In this study,we proposed a reliable and sustainable technique for the clean utilization of shrimp wastes,which can yield a solid inoculant of Bacillus subtilis OKF04 containing micronutrients at low cost without the ...In this study,we proposed a reliable and sustainable technique for the clean utilization of shrimp wastes,which can yield a solid inoculant of Bacillus subtilis OKF04 containing micronutrients at low cost without the risk of contamination.Study of the culture conditions revealed that the head of shrimp Litopenaus vannamei and the wheat bran acted as suitable substrates for the growth of B.subtilis OKF04.With 60%initial moisture content,30℃culture temperature,and 5%inoculation amount,followed by 48 hours of fermentation and 0.5%soluble starch added during the drying process(50℃for 6h),a solid B.subtilis OKF04 inoculant with a spore amount of 2.4×10^(10)CFU g^(-1)and a high amino acid content was obtained.The solid B.subtilis OKF04 inoculant was applied to cultivate pakchoi under pot experiment.As the result,of adding to,the size of stems and leaves,nutritional composition,and physiological activity of pakchoi were significantly(P<0.05)enhanced by solid B.subtilis OKF04 inoculant.B.subtilis OKF04 also significantly(P<0.05)increased the soil’s nutrient content and improved its microbial composition.Furthermore,pakchoi cultivated with a low dose of solid B.subtilis OKF04 inoculant(0.05 g kg^(-1)soil)resulted in the best results.This study provides a new method for the preparation of microbial inoculants with solid waste shrimp heads.展开更多
The paper first introduces the definition and classification of plant growth promoting rhizobacteria (PGPR), then reviews the research achievements on the mechanism of action of plant growth promoting rhizobacteria,...The paper first introduces the definition and classification of plant growth promoting rhizobacteria (PGPR), then reviews the research achievements on the mechanism of action of plant growth promoting rhizobacteria, including growth pro-moting mechanism and bio-control mechanism, subsequently lists the use of excel-lent plant growth promoting rhizobacteria strains in recent years, especial y Pseu-domonas and Bacil us strains, and final y discusses problems existing in this area and points out issues requiring further exploration, including PGPR screening meth-ods, preservation methods, mechanism of action, in order to commercialize PGPR as soon as possible and practical y realize its application to production.展开更多
Bacillus amyloliquefaciens Bc2 and Trichderma harzianum TR were used to evaluate their growth-promoting activity on cultivated strawberries, under laboratory and field conditions, and we have noticed that the percenta...Bacillus amyloliquefaciens Bc2 and Trichderma harzianum TR were used to evaluate their growth-promoting activity on cultivated strawberries, under laboratory and field conditions, and we have noticed that the percentage of achene germination is important for ones treated with TR (=97%) followed by those treated with Bc2 strain (=90%) and the control (=84%). Inoculations on field showed that on untreated soil with insecticide, TR is effective and allows the development of plants and extends the duration of flowering and fruiting. On treated soil, Bc2 clearly promotes the growth and development of strawberry seedlings and its role as plant growth promoting microorganisms has been proved.展开更多
Aiming at searching for plant growth promoting rhizobacteria (PGPR), a bacterium strain coded as 7016 was isolated from soybean rhizosphere and was characterized in the present study. It was identiifed as Burkholderia...Aiming at searching for plant growth promoting rhizobacteria (PGPR), a bacterium strain coded as 7016 was isolated from soybean rhizosphere and was characterized in the present study. It was identiifed as Burkholderia sp. based on 16S rDNA sequence analysis, as wel as phenotypic and biochemical characterizations. This bacterium presented nitrogenase activity, 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase activity and phosphate solubilizing ability;inhibited the growth of Sclerotinia sclerotiorum, Gibberel a zeae and Verticil ium dahliae;and produced smal quantities of indole acetic acid (IAA). In green house experiments, signiifcant increases in shoot height and weight, root length and weight, and stem diameter were observed on tomato plants in 30 d after inoculation with strain 7016. Result of 16S rDNA PCR-DGGE showed that 7016 survived in the rhizosphere of tomato seedlings. In the ifeld experiments, Burkholderia sp. 7016 enhanced the tomato yield and signiifcantly promoted activities of soil urease, phosphatase, sucrase, and catalase. Al these results demonstrated Burkholderia sp. 7016 as a valuable PGPR and a candidate of biofertilizer.展开更多
Rhizobia are vital for nitrogen input, fertility of soil and legume plant growth. Knowledge on rhizobial diversity from arid and semiarid areas is important for dry land agriculture in the context of climatic change a...Rhizobia are vital for nitrogen input, fertility of soil and legume plant growth. Knowledge on rhizobial diversity from arid and semiarid areas is important for dry land agriculture in the context of climatic change and for economic utilization. This study provides morphological, biochemical, stress tolerance and plant growth promoting characteristics of fifteen rhizobial isolates from the nodules of same number of wild legumes and one isolate from cultivated Arachis hypogea from semi-arid region, Tirupati. The bacterial isolates were confirmed as rhizobia based on colony morphology and biochemical tests. Based on the colour change of YMA-BTB medium, eight isolates were identified as slow growers and six were fast growers. The isolates differed in growth pattern, colony morphology, antibiotic resistance at higher concentrations and uniformity in utilization of carbon and nitrogen sources. The isolates are tolerant to NaCl up to one percent, displayed normal growth at temperatures 28℃ - 30℃, at neutral pH and poor growth at pH 5and 9. The isolates varied in the production of EPS and IAA, positive for phosphate solubilization and siderophore formation. This functional diversity displayed by the isolates can be utilised for the legume crop production by cross inoculation.展开更多
A Plant Biostimulant is any substance or microorganism applied to plants to enhance nutrition efficiency,abioticstress tolerance,and/or crop quality traits,regardless of its nutrient content.The application of Plant b...A Plant Biostimulant is any substance or microorganism applied to plants to enhance nutrition efficiency,abioticstress tolerance,and/or crop quality traits,regardless of its nutrient content.The application of Plant biostimulants(PBs)in production can reduce the application of traditional pesticides and chemical fertilizers and improvethe quality and yield of crops,which is conducive to the sustainable development of agriculture.An in-depthunderstanding of the mechanism and effect of various PBs is very important for how to apply PBs reasonablyand effectively in the practice of crop production.This paper summarizes the main classification of PBs;Thegrowth promotion mechanism of PBs was analyzed from four aspects:improving soil physical and chemical properties,enhancing crop nutrient absorption capacity,photosynthesis capacity,and abiotic stress tolerance;At thesame time,the effects of PBs application on seed germination,seedling vigor,crop yield,and quality were summarized;Finally,how to continue to explore and study the use and mechanism of PBs in the future is analyzedand prospected,to better guide the application of PBs in crop production in the future.展开更多
Ferula spp. are traditional medicinal plants found in arid land. Large-scale excavation for extracting bioactive compounds from the plants in arid regions of Xinjiang over the last few years has, however, significandy...Ferula spp. are traditional medicinal plants found in arid land. Large-scale excavation for extracting bioactive compounds from the plants in arid regions of Xinjiang over the last few years has, however, significandy decreased their distributions. Due to the urgent need for preservation of these plant resources, along with the need of searching for alternative source of the useful metabolites, it is important to screen the endophytic microbial resources associated with the plant Ferula sinkiangensis K. M. Shen. In the study, a total of 125 endophytic bacteria belonging to 3 phyla, 13 orders, 23 families, and 29 genera were isolated based on 16S rRNA gene sequencing data. Among the different isolates, three strains isolated from roots were potential novel species of the genera Porphyrobacter, Paracoccus and draycofatopsis. In this study, 79.4% and 57.1% of the total isolates were capable of producing indole-3-acetic acid (IAA) and siderophore, respectively. And, 40.6% of the strains inhibit the growth of fungal pathogen Afternaria alternata, 17.2% and 20.2% strains were positive for antagonism against Vertidllium dahlia 991 and V. dahlia 7, respectively. These results demonstrated that E sinkiangensis is a rich reservoir of endophytic bacterial resources with potential for production of biologically important functions such as plant growth-promoting factors.展开更多
Because of climate change and the highly growing world population,it becomes a huge challenge to feed the whole population.To overcome this challenge and increase the crop yield,a large number of fertilizers are appli...Because of climate change and the highly growing world population,it becomes a huge challenge to feed the whole population.To overcome this challenge and increase the crop yield,a large number of fertilizers are applied but these have many side effects.Instead of these,scientists have discovered beneficial rhizobacteria,which are environmentally friendly and may increase crop yield and plant growth.The microbial population of the rhizosphere shows a pivotal role in plant development by inducing its physiology.Plant depends upon the valuable interactions among the roots and microbes for the growth,nutrients availability,growth promotion,disease suppression and other important roles for plants.Recently numerous secrets of microbes in the rhizosphere have been revealed due to huge development in molecular and microscopic technologies.This review illustrated and discussed the current knowledge on the development,maintenance,interactions of rhizobacterial populations and various proposed mechanisms normally used by PGPR in the rhizosphere that encouraging the plant growth and alleviating the stress conditions.In addition,this research reviewed the role of single and combination of PGPR,mycorrhizal fungi in plant development and modulation of the stress as well as factors affecting the microbiome in the rhizosphere.展开更多
To better understand the diversity of metal resistance genetic determinant from microbes that survived at metal tailings in northwest of China, a highly elevated level of heavy metal containing region, genomic analyse...To better understand the diversity of metal resistance genetic determinant from microbes that survived at metal tailings in northwest of China, a highly elevated level of heavy metal containing region, genomic analyses was conducted using genome sequence of three native metal-resistant plant growth promoting bacteria(PGPB). It shows that: Mesorhizobium amorphae CCNWGS0123 contains metal transporters from P-type ATPase, CDF(Cation Diffusion Facilitator), Hup E/Ure J and CHR(chromate ion transporter) family involved in copper, zinc, nickel as well as chromate resistance and homeostasis. Meanwhile, the putative Cop A/Cue O system is expected to mediate copper resistance in Sinorhizobium meliloti CCNWSX0020 while Znt A transporter, assisted with putative Czc D, determines zinc tolerance in Agrobacterium tumefaciens CCNWGS0286. The greenhouse experiment provides the consistent evidence of the plant growth promoting effects of these microbes on their hosts by nitrogen fixation and/or indoleacetic acid(IAA) secretion,indicating a potential in-site phytoremediation usage in the mining tailing regions of China.展开更多
BACKGROUND: The mortality rate of heavy type hepatitisis high. No special treatment is available except generaltreatment. This multicenter clinical study was designed toobserve the safety and efficacy of promoting hep...BACKGROUND: The mortality rate of heavy type hepatitisis high. No special treatment is available except generaltreatment. This multicenter clinical study was designed toobserve the safety and efficacy of promoting hepatic growthfactor (PHGF) in the treatment of heavy type hepatitis andsevere chronic hepatitis.METHODS: 347 patients with heavy type hepatitis and 324with severe chronic hepatitis were subjected to administra-tion of 120 μg of PHGF per day for 4 weeks on the basis ofgeneral treatment. Those who were being effectively treat-ed would last additional 2 to 4 weeks. Blood routine, urineroutine, blood urea nitrogen (BUN), blood creatinine(Cr), blood ammonia, alpha fetoprotein (AFP), electro-lyte, alanine transaminase (ALT), aspartate transaminase(AST), serum total bilirubin (TBIL), serum direct biliru-bin (DBIL), prothrombin time activity (PTA), total pro-tein (TP) and albumin (ALB) were detected in the pa-tients before treatment, 2 weeks after treatment, and at theend of the treatment. Any side-effect would be recorded.RESULTS: In the patients with severe chronic hepatitis, thetotal effective rate of the treatment was 88. 9% The levelsof ALT, AST and TBIL decreased significantly (P<0.001),whereas those of PTA and ALB increased significantly (P <0.001), and the level of AFP increased slightly. In patientswith heavy type hepatitis, the total effective rate of thistreatment was 78.4%, and patients at different stage showeddifferent results. The total effective rates of patients withearly, medium and terminal stage heavy type hepatitis were89.9%, 84.8% and 27.5%, respectively. No severe side-effect was shown.CONCLUSION: PHGF is effective and safe in the treat-ment of patients with heavy type hepatitis and severe chro-nic hepatitis. But it should be administered early in patientswith heavy type hepatitis so as to get better curative effects.展开更多
ObjectiveThis study aimed to investigate the promoting effect of mycorrhizal fungi inoculation on growth of Pinus bungeana. MethodPinus bungeana young trees and ancient trees were inoculated with different doses of Pi...ObjectiveThis study aimed to investigate the promoting effect of mycorrhizal fungi inoculation on growth of Pinus bungeana. MethodPinus bungeana young trees and ancient trees were inoculated with different doses of Pisolithus tinctorius, to investigate the effect on Pinus bungeana growth. ResultAfter inoculated with Pisolithus tinctorius, the mycorrhizal infection rate in roots of Pinus bungeana young trees and ancient trees increased significantly; mycorrhizal infection rate of Pinus bungeana young trees was enhanced with the increasing dose of Pisolithus tinctorius; mycorrhizal fungi inoculation could significantly promote the growth of Pinus bungeana ancient trees, which also had significant promoting effect on the plant height of Pinus bungeana young trees but had no significant effect on the diameter at breast height; in addition, mycorrhizal fungi inoculation could promote the absorption of nitrogen and phosphorus by Pinus bungeana young trees. ConclusionThis study provided technical support for the cultivation of Pinus bungeana in the south of China.展开更多
In this study,pot experiments were conducted on the seedlings of Pinus sylvestris var.mongolica to study the influence of Trichoderma(Trichoderma harzianum E15)and Ectomycorrhizal fungi(Suillus luteus N94)on the growt...In this study,pot experiments were conducted on the seedlings of Pinus sylvestris var.mongolica to study the influence of Trichoderma(Trichoderma harzianum E15)and Ectomycorrhizal fungi(Suillus luteus N94)on the growth of these seedlings.In particular,the effects of these fungi on the fungal community structure in the rhizosphere soil of the seedlings were investigated.Inoculation with Trichoderma harzianum E15 and Suillus luteus N94 significantly(P<0.05)promoted the growth of the Pinus sylvestris seedlings.The non-metric multidimensional scaling(NMDS)results indicated a significant difference(P<0.05)between the fungal community structures in the rhizosphere soil of the annual and biennial seedlings.In the rhizosphere soil of annual seedlings,the main fungi were Ascomycota,Basidiomycota,Zygomycota.Ascomycota,Basidiomycota,Mortierellomycota,and p-unclassified-k-Fungi were the main fungi in the rhizosphere soil of biennial seedlings.The dominant genus in the rhizosphere soil and a key factor promoting the growth of the annual and the biennial seedlings was Trichoderma,Suillus,respectively.Both of them were negatively correlated with the relative abundance of microbial flora in the symbiotic environment.Trichoderma had a significant promoting effect on the conversion of total phosphorus,total nitrogen,ammonium nitrogen,nitrate nitrogen,and the organic matter in the rhizosphere soil of the seedlings,while Suillus significantly promoted the conversion of organic matter and total phosphorus.展开更多
Bacterial endophytes are beneficial to their hosts as they can fix nitrogen in the soil and make it available to the host.Endophytic bacteria also secrete plant growth-promoting hormones to support their host plants u...Bacterial endophytes are beneficial to their hosts as they can fix nitrogen in the soil and make it available to the host.Endophytic bacteria also secrete plant growth-promoting hormones to support their host plants under normal as well as stress conditions.The current study aimed to isolate endophytic bacteria from different parts of Calotropis procera,i.e.,roots,stem and leaves of Calotropis procera(Ait.)W.T.Aiton.Plants were collected from the Lundkhwar,district Mardan.A total of 12 bacterial strains,i.e.,six from roots,three from the stem and three from the leaves were isolated.The strains were screened for their growth-promoting activity in rice plants because rice shows a quick and easy response to the bioactive compounds present in the culture filtrate(CF)of the potent endophytic strains.The rice plants were cultivated in pots containing 30 mL of 0.8%w/v water-agar medium.The pots were placed in a growth chamber,operated at 28±0.3℃ for 14 h(day);and 25±0.3℃ for 10 h(night),at 70%relative-humidity.Among the isolated strains,R1,S1,S3,L1,R5 and R6 showed visible growth promotion in rice plants.The biochemical analysis revealed that the strains were able to produce indole acetic acid(IAA)and flavonoids in higher quantities.Moreover,the strains also produced bioactive compounds that inhibited the growth of Escherichia coli and Aspergillus flavus using the well diffusion method.From the results,it was concluded that these strains can secrete potent compounds that can promote the host plant growth and inhibit the growth of pathogenic microorganisms and,therefore,can be used as bio-fertilizer and bio-control agents.展开更多
Endophytic bacteria are promising bacterial fertilizers to improve plant growth under adverse environment.For ecological remediation of coastal wetlands,it was necessary to investigate the effect and interaction of en...Endophytic bacteria are promising bacterial fertilizers to improve plant growth under adverse environment.For ecological remediation of coastal wetlands,it was necessary to investigate the effect and interaction of endophytes on halophytes under saline-alkali stress.In this study,an endophytic bacterium strain HK1 isolated from halophytes was selected to infect Suaeda glauca under pH(7 and 8)and salinity gradient(150,300 and 450mmolL^(-1)).Strain HK1 was identified as Pantoea ananatis and it had ability to fix nitrogen,dissolve inorganic phosphorus and produce indole-3-aceticacid(IAA).The results showed that strain HK1 could promote the growth of S.glauca seedings when the salinity was less than 300mmolL^(-1),in view of longer shoot length and heavier fresh weight.The infected plants could produce more proline to decrease the permeability of cells,which content increased by 26.2%–61.1%compared to the non-infected group.Moreover,the oxidative stress of infected plants was relieved with the malondialdehyde(MDA)content decreased by 16.8%–32.9%,and the peroxidase(POD)activity and catalase(CAT)activity increased by 100%–500%and 6.2%–71.4%,respectively.Statistical analysis revealed that increasing proline content and enhancing CAT and POD activities were the main pathways to alleviate saline-alkali stress by strain HK1 infection,and the latter might be more important.This study illustrated that endophytic bacteria could promote the growth of halophytes by regulation of osmotic substances and strengthening antioxidant activities.This finding would be helpful for the bioremediation of coastal soil.展开更多
This study was conducted to isolate and characterize the plant growth-promoting potential of fungal endophytes from the roots of Diket red,a traditional rice plant from the Cordillera,Northern Luzon.Eighteen morphospe...This study was conducted to isolate and characterize the plant growth-promoting potential of fungal endophytes from the roots of Diket red,a traditional rice plant from the Cordillera,Northern Luzon.Eighteen morphospecies of filamentous endophytes were isolated of which twelve isolates were successfully identified to the species level.These isolates were identified as Aspergillus versicolor,Aspergillus sp.,Chaetosphaeria sp.,Cladosporium cladosporioides,Hypocrea lixii,Microascus murinus,and Trichoderma harzianum.The identified twelve isolates were selected to screen in vitro for their plant growth-promoting characteristics,and evaluated in vivo for their beneficial effects on seedling vigor and early seedling growth.Isolate PPL14 produced the highest IAA at 55.5μg ml^(-1)and M.murinus PPL10 produced the highest amount of IAA at 3.73μg IAA mg^(-1)dry mycelia wt.The seedling vigor assay and in vivo plant growth promotion bioassay indicated overall positive effects of culture filtrate(CF)application of the endophyte isolates.Rice seeds and seedlings grown in aseptic condition and treated with endophyte CFs displayed significantly enhanced levels of germination,seedling vigor,shoot,root,and total plant growth,and biomass compared to non-treated control.Other plant growth-promoting characteristics were also studied including phosphate solubilization,siderophore production,ammonia production,and catalase activity.This study supports the potential use of fungal endophytes as bio-inoculants for plant growth promotion and enhancement of nutrient assimilation of agriculturally important crops.展开更多
[Objective] This study aimed to clone the porcine growth hormone gene promoter and determine the core promoter sequences and the cis-acting elements. [Method] Sequence of the 5'flanking region of porcine growth hormo...[Objective] This study aimed to clone the porcine growth hormone gene promoter and determine the core promoter sequences and the cis-acting elements. [Method] Sequence of the 5'flanking region of porcine growth hormone gene was searched out and downloaded from the NCBI website. According to the targeted se- quence, primers were designed and synthesized for the PCR amplification. The 1 882 bp (-1 821 bp-+61 bp) fragment was amplified by PCR. Nine promoter frag- ments with different lengths were obtained by genome-walking deletion method and then cloned into luciferase reporter vectors. Relative transcriptional activities of these 5' terminal-deleted plasmids in pituitary and non-pituitary cells were determined by transient transfection of the rat pituitary adenoma cell (GH3), porcine lilac endotheli- um cell (PIEC) and porcrne Kidney-15 (PK15) with the constructed dual-luciferase vectors. [Result] Result of DNA sequencing showed that the 1 882 bp fragment of GH 5' promoter was successfully cloned. Nine luciferase reporter gene plasmids were constructed. DuaI-Luciferase reporter assay indicated that the promoter inserted into reporter gene vector had very strong cell specificity. [Conclusion] Porcine growth hormone gene specifically expresses in pituitary cells. The minimal promoter of the porcine growth hormone gene is mapped at the region -110 bp-+61 bp. Promoter regions 218 bp--110 bp and -429 bp--218 bp contain positive regulatory elements.展开更多
Due to the overuse and misuse of antibiotic, an increase in antibiotic resistance of pathogenic bacteria is evolving. Attention should be focused on natural alternatives to antibiotics, like propolis, royal jelly (R ...Due to the overuse and misuse of antibiotic, an increase in antibiotic resistance of pathogenic bacteria is evolving. Attention should be focused on natural alternatives to antibiotics, like propolis, royal jelly (R J) and honeys. They all have strong antibacterial properties due to the active substances they contain. This study investigated the effect of combination of water soluble propolis (WSP) Greitl20 or fresh royal jelly (F-RJ) (MiZigoj) and Forest honeys as antibacterial against Escherichia coli, Pseudomonas aeruginosa, Proteus mirabilis, Acinetobacter baumanii, Staphylococcus aureus, methicillin resistant Staphylococcus aureus (MRSA), Streptococcus pyogenes, Streptococcus agalactiae and Candida albicans. These substances are also cell growth promoters for human macrophage (TLT) cell line. WSP Greitl20, F-RJ (M) and different Forest honeys were prepared in saline as 10% solutions. The antimicrobial activity was expressed as the minimal inhibitory concentration (MIC) in mg/mL. The growth promotion activity was measured at optical density (OD) 595 nm. The combination ofWSP Greitl20 with different Forest honeys is better than F-RJ (M) in same combination with different Forest honeys. The best antibacterial/antifungal activity was found with the combination of 10% WSP Greit 120 in the Forest honey (1:10) from Italy or Spain. When measuring the growth promoting activity of TLT cell line, the best activity was detected at the combination of 10% WSP Greitl20 in the Forest honey from Italy (GI3 = 0.796 ± 0.014 and GI5 = 1.133± 0.022). Antimicrobial and growth promoting activities are correlated and WSP-dependent.展开更多
The application of biostimulants in agriculture represents an environmentally friendly alternative while increasing agricultural production. The aims of the study were to develop solid biostimulants based on five rhiz...The application of biostimulants in agriculture represents an environmentally friendly alternative while increasing agricultural production. The aims of the study were to develop solid biostimulants based on five rhizobacteria native to Benin’s soils and to evaluate their efficacy on the growth and biomass yield of maize under greenhouse conditions on ferrallitic and ferruginous soils. Clay and peat were used as a conservation binder for the preparation of the biostimulants. These binders were used alone or combined in the different formulations with maize flour and sucrose. 10 g of biostimulants were applied at sowing in pots containing five kilograms of sterilised soil. The experimental design was a completely randomised block of 24 treatments with three replicates. The results obtained showed significant improvements (<em>P</em> < 0.001) in height (49.49%), stem diameter (32.7%), leaf area (66.10%), above-ground biomass (97.12%) and below-ground biomass (53.98%) on ferrallitic soil with the application of the clay + <em>Pseudomonas putida</em> biostimulant compared to the control. On the other hand, the use of the peat biostimulant + <em>Pseudomonas syringae</em> was more beneficial for plant growth on ferruginous soil. The height, stem diameter, leaf area, above-ground biomass and below-ground biomass of the plants under the influence of this biostimulant were improved by 83.06%, 44.57%, 102.94%, 86.84% and 42.68%, respectively, compared to the control. Therefore, these results confirm that Rhizobacteria express their potential through biostimulants formulated on maize. The formulated biostimulants can later be used by producers to improve crop productivity for sustainable agriculture.展开更多
Plant growth promoting fungi are receiving increased attention as valuable beneficial microorganisms in crop cultivation due to their capacity to produce bioactive substances,promote plant growth and enhance immune de...Plant growth promoting fungi are receiving increased attention as valuable beneficial microorganisms in crop cultivation due to their capacity to produce bioactive substances,promote plant growth and enhance immune defense functions.In this study,a novel Trichoderma isolate,designated as TM2-4,was screened from healthy tomato rhizosphere soil and identified as Trichoderma afroharzianum.Culture filtrate of the isolate TM2-4 displayed obvious bioactive substance production and an evident effect in promoting tomato seed germination,with hypocotyl length,radical length and vigor index increased by 28.7,19.4 and 62.1%,respectively,after a 100-fold dilution treatment.To assess the promotion effect and related mechanism of isolate TM2-4,the plant biological indexes and gene expression profiles of tomato plants treated with or without T.afroharzianum TM2-4 microbial agent were investigated by greenhouse pot experiment and RNA sequencing.The results demonstrated that T.afroharzianum TM2-4 significantly promoted tomato plant growth in terms of plant height,dry weight,number of leaves per plant and root activity,through efficient colonization in the rhizosphere and root system of the plants.Transcriptome analyses identified a total of 984 differentially expressed genes in T.afroharzianum microbial agent inoculated tomato roots,which were mainly engaged in the biological process of phytohormone homeostasis,antioxidant activity,as well as metabolic pathways including phenylpropanoid biosynthesis and glutathione metabolism.These findings provide useful information for understanding the mechanism of isolate TM2-4 for tomato plant growth promotion,which would facilitate further development of T.afroharzianum TM2-4 microbial agent for use in vegetable crop production.展开更多
Chemical potassium(K)fertilizer is commonly used in apple(Malus domestica L.Borkh)production but K is easily fixed by soil,resulting in reduced K ferilizer utilization and wasted resources.K-solubilizing bacteria(KSB)...Chemical potassium(K)fertilizer is commonly used in apple(Malus domestica L.Borkh)production but K is easily fixed by soil,resulting in reduced K ferilizer utilization and wasted resources.K-solubilizing bacteria(KSB)can cost-effectively increase the soluble K content in rhizosphere soil.Therefore,the objectives were to select high-efficiency KSB from apple orchards under various soil management models and evaluate their effects on apple seedling growth.Maize(Zea maysL.)straw mulching(MSM)increased the total carbon(TC),total nitrogen(TN)and available potassium(AK)in the rhizosphere and improved fruit quality.The number of KSB in the rhizosphere soil of MSM was 9.5×10×CFU g1 soil,which was considerably higher than that in the other mulching models.Fourteen KSB strains were isolated with relative K solubilizing ability ranging from 17 to 30%,and five strains increased the dry weight per apple seedling.The most eficient strain was identified as Paenibacillus mucilaginosus through morphological observation and sequence analysis of 16S rDNA,named JGK.After inoculation,the colonization of JGK in soil decreased from 4.0 to 1.5×10×CFU g^-1 soil within 28 d.The growth of the apple seedlings and the K accumulation in apple plants were promoted by irigation with 50 mL JGK bacterial solution(1×10^9 CFU mL^-1),but there was no significant increase in the AK content of rhizosphere soil.High-performance liquid phase analysis(HPLC)data showed that the JGK metabolites contained phytohormones and organic acids.Hence,the JGK strain promoted the growth of two-month-old apple seedlings by stimulating function of the produced phytohormones and enhanced K solubility by acidification for apple seedling uptake.This study enriches the understanding of KSB and provides an effective means to increase the K utilization efficiency of apple production.展开更多
基金the China Agriculture Research System of MOF and MARA(No.CARS-48)the Taishan Scholar Project of Shandong Province(No.tsqn201812020)。
文摘In this study,we proposed a reliable and sustainable technique for the clean utilization of shrimp wastes,which can yield a solid inoculant of Bacillus subtilis OKF04 containing micronutrients at low cost without the risk of contamination.Study of the culture conditions revealed that the head of shrimp Litopenaus vannamei and the wheat bran acted as suitable substrates for the growth of B.subtilis OKF04.With 60%initial moisture content,30℃culture temperature,and 5%inoculation amount,followed by 48 hours of fermentation and 0.5%soluble starch added during the drying process(50℃for 6h),a solid B.subtilis OKF04 inoculant with a spore amount of 2.4×10^(10)CFU g^(-1)and a high amino acid content was obtained.The solid B.subtilis OKF04 inoculant was applied to cultivate pakchoi under pot experiment.As the result,of adding to,the size of stems and leaves,nutritional composition,and physiological activity of pakchoi were significantly(P<0.05)enhanced by solid B.subtilis OKF04 inoculant.B.subtilis OKF04 also significantly(P<0.05)increased the soil’s nutrient content and improved its microbial composition.Furthermore,pakchoi cultivated with a low dose of solid B.subtilis OKF04 inoculant(0.05 g kg^(-1)soil)resulted in the best results.This study provides a new method for the preparation of microbial inoculants with solid waste shrimp heads.
基金Supported by the Science and Technology Project of Nanping Tobacco Company(201203)~~
文摘The paper first introduces the definition and classification of plant growth promoting rhizobacteria (PGPR), then reviews the research achievements on the mechanism of action of plant growth promoting rhizobacteria, including growth pro-moting mechanism and bio-control mechanism, subsequently lists the use of excel-lent plant growth promoting rhizobacteria strains in recent years, especial y Pseu-domonas and Bacil us strains, and final y discusses problems existing in this area and points out issues requiring further exploration, including PGPR screening meth-ods, preservation methods, mechanism of action, in order to commercialize PGPR as soon as possible and practical y realize its application to production.
文摘Bacillus amyloliquefaciens Bc2 and Trichderma harzianum TR were used to evaluate their growth-promoting activity on cultivated strawberries, under laboratory and field conditions, and we have noticed that the percentage of achene germination is important for ones treated with TR (=97%) followed by those treated with Bc2 strain (=90%) and the control (=84%). Inoculations on field showed that on untreated soil with insecticide, TR is effective and allows the development of plants and extends the duration of flowering and fruiting. On treated soil, Bc2 clearly promotes the growth and development of strawberry seedlings and its role as plant growth promoting microorganisms has been proved.
基金supported by the National Natural Science Foundation of China (31100364)the National Nonprofit Institute Research Grant of Chinese Academy of Agricultural Sciences (CAAS, IARRP-2014-20)
文摘Aiming at searching for plant growth promoting rhizobacteria (PGPR), a bacterium strain coded as 7016 was isolated from soybean rhizosphere and was characterized in the present study. It was identiifed as Burkholderia sp. based on 16S rDNA sequence analysis, as wel as phenotypic and biochemical characterizations. This bacterium presented nitrogenase activity, 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase activity and phosphate solubilizing ability;inhibited the growth of Sclerotinia sclerotiorum, Gibberel a zeae and Verticil ium dahliae;and produced smal quantities of indole acetic acid (IAA). In green house experiments, signiifcant increases in shoot height and weight, root length and weight, and stem diameter were observed on tomato plants in 30 d after inoculation with strain 7016. Result of 16S rDNA PCR-DGGE showed that 7016 survived in the rhizosphere of tomato seedlings. In the ifeld experiments, Burkholderia sp. 7016 enhanced the tomato yield and signiifcantly promoted activities of soil urease, phosphatase, sucrase, and catalase. Al these results demonstrated Burkholderia sp. 7016 as a valuable PGPR and a candidate of biofertilizer.
文摘Rhizobia are vital for nitrogen input, fertility of soil and legume plant growth. Knowledge on rhizobial diversity from arid and semiarid areas is important for dry land agriculture in the context of climatic change and for economic utilization. This study provides morphological, biochemical, stress tolerance and plant growth promoting characteristics of fifteen rhizobial isolates from the nodules of same number of wild legumes and one isolate from cultivated Arachis hypogea from semi-arid region, Tirupati. The bacterial isolates were confirmed as rhizobia based on colony morphology and biochemical tests. Based on the colour change of YMA-BTB medium, eight isolates were identified as slow growers and six were fast growers. The isolates differed in growth pattern, colony morphology, antibiotic resistance at higher concentrations and uniformity in utilization of carbon and nitrogen sources. The isolates are tolerant to NaCl up to one percent, displayed normal growth at temperatures 28℃ - 30℃, at neutral pH and poor growth at pH 5and 9. The isolates varied in the production of EPS and IAA, positive for phosphate solubilization and siderophore formation. This functional diversity displayed by the isolates can be utilised for the legume crop production by cross inoculation.
基金the National Natural Science Foundation of China(No.32001984).
文摘A Plant Biostimulant is any substance or microorganism applied to plants to enhance nutrition efficiency,abioticstress tolerance,and/or crop quality traits,regardless of its nutrient content.The application of Plant biostimulants(PBs)in production can reduce the application of traditional pesticides and chemical fertilizers and improvethe quality and yield of crops,which is conducive to the sustainable development of agriculture.An in-depthunderstanding of the mechanism and effect of various PBs is very important for how to apply PBs reasonablyand effectively in the practice of crop production.This paper summarizes the main classification of PBs;Thegrowth promotion mechanism of PBs was analyzed from four aspects:improving soil physical and chemical properties,enhancing crop nutrient absorption capacity,photosynthesis capacity,and abiotic stress tolerance;At thesame time,the effects of PBs application on seed germination,seedling vigor,crop yield,and quality were summarized;Finally,how to continue to explore and study the use and mechanism of PBs in the future is analyzedand prospected,to better guide the application of PBs in crop production in the future.
基金supported by the National Natural Science Foundation of China(U1403101,31200008)the China Postdoctoral Science Foundation(2016M602566)+3 种基金the Visiting Scholar Grant of State Key Laboratory of Biocontrol,Sun Yat-Sen University(SKLBC14F02)the West Light Foundation of the Chinese Academy of Sciencessupported by Hundred Talents Program of the Chinese Academy of SciencesGuangdong Province Higher Vocational Colleges & Schools Pearl River Scholar Funded Scheme(2014)
文摘Ferula spp. are traditional medicinal plants found in arid land. Large-scale excavation for extracting bioactive compounds from the plants in arid regions of Xinjiang over the last few years has, however, significandy decreased their distributions. Due to the urgent need for preservation of these plant resources, along with the need of searching for alternative source of the useful metabolites, it is important to screen the endophytic microbial resources associated with the plant Ferula sinkiangensis K. M. Shen. In the study, a total of 125 endophytic bacteria belonging to 3 phyla, 13 orders, 23 families, and 29 genera were isolated based on 16S rRNA gene sequencing data. Among the different isolates, three strains isolated from roots were potential novel species of the genera Porphyrobacter, Paracoccus and draycofatopsis. In this study, 79.4% and 57.1% of the total isolates were capable of producing indole-3-acetic acid (IAA) and siderophore, respectively. And, 40.6% of the strains inhibit the growth of fungal pathogen Afternaria alternata, 17.2% and 20.2% strains were positive for antagonism against Vertidllium dahlia 991 and V. dahlia 7, respectively. These results demonstrated that E sinkiangensis is a rich reservoir of endophytic bacterial resources with potential for production of biologically important functions such as plant growth-promoting factors.
基金The authors acknowledge that this work was financially supported by the Fundamental Research Fund for the Central Universities of China(Project No.lzujbky-2017-k15).
文摘Because of climate change and the highly growing world population,it becomes a huge challenge to feed the whole population.To overcome this challenge and increase the crop yield,a large number of fertilizers are applied but these have many side effects.Instead of these,scientists have discovered beneficial rhizobacteria,which are environmentally friendly and may increase crop yield and plant growth.The microbial population of the rhizosphere shows a pivotal role in plant development by inducing its physiology.Plant depends upon the valuable interactions among the roots and microbes for the growth,nutrients availability,growth promotion,disease suppression and other important roles for plants.Recently numerous secrets of microbes in the rhizosphere have been revealed due to huge development in molecular and microscopic technologies.This review illustrated and discussed the current knowledge on the development,maintenance,interactions of rhizobacterial populations and various proposed mechanisms normally used by PGPR in the rhizosphere that encouraging the plant growth and alleviating the stress conditions.In addition,this research reviewed the role of single and combination of PGPR,mycorrhizal fungi in plant development and modulation of the stress as well as factors affecting the microbiome in the rhizosphere.
基金supported by the National High Technology Research and Development Program (863) of China (No.2012AA101402)the National Science Foundation of China (Nos.31125007,31370142)
文摘To better understand the diversity of metal resistance genetic determinant from microbes that survived at metal tailings in northwest of China, a highly elevated level of heavy metal containing region, genomic analyses was conducted using genome sequence of three native metal-resistant plant growth promoting bacteria(PGPB). It shows that: Mesorhizobium amorphae CCNWGS0123 contains metal transporters from P-type ATPase, CDF(Cation Diffusion Facilitator), Hup E/Ure J and CHR(chromate ion transporter) family involved in copper, zinc, nickel as well as chromate resistance and homeostasis. Meanwhile, the putative Cop A/Cue O system is expected to mediate copper resistance in Sinorhizobium meliloti CCNWSX0020 while Znt A transporter, assisted with putative Czc D, determines zinc tolerance in Agrobacterium tumefaciens CCNWGS0286. The greenhouse experiment provides the consistent evidence of the plant growth promoting effects of these microbes on their hosts by nitrogen fixation and/or indoleacetic acid(IAA) secretion,indicating a potential in-site phytoremediation usage in the mining tailing regions of China.
文摘BACKGROUND: The mortality rate of heavy type hepatitisis high. No special treatment is available except generaltreatment. This multicenter clinical study was designed toobserve the safety and efficacy of promoting hepatic growthfactor (PHGF) in the treatment of heavy type hepatitis andsevere chronic hepatitis.METHODS: 347 patients with heavy type hepatitis and 324with severe chronic hepatitis were subjected to administra-tion of 120 μg of PHGF per day for 4 weeks on the basis ofgeneral treatment. Those who were being effectively treat-ed would last additional 2 to 4 weeks. Blood routine, urineroutine, blood urea nitrogen (BUN), blood creatinine(Cr), blood ammonia, alpha fetoprotein (AFP), electro-lyte, alanine transaminase (ALT), aspartate transaminase(AST), serum total bilirubin (TBIL), serum direct biliru-bin (DBIL), prothrombin time activity (PTA), total pro-tein (TP) and albumin (ALB) were detected in the pa-tients before treatment, 2 weeks after treatment, and at theend of the treatment. Any side-effect would be recorded.RESULTS: In the patients with severe chronic hepatitis, thetotal effective rate of the treatment was 88. 9% The levelsof ALT, AST and TBIL decreased significantly (P<0.001),whereas those of PTA and ALB increased significantly (P <0.001), and the level of AFP increased slightly. In patientswith heavy type hepatitis, the total effective rate of thistreatment was 78.4%, and patients at different stage showeddifferent results. The total effective rates of patients withearly, medium and terminal stage heavy type hepatitis were89.9%, 84.8% and 27.5%, respectively. No severe side-effect was shown.CONCLUSION: PHGF is effective and safe in the treat-ment of patients with heavy type hepatitis and severe chro-nic hepatitis. But it should be administered early in patientswith heavy type hepatitis so as to get better curative effects.
基金Supported by Project of Shanghai Municipal Agricultural Commission[HNKTZ(2008)NO.6-1]~~
文摘ObjectiveThis study aimed to investigate the promoting effect of mycorrhizal fungi inoculation on growth of Pinus bungeana. MethodPinus bungeana young trees and ancient trees were inoculated with different doses of Pisolithus tinctorius, to investigate the effect on Pinus bungeana growth. ResultAfter inoculated with Pisolithus tinctorius, the mycorrhizal infection rate in roots of Pinus bungeana young trees and ancient trees increased significantly; mycorrhizal infection rate of Pinus bungeana young trees was enhanced with the increasing dose of Pisolithus tinctorius; mycorrhizal fungi inoculation could significantly promote the growth of Pinus bungeana ancient trees, which also had significant promoting effect on the plant height of Pinus bungeana young trees but had no significant effect on the diameter at breast height; in addition, mycorrhizal fungi inoculation could promote the absorption of nitrogen and phosphorus by Pinus bungeana young trees. ConclusionThis study provided technical support for the cultivation of Pinus bungeana in the south of China.
文摘In this study,pot experiments were conducted on the seedlings of Pinus sylvestris var.mongolica to study the influence of Trichoderma(Trichoderma harzianum E15)and Ectomycorrhizal fungi(Suillus luteus N94)on the growth of these seedlings.In particular,the effects of these fungi on the fungal community structure in the rhizosphere soil of the seedlings were investigated.Inoculation with Trichoderma harzianum E15 and Suillus luteus N94 significantly(P<0.05)promoted the growth of the Pinus sylvestris seedlings.The non-metric multidimensional scaling(NMDS)results indicated a significant difference(P<0.05)between the fungal community structures in the rhizosphere soil of the annual and biennial seedlings.In the rhizosphere soil of annual seedlings,the main fungi were Ascomycota,Basidiomycota,Zygomycota.Ascomycota,Basidiomycota,Mortierellomycota,and p-unclassified-k-Fungi were the main fungi in the rhizosphere soil of biennial seedlings.The dominant genus in the rhizosphere soil and a key factor promoting the growth of the annual and the biennial seedlings was Trichoderma,Suillus,respectively.Both of them were negatively correlated with the relative abundance of microbial flora in the symbiotic environment.Trichoderma had a significant promoting effect on the conversion of total phosphorus,total nitrogen,ammonium nitrogen,nitrate nitrogen,and the organic matter in the rhizosphere soil of the seedlings,while Suillus significantly promoted the conversion of organic matter and total phosphorus.
基金This research was supported by the Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(2017R1D1A1B04035601).
文摘Bacterial endophytes are beneficial to their hosts as they can fix nitrogen in the soil and make it available to the host.Endophytic bacteria also secrete plant growth-promoting hormones to support their host plants under normal as well as stress conditions.The current study aimed to isolate endophytic bacteria from different parts of Calotropis procera,i.e.,roots,stem and leaves of Calotropis procera(Ait.)W.T.Aiton.Plants were collected from the Lundkhwar,district Mardan.A total of 12 bacterial strains,i.e.,six from roots,three from the stem and three from the leaves were isolated.The strains were screened for their growth-promoting activity in rice plants because rice shows a quick and easy response to the bioactive compounds present in the culture filtrate(CF)of the potent endophytic strains.The rice plants were cultivated in pots containing 30 mL of 0.8%w/v water-agar medium.The pots were placed in a growth chamber,operated at 28±0.3℃ for 14 h(day);and 25±0.3℃ for 10 h(night),at 70%relative-humidity.Among the isolated strains,R1,S1,S3,L1,R5 and R6 showed visible growth promotion in rice plants.The biochemical analysis revealed that the strains were able to produce indole acetic acid(IAA)and flavonoids in higher quantities.Moreover,the strains also produced bioactive compounds that inhibited the growth of Escherichia coli and Aspergillus flavus using the well diffusion method.From the results,it was concluded that these strains can secrete potent compounds that can promote the host plant growth and inhibit the growth of pathogenic microorganisms and,therefore,can be used as bio-fertilizer and bio-control agents.
基金supported by the Shandong Province’s Natural Science Foundation(No.ZR2019MD033).
文摘Endophytic bacteria are promising bacterial fertilizers to improve plant growth under adverse environment.For ecological remediation of coastal wetlands,it was necessary to investigate the effect and interaction of endophytes on halophytes under saline-alkali stress.In this study,an endophytic bacterium strain HK1 isolated from halophytes was selected to infect Suaeda glauca under pH(7 and 8)and salinity gradient(150,300 and 450mmolL^(-1)).Strain HK1 was identified as Pantoea ananatis and it had ability to fix nitrogen,dissolve inorganic phosphorus and produce indole-3-aceticacid(IAA).The results showed that strain HK1 could promote the growth of S.glauca seedings when the salinity was less than 300mmolL^(-1),in view of longer shoot length and heavier fresh weight.The infected plants could produce more proline to decrease the permeability of cells,which content increased by 26.2%–61.1%compared to the non-infected group.Moreover,the oxidative stress of infected plants was relieved with the malondialdehyde(MDA)content decreased by 16.8%–32.9%,and the peroxidase(POD)activity and catalase(CAT)activity increased by 100%–500%and 6.2%–71.4%,respectively.Statistical analysis revealed that increasing proline content and enhancing CAT and POD activities were the main pathways to alleviate saline-alkali stress by strain HK1 infection,and the latter might be more important.This study illustrated that endophytic bacteria could promote the growth of halophytes by regulation of osmotic substances and strengthening antioxidant activities.This finding would be helpful for the bioremediation of coastal soil.
基金This project is supported by a Junior Thesis Fellowship Grant awarded to the authors by the Philippine Rice Research Institute(PhilRice).
文摘This study was conducted to isolate and characterize the plant growth-promoting potential of fungal endophytes from the roots of Diket red,a traditional rice plant from the Cordillera,Northern Luzon.Eighteen morphospecies of filamentous endophytes were isolated of which twelve isolates were successfully identified to the species level.These isolates were identified as Aspergillus versicolor,Aspergillus sp.,Chaetosphaeria sp.,Cladosporium cladosporioides,Hypocrea lixii,Microascus murinus,and Trichoderma harzianum.The identified twelve isolates were selected to screen in vitro for their plant growth-promoting characteristics,and evaluated in vivo for their beneficial effects on seedling vigor and early seedling growth.Isolate PPL14 produced the highest IAA at 55.5μg ml^(-1)and M.murinus PPL10 produced the highest amount of IAA at 3.73μg IAA mg^(-1)dry mycelia wt.The seedling vigor assay and in vivo plant growth promotion bioassay indicated overall positive effects of culture filtrate(CF)application of the endophyte isolates.Rice seeds and seedlings grown in aseptic condition and treated with endophyte CFs displayed significantly enhanced levels of germination,seedling vigor,shoot,root,and total plant growth,and biomass compared to non-treated control.Other plant growth-promoting characteristics were also studied including phosphate solubilization,siderophore production,ammonia production,and catalase activity.This study supports the potential use of fungal endophytes as bio-inoculants for plant growth promotion and enhancement of nutrient assimilation of agriculturally important crops.
基金Supported by National Major Special Project of New Varieties Cultivation for Transgenic Organisms of China(2008ZX08010-004-006)National 863 Program of China(2008AA10Z143)+3 种基金National Natural Science Foundation of China(30830080,30500359)国家转基因新品种培育重大专项(2008ZX08010-004-006)国家863计划(2008AA10Z143)国家自然科学基金资助项目(30830080,30500359)
文摘[Objective] This study aimed to clone the porcine growth hormone gene promoter and determine the core promoter sequences and the cis-acting elements. [Method] Sequence of the 5'flanking region of porcine growth hormone gene was searched out and downloaded from the NCBI website. According to the targeted se- quence, primers were designed and synthesized for the PCR amplification. The 1 882 bp (-1 821 bp-+61 bp) fragment was amplified by PCR. Nine promoter frag- ments with different lengths were obtained by genome-walking deletion method and then cloned into luciferase reporter vectors. Relative transcriptional activities of these 5' terminal-deleted plasmids in pituitary and non-pituitary cells were determined by transient transfection of the rat pituitary adenoma cell (GH3), porcine lilac endotheli- um cell (PIEC) and porcrne Kidney-15 (PK15) with the constructed dual-luciferase vectors. [Result] Result of DNA sequencing showed that the 1 882 bp fragment of GH 5' promoter was successfully cloned. Nine luciferase reporter gene plasmids were constructed. DuaI-Luciferase reporter assay indicated that the promoter inserted into reporter gene vector had very strong cell specificity. [Conclusion] Porcine growth hormone gene specifically expresses in pituitary cells. The minimal promoter of the porcine growth hormone gene is mapped at the region -110 bp-+61 bp. Promoter regions 218 bp--110 bp and -429 bp--218 bp contain positive regulatory elements.
文摘Due to the overuse and misuse of antibiotic, an increase in antibiotic resistance of pathogenic bacteria is evolving. Attention should be focused on natural alternatives to antibiotics, like propolis, royal jelly (R J) and honeys. They all have strong antibacterial properties due to the active substances they contain. This study investigated the effect of combination of water soluble propolis (WSP) Greitl20 or fresh royal jelly (F-RJ) (MiZigoj) and Forest honeys as antibacterial against Escherichia coli, Pseudomonas aeruginosa, Proteus mirabilis, Acinetobacter baumanii, Staphylococcus aureus, methicillin resistant Staphylococcus aureus (MRSA), Streptococcus pyogenes, Streptococcus agalactiae and Candida albicans. These substances are also cell growth promoters for human macrophage (TLT) cell line. WSP Greitl20, F-RJ (M) and different Forest honeys were prepared in saline as 10% solutions. The antimicrobial activity was expressed as the minimal inhibitory concentration (MIC) in mg/mL. The growth promotion activity was measured at optical density (OD) 595 nm. The combination ofWSP Greitl20 with different Forest honeys is better than F-RJ (M) in same combination with different Forest honeys. The best antibacterial/antifungal activity was found with the combination of 10% WSP Greit 120 in the Forest honey (1:10) from Italy or Spain. When measuring the growth promoting activity of TLT cell line, the best activity was detected at the combination of 10% WSP Greitl20 in the Forest honey from Italy (GI3 = 0.796 ± 0.014 and GI5 = 1.133± 0.022). Antimicrobial and growth promoting activities are correlated and WSP-dependent.
文摘The application of biostimulants in agriculture represents an environmentally friendly alternative while increasing agricultural production. The aims of the study were to develop solid biostimulants based on five rhizobacteria native to Benin’s soils and to evaluate their efficacy on the growth and biomass yield of maize under greenhouse conditions on ferrallitic and ferruginous soils. Clay and peat were used as a conservation binder for the preparation of the biostimulants. These binders were used alone or combined in the different formulations with maize flour and sucrose. 10 g of biostimulants were applied at sowing in pots containing five kilograms of sterilised soil. The experimental design was a completely randomised block of 24 treatments with three replicates. The results obtained showed significant improvements (<em>P</em> < 0.001) in height (49.49%), stem diameter (32.7%), leaf area (66.10%), above-ground biomass (97.12%) and below-ground biomass (53.98%) on ferrallitic soil with the application of the clay + <em>Pseudomonas putida</em> biostimulant compared to the control. On the other hand, the use of the peat biostimulant + <em>Pseudomonas syringae</em> was more beneficial for plant growth on ferruginous soil. The height, stem diameter, leaf area, above-ground biomass and below-ground biomass of the plants under the influence of this biostimulant were improved by 83.06%, 44.57%, 102.94%, 86.84% and 42.68%, respectively, compared to the control. Therefore, these results confirm that Rhizobacteria express their potential through biostimulants formulated on maize. The formulated biostimulants can later be used by producers to improve crop productivity for sustainable agriculture.
基金the Youth Research Fund of Beijing Academy of Agriculture and Forestry Sciences,China(QNJJ201814)the National Key R&D Program of China(2017YFD0201102)the Beijing Key Laboratory of Green Control of Fruit Tree Diseases and Pests in the North China(BZ0432)。
文摘Plant growth promoting fungi are receiving increased attention as valuable beneficial microorganisms in crop cultivation due to their capacity to produce bioactive substances,promote plant growth and enhance immune defense functions.In this study,a novel Trichoderma isolate,designated as TM2-4,was screened from healthy tomato rhizosphere soil and identified as Trichoderma afroharzianum.Culture filtrate of the isolate TM2-4 displayed obvious bioactive substance production and an evident effect in promoting tomato seed germination,with hypocotyl length,radical length and vigor index increased by 28.7,19.4 and 62.1%,respectively,after a 100-fold dilution treatment.To assess the promotion effect and related mechanism of isolate TM2-4,the plant biological indexes and gene expression profiles of tomato plants treated with or without T.afroharzianum TM2-4 microbial agent were investigated by greenhouse pot experiment and RNA sequencing.The results demonstrated that T.afroharzianum TM2-4 significantly promoted tomato plant growth in terms of plant height,dry weight,number of leaves per plant and root activity,through efficient colonization in the rhizosphere and root system of the plants.Transcriptome analyses identified a total of 984 differentially expressed genes in T.afroharzianum microbial agent inoculated tomato roots,which were mainly engaged in the biological process of phytohormone homeostasis,antioxidant activity,as well as metabolic pathways including phenylpropanoid biosynthesis and glutathione metabolism.These findings provide useful information for understanding the mechanism of isolate TM2-4 for tomato plant growth promotion,which would facilitate further development of T.afroharzianum TM2-4 microbial agent for use in vegetable crop production.
基金Supported by the National Key R&D Program ot China(2016YFD0201100)the National Natural Science Foundation of China(31701902)the earmarked fund for China Agriculture Research System(CARS-27).
文摘Chemical potassium(K)fertilizer is commonly used in apple(Malus domestica L.Borkh)production but K is easily fixed by soil,resulting in reduced K ferilizer utilization and wasted resources.K-solubilizing bacteria(KSB)can cost-effectively increase the soluble K content in rhizosphere soil.Therefore,the objectives were to select high-efficiency KSB from apple orchards under various soil management models and evaluate their effects on apple seedling growth.Maize(Zea maysL.)straw mulching(MSM)increased the total carbon(TC),total nitrogen(TN)and available potassium(AK)in the rhizosphere and improved fruit quality.The number of KSB in the rhizosphere soil of MSM was 9.5×10×CFU g1 soil,which was considerably higher than that in the other mulching models.Fourteen KSB strains were isolated with relative K solubilizing ability ranging from 17 to 30%,and five strains increased the dry weight per apple seedling.The most eficient strain was identified as Paenibacillus mucilaginosus through morphological observation and sequence analysis of 16S rDNA,named JGK.After inoculation,the colonization of JGK in soil decreased from 4.0 to 1.5×10×CFU g^-1 soil within 28 d.The growth of the apple seedlings and the K accumulation in apple plants were promoted by irigation with 50 mL JGK bacterial solution(1×10^9 CFU mL^-1),but there was no significant increase in the AK content of rhizosphere soil.High-performance liquid phase analysis(HPLC)data showed that the JGK metabolites contained phytohormones and organic acids.Hence,the JGK strain promoted the growth of two-month-old apple seedlings by stimulating function of the produced phytohormones and enhanced K solubility by acidification for apple seedling uptake.This study enriches the understanding of KSB and provides an effective means to increase the K utilization efficiency of apple production.