 SCIE EI CAS 2013年第2期501-509,共9页
Physical model tests have been conducted by various researchers to investigate fault rupture propagation and ground deformation induced by bedrock faulting. However, the effects of pre-existing fracture on ground defo... Physical model tests have been conducted by various researchers to investigate fault rupture propagation and ground deformation induced by bedrock faulting. However, the effects of pre-existing fracture on ground deformation are not fully understood. In this work, six centrifuge tests are reported to investigate the influence of pre-existing fracture on ground deformation induced by normal faulting in sand, clay and nine-layered soil with interbedded sand and clay layers. Shear box tests were conducted to develop a filter paper technique, which was adopted in soil model preparation to simulate the effects of pre-existing fracture in centrifuge tests. Centrifuge test results show that ground deformation mechanism in clay, sand and nine-layered soil strata is classified as a stationary zone, a shearing zone and a rigid body zone. Inclination of the strain localization is governed by the dilatancy of soil material. Moreover, the pre-existing fracture provides a preferential path for ground deformation and results in a scarp at the ground surface in sand. On the contrary, fault ruptures are observed at the ground surface in clay and nine-layered soil strata. 展开更多
关键词 centrifuge modeling pre-existing fracture ground deformation normal faulting EARTHQUAKE
下载PDF
Optimum selection of common master image for ground deformation monitoring based on PS-DInSAR technique 被引量:6
2
作者 Zhu Zhengwei Zhou Jianjiang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2009年第6期1213-1220,共8页
Considering the joint effects of various factors such as temporal baseline, spatial baseline, thermal noise, the difference of Doppler centroid frequency and the error of data processing on the interference correlatio... Considering the joint effects of various factors such as temporal baseline, spatial baseline, thermal noise, the difference of Doppler centroid frequency and the error of data processing on the interference correlation, an optimum selection method of common master images for ground deformation monitoring based on the permanent scatterer and differential SAR interferometry (PS-DInSAR) technique is proposed, in which the joint correlation coeficient is used as the evaluation function. The principle and realization method of PS-DInSAR technology is introduced, the factors affecting the DInSAR correlation are analysed, and the joint correlation function model and its solution are presented. Finally an experiment for the optimum selection of common master images is performed by using 25 SAR images over Shanghai taken by the ERS-1/2 as test data. The results indicate that the optimum selection method for PS-DInSAR common master images is effective and reliable. 展开更多
关键词 remote sensing ground deformation monitoring differential SAR interferometry common master image permanent scatterer synthetic aperture radar image analysis.
下载PDF
A Feasible Approach for Improving Accuracy of Ground Deformation Measured by D-InSAR 被引量:8
3
作者 CHANG Zhan-qiang GONG Hui-li +1 位作者 ZHANG Jing-fa GONG Li-xia 《Journal of China University of Mining and Technology》 EI 2007年第2期262-266,共5页
D-InSAR is currently one of the most popular research tools in the field of Microwave Remote Sensing. It is unrivaled in its aspect of measuring ground deformation due to its advantages such as high resolution,continu... D-InSAR is currently one of the most popular research tools in the field of Microwave Remote Sensing. It is unrivaled in its aspect of measuring ground deformation due to its advantages such as high resolution,continuous spa-tial-coverage and dynamics. However,there are still a few major problems to be solved urgently as a result of the intrin-sic complexity of this technique. One of the problems deals with improving the accuracy of measured ground deforma-tion. In this paper,various factors affecting the accuracy of ground deformation measured by D-InSAR are systemati-cally analyzed and investigated by means of the law of measurement error propagation. At the same time,we prove that the ground deformation error not only depends on the errors of perpendicular baselines as well as the errors of the inter-ferometric phase for topographic pair and differential pair,but also on the combination of the relationship of perpen-dicular baselines for topographic pairs and differential pairs. Furthermore,a feasible approach for improving the accu-racy of measured ground deformation is proposed,which is of positive significance in the practical application of D-InSAR. 展开更多
关键词 D-INSAR ground deformation perpendicular baseline interferometric phase
下载PDF
Estimation of Ground Deformation Caused by the Earthquake (M7.2) in Japan,2008,from the Geomorphic Image Analysis of High Resolution LiDAR DEMs 被引量:2
4
作者 MUKOYAMA Sakae 《Journal of Mountain Science》 SCIE CSCD 2011年第2期239-245,共7页
In this study, a new method for quantitative and efficient measurement for the ground surface movement was developed. The feature of this technique is to identify geomorphic characteristics by image matching analysis,... In this study, a new method for quantitative and efficient measurement for the ground surface movement was developed. The feature of this technique is to identify geomorphic characteristics by image matching analysis, using the intelligent images made from high resolution DEM(Digital Elevation Model). This method is useful to extract the small ground displacement where the surface shape was not intensely deformed. 展开更多
关键词 ground deformation ground surface movement Digital Elevation Model(DEM) Geomorphic image analysis JAPAN
下载PDF
Estimation of Ground Deformation in Landslide Prone Areas Using GPS: A Case Study of Bududa, Uganda 被引量:2
5
作者 Brian Makabayi Moses Musinguzi John Richard Otukei 《International Journal of Geosciences》 2021年第3期213-232,共20页
Landslides are a frequent phenomenon on mountain Elgon, particularly in Bududa district on the SW side of this extinct shield volcano. Landslides have led to the destruction of property and loss of life we, therefore,... Landslides are a frequent phenomenon on mountain Elgon, particularly in Bududa district on the SW side of this extinct shield volcano. Landslides have led to the destruction of property and loss of life we, therefore, need to monitor them. Monitoring how landslides build-up makes it possible to timely evacuate people and build barriers to protect property against damage by landslides. Residents in Bududa have reported cracks developing in the ground and houses. These cracks continue to grow, suggesting a future catastrophic event. Such an event may resemble the 2010 landslide in Bududa, which killed approximately 450 people and destroyed much property. In order to mitigate the consequences of a new landslide as much as possible, we monitored ground motion in Bududa in eleven stations from June 2018 to June 2019. Six-hour session GPS observations were made, and deformation was determined over the observation period, June to September 2018, September to November 2018, November 2018 to February 2019 and February to June 2019. A congruency test was performed to determine how significant the deformation was. It appeared that the ground deformation differed largely at various monitored stations, ranging from 0.004 to 0.076 m, 0.001 to 0.067 m and 0 to 0.078 m in the East, North and vertical directions respectively. The values indicate that most slopes in the district are unstable, particularly in the wet seasons, which implies that future landslides pose a high risk for society. 展开更多
关键词 Bududa GPS ground deformation Natural Hazards
下载PDF
Advances in space-borne SAR interferometry and its application to ground deformation monitoring
6
作者 LIU Zhen-guo BIAN Zheng-fu 《Journal of Coal Science & Engineering(China)》 2011年第2期163-170,共8页
The development of Differential Synthetic Aperture Radar Interferometry (D-InSAR), in terms of its evolution from classic to advanced forms, such as Least-Squares approach, Permanent Scatterer Interferometry, Small ... The development of Differential Synthetic Aperture Radar Interferometry (D-InSAR), in terms of its evolution from classic to advanced forms, such as Least-Squares approach, Permanent Scatterer Interferometry, Small Baseline Subset, and Coherent Pixel Technique, is reviewed, describing concisely the main principles of each method and highlighting the difference and relationship between them. Applications of InSAR technology in China were then introduced, together with the obstacles to overcome and feasible strategies, such as integrating MERIS/MODIS data to compensate for the atmospheric effect and GPS, and multi-platform SAR data to make InSAR technique practical and operational under various conditions. The latest devel- opments were then analyzed along with high-quality SAR data, available thanks to the newly launched high-tech satellites, TerraSAR-X, and Cosmo Sky-med, and conclusions were drawn about the main limitations of the technique. 展开更多
关键词 INSAR ground deformation permanent scatterer mining subsidence
下载PDF
Bayesian ensemble methods for predicting ground deformation due to tunnelling with sparse monitoring data
7
作者 Zilong Zhang Tingting Zhang +1 位作者 Xiaozhou Li Daniel Dias 《Underground Space》 SCIE EI CSCD 2024年第3期79-93,共15页
Numerous analytical models have been developed to predict ground deformations induced by tunneling,which is a critical issue in tunnel engineering.However,the accuracy of these predictions is often limited by errors a... Numerous analytical models have been developed to predict ground deformations induced by tunneling,which is a critical issue in tunnel engineering.However,the accuracy of these predictions is often limited by errors and uncertainties resulting from model selection and parameter fittings,given the paucity of monitoring data in field settings.This paper proposes a novel approach to estimate tunnelling-induced ground deformations by applying Bayesian model averaging to several representative prediction models.By accounting for both model and parameter uncertainties,this approach enables more realistic predictions of ground deformations than individual models.Specifically,our results indicate that the Gonzalez-Sagaseta model outperforms other models in predicting ground surface settlements,while the Loganathan-Poulos model is most suitable for predicting subsurface vertical and horizontal deformations.Importantly,our analysis reveals that when monitoring data are sparse,model uncertainties may contribute up to 78.7%of the total uncertainties.Thus,obtaining sufficient data for parameter fitting is crucial for accurate predictions.The proposed method in this study offers a more realistic and efficient prediction of tunnelling-induced ground deformations. 展开更多
关键词 Tunnelling-induced ground deformations Sparse data Model uncertainties Bayesian model averaging
原文传递
Two-Dimensional Ground Deformation Monitoring in Shanghai Based on SBAS and MSBAS InSAR Methods 被引量:7
8
作者 Shaochun Dong Sergey Samsonov +1 位作者 Hongwei Yin Lulu Huang 《Journal of Earth Science》 SCIE CAS CSCD 2018年第4期960-968,共9页
Shanghai has experienced the greatest land subsidence in China in the past sixty years and produced undesirable environmental impact. However, horizontal ground deformation has not been understood yet. Therefore groun... Shanghai has experienced the greatest land subsidence in China in the past sixty years and produced undesirable environmental impact. However, horizontal ground deformation has not been understood yet. Therefore ground deformation monitoring together with the analysis of its driving forces are critical for geo-hazards early-warning, city planning and sustainable urbanization in Shanghai. In this paper, two-dimensional ground deformation monitoring was performed in Shanghai with SBAS and MSBAS InSAR methods. Twenty-nine Multi-Look Fine 6 (MF6) Radarsat-2 SLC data acquired during 2011-2013 were used to derive vertical ground deformation. Meanwhile, six descending Multi-Look Fine 6 (MF6) and four ascending Multi-Look Fine 2 (MF2) spanning April to August, 2008, were used to derive vertical and horizontal ground deformation during the observation period. The results indicate that vertical and horizontal deformations in 2008 were not homogeneously distributed in different districts ranging from 0-2 cm/year. Vertical deformation rate during 2011-2013 were decreased to less than 1 cm/year in most district of Shanghai area. Activities from groundwater exploitation and rapid urbanization are responsible for most of the ground deformation in Shanghai. Thus, future ground deformation in vertical and horizontal directions should be warranted. 展开更多
关键词 SHANGHAI SBAS InSAR MSBAS InSAR ground deformation ground fissures.
原文传递
Numerical analysis of the influence of a river on tunnelling-induced ground deformation in soft soil 被引量:3
9
作者 Jia-xin LIANG Xiao-wu TANG +2 位作者 Tian-qi WANG Yu-hang YE Ying-jing LIU 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2022年第7期564-578,共15页
When tunnels are constructed in coastal cities,they will inevitably undercross a river.Exploring the influence of rivers on tunnelling-induced deformation in costal soft soil is of great significance for controlling e... When tunnels are constructed in coastal cities,they will inevitably undercross a river.Exploring the influence of rivers on tunnelling-induced deformation in costal soft soil is of great significance for controlling excessive settlement and protecting surrounding buildings.This paper presents a case study of twin tunnels undercrossing a river in soft soil in Hangzhou,China.The soft soil of Hangzhou refers to cohesive soil in a soft plastic or fluid plastic state with high natural water content,high compressibility,low bearing capacity,and low shear strength.Considering the influence of the river,the research region was divided into two parts,inside and outside the river-affected area,based on monitoring data of the Zizhi Tunnel.The development law of surface settlement is divided into three stages.In the first and second stages,the surface settlement within and outside the river-affected area showed a similar trend:the settlement increased and the growth rate of settlement in the second stage was smaller within the river-affected area.In the third stage,the surface settlement continued to increase within the river-affected area,while it converged outside the river-affected area.Within the river-affected area,there was an asynchronization of the sinking rate and stability of vault settlements and surface settlements.A numerical model was established by simulating different reinforcements of the tunnel.The numerical model revealed that the ground movement is influenced by the distribution and amount of the excess pore water pressure.The excess pore pressure was concentrated mostly in the range of 1.0H_(t)-3.0H_(t)(H_(t) is the tunnel height)before the tunnel face,especially within the river-affected area.Inside the river-affected area,the dissipation of excess pore water pressure needs more time,leading to slow stabilization of surface settlement.When undercrossing a river,a cofferdam is necessary to reduce excessive ground deformation by dispersing the distribution of excess pore water pressure. 展开更多
关键词 TUNNELLING ground deformation Numerical analysis REINFORCEMENT
原文传递
Computational implementation of a GIS developed tool for prediction of dynamic ground movement and deformation due to underground extraction sequence 被引量:3
10
作者 Yue Cai Yujing Jiang +1 位作者 Baoguo Liu Ibrahim Djamaluddin 《International Journal of Coal Science & Technology》 EI 2016年第4期379-398,共20页
In the last century, there has been a significant development in the evaluation of methods to predict ground movement due to underground extraction. Some remarkable developments in three-dimensional computational meth... In the last century, there has been a significant development in the evaluation of methods to predict ground movement due to underground extraction. Some remarkable developments in three-dimensional computational methods have been supported in civil engineering, subsidence engineering and mining engineering practice. However, ground movement problem due to mining extraction sequence is effectively four dimensional (4D). A rational prediction is getting more and more important for long-term underground mining planning. Hence, computer-based analytical methods that realistically simulate spatially distributed time-dependent ground movement process are needed for the reliable long-term underground mining planning to minimize the surface environmental damages. In this research, a new computational system is developed to simulate four-dimensional (4D) ground movement by combining a stochastic medium theory, Knothe time-delay model and geographic information system (GIS) technology. All the calculations are implemented by a computational program, in which the components of GIS are used to fulfill the spatial-temporal analysis model. In this paper a tight coupling strategy based on component object model of GIS technology is used to overcome the problems of complex three-dimensional extraction model and spatial data integration. Moreover, the implementation of computational of the interfaces of the developed tool is described. The GIS based developed tool is validated by two study cases. The developed computational tool and models are achieved within the GIS system so the effective and efficient calculation methodology can be obtained, so the simulation problems of 4D ground movement due to underground mining extraction sequence can be solved by implementation of the developed tool in GIS. 展开更多
关键词 Computational model Geographical information system - Component object model - Complex mining geometry ground deformation Surface subsidence
下载PDF
Land subsidence induced by groundwater extraction and building damage level assessment—a case study of Datun, China 被引量:4
11
作者 FENG Qi-yan LIU Gang-jun +3 位作者 MENG Lei FU Er-jiang ZHANG Hai-rong ZHANG Ke-fei 《Journal of China University of Mining and Technology》 EI 2008年第4期556-560,共5页
As in many parts of the world, long-term excessive extraction of groundwater has caused significant land-surface sub- sidence in the residential areas of Datun coal mining district in East China. The recorded maximum ... As in many parts of the world, long-term excessive extraction of groundwater has caused significant land-surface sub- sidence in the residential areas of Datun coal mining district in East China. The recorded maximum level of subsidence in the area since 1976 to 2006 is 863 mm, and the area with an accumulative subsidence more than 200 mm has reached 33.1 km2 by the end of 2006. Over ten cases of building crack due to ground subsidence have already been observed. Spatial variation in ground subsi- dence often leads to a corresponding pattern of ground deformation. Buildings and underground infrastructures have been under a higher risk of damage in locations with greater differential ground deformation. Governmental guideline in China classifies build- ing damages into four different levels, based on the observable measures such as the width of wall crack, the degree of door and window deformation, the degree of wall inclination and the degree of structural destruction. Building damage level (BDL) is esti- mated by means of ground deformation analysis in terms of variations in slope gradient and curvature. Ground deformation analysis in terms of variations in slope gradient has shown that the areas of BDL III and BDL II sites account for about 0.013 km2 and 0.284 km2 respectively in 2006, and the predicted areas of BDL (define this first) III and II sites will be about 0.029 km2 and 0.423 km2 respectively by 2010. The situation is getting worse as subsidence continues. That calls for effective strategies for subsidence miti- gation and damage reduction, in terms of sustainable groundwater extraction, enhanced monitoring and the establishment of early warning systems. 展开更多
关键词 land subsidence groundwater extraction ground deformation slope gradient building damage level Datun China
下载PDF
Simplifi ed dynamic analysis to evaluate liquefaction-inducedlateral deformation of earth slopes: a computational fluid dynamics approach 被引量:2
12
作者 Yaser Jafarian Ali Ghorbani Omid Ahmadi 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2014年第3期555-568,共14页
Lateral deformation of liquefiable soil is a cause of much damage during earthquakes, reportedly more than other forms of liquefaction-induced ground failures. Researchers have presented studies in which the liquefied... Lateral deformation of liquefiable soil is a cause of much damage during earthquakes, reportedly more than other forms of liquefaction-induced ground failures. Researchers have presented studies in which the liquefied soil is considered as viscous fluid. In this manner, the liquefied soil behaves as non-Newtonian fluid, whose viscosity decreases as the shear strain rate increases. The current study incorporates computational fluid dynamics to propose a simplified dynamic analysis for the liquefaction-induced lateral deformation of earth slopes. The numerical procedure involves a quasi-linear elastic model for small to moderate strains and a Bingham fluid model for large strain states during liquefaction. An iterative procedure is considered to estimate the strain-compatible shear stiffness of soil. The post-liquefaction residual strength of soil is considered as the initial Bingham viscosity. Performance of the numerical procedure is examined by using the results of centrifuge model and shaking table tests together with some field observations of lateral ground deformation. The results demonstrate that the proposed procedure predicts the time history of lateral ground deformation with a reasonable degree of precision. 展开更多
关键词 LIQUEFACTION lateral ground deformation simplified dynamic analysis computational fluid dynamics
下载PDF
Method of forecasting seismic energy induced by longwall exploitation based on changes in ground subsidence 被引量:2
13
作者 Violetta Sokoa Szewioa 《Mining Science and Technology》 EI CAS 2011年第3期375-379,共5页
A method of forecasting total seismic energy induced by longwall exploitation, based on changes in ground subsidence, is presented in the form of a linear regression model with one with one independent variable. In th... A method of forecasting total seismic energy induced by longwall exploitation, based on changes in ground subsidence, is presented in the form of a linear regression model with one with one independent variable. In the method, ground subsidence is described with a cross-section area of a subsidence trough Pw along a line of observations in the direction of an advancing longwall front, approximately along the axis of the longwall area. Total seismic energy is determined on the basis of seismic energy data of tremors induced by exploitation. The presentation consists of a detailed method and evaluation of its predictive ability for the area of longwall exploitation within the region of one of the coal mines in the Upper Silesian Coal Basin. This method can be used for forecasting the total seismic energy released by tremors within the area directly connected with the exploitation, in which the seismic activity induced by this exploitation occurs. The estimation of the parameters of the determined model should each time be carried out with investigations of the correctness of the model. The method cannot be applied when the number of recorded phenomena is small and when there is insufficient data to make it possible to calculate the index Pw. 展开更多
关键词 Seismic activity Mining ground deformation Seismic hazard Prediction of seismic activity
下载PDF
Subsidence rules of underground layer thickness: Lu'an Coal Base coal mines for different soil as an example, China 被引量:11
14
作者 Haifeng Hu Xugang Lian 《International Journal of Coal Science & Technology》 EI 2015年第3期178-185,共8页
Damage caused by underground coal mining is a serious problem in mining areas in China; therefore, studying and obtaining the rules of ground movement and deformation under different geological conditions is of great ... Damage caused by underground coal mining is a serious problem in mining areas in China; therefore, studying and obtaining the rules of ground movement and deformation under different geological conditions is of great importance. The numerical software ANSYS was used in this study to simulate mining processes under two special geological conditions: (1) thick unconsolidated soil layer and thin bedrock; (2) thin soil layer and thick bedrock. The rules for ground movement and deformation for different soil layer to bedrock ratios were obtained. On the basis of these rules, a prediction parameter modified model of the influence function was proposed, which is suitable for different values of unconsolidated soil layer thickness. The prediction results were verified using two sets of typical field data. 展开更多
关键词 Numerical simulation ground movement and deformation Prediction of ground subsidence Subsidencerules Ratio of soil layer to bedrock
下载PDF
Hazard development mechanism and deformation estimation of water solution mining area 被引量:3
15
作者 贺跃光 李志伟 杨小礼 《Journal of Central South University of Technology》 EI 2006年第6期738-742,共5页
Based on the hazard development mechanism, a water solution area is closely related to the supporting effect of pressure-bearing water, the relaxing and collapsing effect of orebody interlayer, the collapsing effect o... Based on the hazard development mechanism, a water solution area is closely related to the supporting effect of pressure-bearing water, the relaxing and collapsing effect of orebody interlayer, the collapsing effect of thawless material in orebody, filling effect caused by cubical expansibility of hydrate crystallization and uplifting effect of hard rock layer over cranny belt. The movement and deformation of ground surface caused by underground water solution mining is believed to be much weaker than that caused by well lane mining, which can be predicted by the stochastic medium theory method. On the basis of analysis on the engineering practice of water solution mining, its corresponding parameters can be obtained from the in-site data of the belt water and sand filling mining in engineering analog approach. 展开更多
关键词 water solution mining hazard ground surface deformation and movement probability integral method
下载PDF
Centrifuge modeling of buried continuous pipelines subjected to normal faulting 被引量:12
16
作者 Majid Moradi Mahdi Rojhani +1 位作者 Abbas Galandarzadeh Shiro Takada 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2013年第1期155-164,共10页
Seismic ground faulting is the greatest hazard for continuous buried pipelines.Over the years,researchers have attempted to understand pipeline behavior mostly via numerical modeling such as the finite element method.... Seismic ground faulting is the greatest hazard for continuous buried pipelines.Over the years,researchers have attempted to understand pipeline behavior mostly via numerical modeling such as the finite element method.The lack of well-documented field case histories of pipeline failure from seismic ground faulting and the cost and complicated facilities needed for full-scale experimental simulation mean that a centrifuge-based method to determine the behavior of pipelines subjected to faulting is best to verify numerical approaches.This paper presents results from three centrifuge tests designed to investigate continuous buried steel pipeline behavior subjected to normal faulting.The experimental setup and procedure are described and the recorded axial and bending strains induced in a pipeline are presented and compared to those obtained via analytical methods.The influence of factors such as faulting offset,burial depth and pipe diameter on the axial and bending strains of pipes and on ground soil failure and pipeline deformation patterns are also investigated.Finally,the tensile rupture of a pipeline due to normal faulting is investigated. 展开更多
关键词 centrifuge models buried pipeline normal faulting EARTHQUAKE permanent ground deformation
下载PDF
Centrifuge modeling of PGD response of buried pipe 被引量:6
17
作者 Michael O'Rourke Vikram Gadicherla Tarek Abdoun 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2005年第1期69-73,共5页
A new centrifuge based method for determining the response of continuous buried pipe to PGD is presented. The physical characteristics of the RPI's 100 g-ton geotechnical centrifuge and the current lifeline experi... A new centrifuge based method for determining the response of continuous buried pipe to PGD is presented. The physical characteristics of the RPI's 100 g-ton geotechnical centrifuge and the current lifeline experiment split-box are described: The split-box contains the model pipeline and surrounding soil and is manufactured such that half can be offset, in flight, simulating PGD. In addition, governing similitude relations which allow one to determine the physical characteristics, (diameter, wall thickness and material modulus of elasticity) of the model pipeline are presented. Finally, recorded strains induced in two buried pipes with prototype diameters of 0.63 m and 0.95 m (24 and 36 inch) subject to 0.6 and 2.0 meters (2 and 6 feet) of full scale fault offsets and presented and compared to corresponding FE results. 展开更多
关键词 EARTHQUAKES buried pipe permanent ground deformation centrifuge models fault crossings lifeline earthquake engineering
下载PDF
Shanghai center project excavation induced ground surface movements and deformations 被引量:3
18
作者 Guolin XU Jiwen ZHANG +1 位作者 Huang LIU Changqin REN 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2018年第1期26-43,共18页
Empirical data on deep urban excavations can provide designers a significant reference basis for assessing potential deformations of the deep excavations and their impact on adjacent structures. The construction of th... Empirical data on deep urban excavations can provide designers a significant reference basis for assessing potential deformations of the deep excavations and their impact on adjacent structures. The construction of the Shanghai Center involved excavations in excess of 33-m-deep using the top-down method at a site underlain by thick deposits of marine soft clay. A retaining system was achieved by 50-m-deep diaphragm walls with six levels of struts. During construction, a comprehensive instrumentation program lasting 14 months was conducted to monitor the behaviors of this deep circular excavation. The following main items related to ground surface movements and deformations were collected: (1) walls and circumferential soils lateral movements; (2) peripheral soil deflection in layers and ground settlements; and (3) pit basal heave. The results from the field instrumentation showed that deflections of the site were strictly controlled and had no large movements that might lead to damage to the stability of the foundation pit. The field performance of another 21 cylindrical excavations in top-down method were collected to compare with this case through statistical analysis. In addition, numerical analyses were conducted to compare with the observed data. The extensively monitored data are characterized and analyzed in this paper. 展开更多
关键词 deep excavation foundation pit soft clay top-down method field observation ground surface movements ground deformations
原文传递
Effects of sedimentary layer on earthquake source modeling from geodetic inversion 被引量:1
19
作者 Weiwen Chen Sidao Ni +2 位作者 Shengji Wei Zhenjie Wang Jun Xie 《Earthquake Science》 CSCD 2011年第2期221-227,共7页
Ground deformation as observed with GPS or InSAR has been broadly inverted in constraining source parameter of earthquakes. However, for earthquakes occurring beneath sedimentary basins, the very slow sub-surface shea... Ground deformation as observed with GPS or InSAR has been broadly inverted in constraining source parameter of earthquakes. However, for earthquakes occurring beneath sedimentary basins, the very slow sub-surface shear velocity (v S , down to 200 m/s) may cause substantial bias to earthquake source inversion if simple crustal models are used. For Bohai basin, Sichuan basin and rock-sites, we test effects of sub-surface shear velocity structure on ground deformation, and find that up to a factor of 2 overestimate of seismic moment could be generated by the basin structures. Therefore, the very slow sub-surface velocity has to be taken into account before accurate source inversion can be applied. 展开更多
关键词 sedimentary layer ground deformation INSAR GPS
下载PDF
Modeling pipe-soil interaction under vertical downward relative offset using B-spline material point method 被引量:1
20
作者 Chunxin Zhang Honghu Zhu Haojie Li 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第6期1520-1534,共15页
To analyze the pipeline response under permanent ground deformation,the evolution of resistance acting on the pipe during the vertical downward offset is an essential ingredient.However,the efficient simulation of pip... To analyze the pipeline response under permanent ground deformation,the evolution of resistance acting on the pipe during the vertical downward offset is an essential ingredient.However,the efficient simulation of pipe penetration into soil is challenging for the conventional finite element(FE)method due to the large deformation of the surrounding soils.In this study,the B-spline material point method(MPM)is employed to investigate the pipe-soil interaction during the downward movement of rigid pipes buried in medium and dense sand.To describe the density-and stress-dependent behaviors of sand,the J2-deformation type model with state-dependent dilatancy is adopted.The effectiveness of the model is demonstrated by element tests and biaxial compression tests.Afterwards,the pipe penetration process is simulated,and the numerical outcomes are compared with the physical model tests.The effects of pipe size and burial depth are investigated with an emphasis on the mobilization of the soil resistance and the failure mechanisms.The simulation results indicate that the bearing capacity formulas given in the guidelines can provide essentially reasonable estimates for the ultimate force acting on buried pipes,and the recommended value of yield displacement may be underestimated to a certain extent. 展开更多
关键词 Pipe-soil interaction Material point method(MPM) Large ground deformation Failure mechanism Downward movement
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部