Improvement of the fluidity and setting time of grouting materials has been recognized as an effective approach of seepage prevention in foundation works, and it is quite common to be used for handling severe leakages...Improvement of the fluidity and setting time of grouting materials has been recognized as an effective approach of seepage prevention in foundation works, and it is quite common to be used for handling severe leakages in complex ground conditions, such as loose, broken and fully fissured stratum. For the purposed of better meeting the engineering requirements, experimental studies were conducted in this study with focus on the nanocomposite grouting materials and the related controlled grouting technology. As compared with the commonly used silicate-sulpho-aluminate composite cement, which is characterized by relatively poor rheological property, quick setting time and low strength, the most suitable nano-material with proper reactants were selected intentionally to improve the mentioned attributes of composite cement. Due to the setting time and strength of the targeted cement slurry behaving with poor performance of harmonization to engineering construction problems, hydration synergistic effect of these composites were investigated in our experiments. Results showed that the properties of grouting materials, including initial fluidity, setting time, ideal right-angle thickening, and early strength and late strength were sufficient to produce an expected grouting application. It is therefore advocated that the refined grouting material could provide a better solution to fix grouting problems in complex ground cementing operations.展开更多
The simplified mechanical model and finite element model are established on the basis of the measured results and analysis of the grouting pile deformation monitoring,surface horizontal displacement and vertical displ...The simplified mechanical model and finite element model are established on the basis of the measured results and analysis of the grouting pile deformation monitoring,surface horizontal displacement and vertical displacement monitoring,deep horizontal displacement(inclinometer)monitoring,soil pressure monitoring and seepage pressure monitoring in the lower reaches of Wuan River regulation project in Shishi,Fujian Province.The mechanical behavior and deformation performance of mould-bag pile retaining wall formed after controlled cement grouting in the silty stratum of the test section are analyzed and compared.The results show that the use of controlled cement grouting mould-bag pile technology is to strengthen the soft stratum for sealing water and reinforcement,so that it can rock into a retaining wall,which can both retain soil and seal water with excellent effect.The control of cement grouting technology not only makes the soft soil rock in the range of retaining wall of mould-bag pile,but also makes a wide range of soil around the mould-bag pile squeeze and embed to compaction;and its cohesion and internal friction angle increased,so as to achieve the purpose of reducing soil pressure and improving mechanical and deformation properties of retaining wall.展开更多
基金funded by National Natural Science of China (Grant Nos.41672362)Key Projects of Sichuan Provincial Department of Education (Grant No.16ZA0099)the State Key Laboratory of Geohazard Prevention & Geoenvironment Protection (Grant No.SKLGP2017Z011)
文摘Improvement of the fluidity and setting time of grouting materials has been recognized as an effective approach of seepage prevention in foundation works, and it is quite common to be used for handling severe leakages in complex ground conditions, such as loose, broken and fully fissured stratum. For the purposed of better meeting the engineering requirements, experimental studies were conducted in this study with focus on the nanocomposite grouting materials and the related controlled grouting technology. As compared with the commonly used silicate-sulpho-aluminate composite cement, which is characterized by relatively poor rheological property, quick setting time and low strength, the most suitable nano-material with proper reactants were selected intentionally to improve the mentioned attributes of composite cement. Due to the setting time and strength of the targeted cement slurry behaving with poor performance of harmonization to engineering construction problems, hydration synergistic effect of these composites were investigated in our experiments. Results showed that the properties of grouting materials, including initial fluidity, setting time, ideal right-angle thickening, and early strength and late strength were sufficient to produce an expected grouting application. It is therefore advocated that the refined grouting material could provide a better solution to fix grouting problems in complex ground cementing operations.
基金The work is supported by the National Natural Science Foundation of China(No.51578253)Scientific and Technological Planning Project of Xiamen City(Nos.3502Z20172011 and 3502Z20172014)+1 种基金Scientific and Technological Planning Project of Quanzhou City(No.2018C083R)Reform study of graduate education and teaching of Huaqiao University in 2018(No.18YJG55).
文摘The simplified mechanical model and finite element model are established on the basis of the measured results and analysis of the grouting pile deformation monitoring,surface horizontal displacement and vertical displacement monitoring,deep horizontal displacement(inclinometer)monitoring,soil pressure monitoring and seepage pressure monitoring in the lower reaches of Wuan River regulation project in Shishi,Fujian Province.The mechanical behavior and deformation performance of mould-bag pile retaining wall formed after controlled cement grouting in the silty stratum of the test section are analyzed and compared.The results show that the use of controlled cement grouting mould-bag pile technology is to strengthen the soft stratum for sealing water and reinforcement,so that it can rock into a retaining wall,which can both retain soil and seal water with excellent effect.The control of cement grouting technology not only makes the soft soil rock in the range of retaining wall of mould-bag pile,but also makes a wide range of soil around the mould-bag pile squeeze and embed to compaction;and its cohesion and internal friction angle increased,so as to achieve the purpose of reducing soil pressure and improving mechanical and deformation properties of retaining wall.