BackgroundGrowth differentiation factor (GDF)-15, a divergent member of the transforming growth factor beta super-family does appear to be up-regulated in response to experimental pressure overload and progression o...BackgroundGrowth differentiation factor (GDF)-15, a divergent member of the transforming growth factor beta super-family does appear to be up-regulated in response to experimental pressure overload and progression of heart failure (HF). HF frequently develops after myocardial infarction (MI), contributing to worse outcome. The aim of this study is to assess the correlation between GDF-15 levels and markers related to collagen turnover in different stages of HF.MethodsThe study consists of a cohort of 179 patients, including stable angina pectoris patients (AP group,n= 50), old MI patients without HF (OMI group,n = 56), old MI patients with HF (OMI-HF group,n= 38) and normal Control group (n = 35). Both indicators reflecting the synthesis and degradation rates of collagen including precollagen I N-terminal peptide (PINP), type I collagen carboxy-terminal peptide (ICTP), precollagen III N-terminal peptide (PIIINP) and GDF-15 were measured using an enzyme-linked inmunosorbent assay.ResultsThe plasma GDF-15 level was higher in OMI-HF group (1373.4 ± 275.4 ng/L) than OMI group (1036.1 ± 248.6 ng/L), AP group (784.6 ± 222.4 ng/L) and Control group (483.8 ± 186.4 ng/L) (P〈 0.001). The indi-cators of collagen turnover (ICTP, PINP, PIIINP) all increased in the OMI-HF group compared with Control group (3.03 ± 1.02μg/Lvs. 2.08 ± 0.95μg/L, 22.2 ± 6.6μg/Lvs. 16.7 ± 5.1μg/L and 13.2 ± 7.9μg/Lvs. 6.4 ± 2.1μg/L, respectively;P〈 0.01). GDF-15 positively cor-related with ICTP and PIIINP (r = 0.302,P〈 0.001 andr= 0.206,P= 0.006, respectively). GDF-15 positively correlated to the echocardio-graphic diastolic indicators E/Em and left atrial pressure (r= 0.349 and r= 0.358, respectively;P〈 0.01), and inversely correlated to the systolic indicators left ventricular ejection fraction and the average of peak systolic myocardial velocities (Sm) (r=-0.623 and r=-0.365, respectively;P〈 0.01).ConclusionPlasma GDF-15 is associated with the indicators of type I and III collagen turnover.展开更多
Background Growth differentiation factor-15(GDF-15)is involved in multiple processes that are associated with coronary artery disease(CAD).However,little is known about the association between GDF-15 and the future is...Background Growth differentiation factor-15(GDF-15)is involved in multiple processes that are associated with coronary artery disease(CAD).However,little is known about the association between GDF-15 and the future ischemic events in patients with intermediate CAD.This study was conducted to investigate whether plasma GDF-15 constituted risk biomarkers for future cardiovascular events in patients with intermediate CAD.Methods A prospective study was performed based on 541 patients with intermediate CAD(20%–70%).GDF-15 of each patient was determined in a blinded manner.The primary endpoint was major adverse cardiac event(MACE),which was defined as a composite of all-cause death,nonfatal myocardial infarction,revascularization and readmission due to angina pectoris.Results After a median follow-up of 64 months,504 patients(93.2%)completed the follow-up.Overall,the combined endpoint of MACE appeared in 134 patients(26.6%)in the overall population:26 patients died,11 patients suffered a nonfatal myocardial infarction,51 patients underwent revascularization,and 46 patients were readmitted for angina pectoris.The plasma levels of GDF-15(median:1172.02 vs.965.25 pg/m L,P=0.014)were higher in patients with ischemic events than those without events.After adjusting for traditional risk factors,higher GDF-15 levels were significantly associated with higher incidence of the composite endpoint of MACE(HR=1.244,95%CI:1.048–1.478,Quartile 4 vs.Quartile 1,P=0.013).Conclusions The higher level of GDF-15 was an independent predictor of long-term adverse cardiovascular events in patients with intermediate CAD.展开更多
Objective To observe the effect of growth differentiation factor-5 (GDF-5) on the growth and anabolic metabolism of articular chondrocytes. Methods The articular chondrocytes isolated from rats were treated with vario...Objective To observe the effect of growth differentiation factor-5 (GDF-5) on the growth and anabolic metabolism of articular chondrocytes. Methods The articular chondrocytes isolated from rats were treated with various concentrations of rmGDF-5, and the growth of chondrocytes measured by MTT assay, the cellular cartilage matrices formation detected sulfated glycosaminoglycan by Alcian blue staining and type Ⅱcollagen by RT-PCR. Results After 7 days culture, MTT assay showed that GDF-5 enhanced the growth of chondrocytes in a dose-dependent manner, RT-PCR showed that GDF-5 clearly induced the synthesis of type Ⅱ collagen because of the col2a1 mRNA band more and more strong in a dose-dependent. Chondrocytes were cultured with GDF-5 for 14 days, the intensity of Alcian blue staining was greatly enhanced, especially, at a high concentration of 1000ng/mL, and GDF-5 enhanced the accumulation of the Alcian blue-stainable material in a concentration-dependent manner and in a does-dependent manner. Conclusion GDF-5 enhanced the growth of mature articular chondrocytes, and stimulated the cellular cartilage matrices formation in mono-layer culture.展开更多
Parkinson’s disease is the most common movement disorder worldwide,affecting over 6 million people.It is an age-related disease,occurring in 1%of people over the age of 60,and 3%of the population over 80 years.The di...Parkinson’s disease is the most common movement disorder worldwide,affecting over 6 million people.It is an age-related disease,occurring in 1%of people over the age of 60,and 3%of the population over 80 years.The disease is characterized by the progressive loss of midbrain dopaminergic neurons from the substantia nigra,and their axons,which innervate the striatum,resulting in the characteristic motor and non-motor symptoms of Parkinson’s disease.This is paralleled by the intracellular accumulation ofα-synuclein in several regions of the nervous system.Current therapies are solely symptomatic and do not stop or slow disease progression.One promising disease-modifying strategy to arrest the loss of dopaminergic neurons is the targeted delivery of neurotrophic factors to the substantia nigra or striatum,to protect the remaining dopaminergic neurons of the nigrostriatal pathway.However,clinical trials of two well-established neurotrophic factors,glial cell line-derived neurotrophic factor and neurturin,have failed to meet their primary end-points.This failure is thought to be at least partly due to the downregulation byα-synuclein of Ret,the common co-receptor of glial cell line-derived neurorophic factor and neurturin.Growth/differentiation factor 5 is a member of the bone morphogenetic protein family of neurotrophic factors,that signals through the Ret-independent canonical Smad signaling pathway.Here,we review the evidence for the neurotrophic potential of growth/differentiation factor 5 in in vitro and in vivo models of Parkinson’s disease.We discuss new work on growth/differentiation factor 5’s mechanisms of action,as well as data showing that viral delivery of growth/differentiation factor 5 to the substantia nigra is neuroprotective in theα-synuclein rat model of Parkinson’s disease.These data highlight the potential for growth/differentiation factor 5 as a disease-modifying therapy for Parkinson’s disease.展开更多
Objective To explore the feasibility and effectiveness of the self-assembly cartilage tissue engineered with chondrogenically differentiated human bone mesenchymal stem cells (hBMCs) induced by growth differentiation ...Objective To explore the feasibility and effectiveness of the self-assembly cartilage tissue engineered with chondrogenically differentiated human bone mesenchymal stem cells (hBMCs) induced by growth differentiation factor-5 (GDF-5)展开更多
AIM: To identify the key cytokines involved in hepatic differentiation of mouse bone marrow mesenchymal stem cells (mBM-MSCs) under liver-injury conditions. METHODS: Abdominal injection of CCl4 was adopted to duplicat...AIM: To identify the key cytokines involved in hepatic differentiation of mouse bone marrow mesenchymal stem cells (mBM-MSCs) under liver-injury conditions. METHODS: Abdominal injection of CCl4 was adopted to duplicate a mouse acute liver injury model. Global gene expression analysis was performed to evaluate the potential genes involved in hepatic commitment under liver-injury conditions. The cytokines involved in hepatic differentiation of mBM-MSCs was function-ally examined by depletion experiment using specifi c antibodies, followed by rescue experiment and direct inducing assay. The hepatic differentiation was characterized by the expression of hepatic lineage genes and proteins, as well as functional features. RESULTS: Cytokines potentially participating in hepatic fate commitment under liver-injury conditions were initially measured by microarray. Among the up-regulated genes determined, 18 cytokines known to closely relate to liver growth, repair and development, were selected for further identif ication. The f ibroblast growth factor-4 (FGF-4), hepatocyte growth factor (HGF) and oncostatin M (OSM) were fi nally found to be involved in hepatic differentiation of mBM-MSCs under liver-injury conditions. Hepatic differentiation could be dramatically decreased after removing FGF-4, HGF and OSM from the liver-injury conditioned medium, and could be rescued by supplementing these cytokines. The FGF-4, HGF and OSM play different roles in the hepatic differentiation of mBM-MSCs, in which FGF-4 and HGF are essential for the initiation of hepatic differentiation, while OSM is critical for the maturation of hepatocytes. CONCLUSION: FGF-4, HGF and OSM are the key cytokines involved in the liver-injury conditioned medium for the hepatic differentiation of mBM-MSCs.展开更多
Objective:To explore the role of bone morphogenetic protein 4(BMP-4) in hepatic progenitor cells(HPCs).Methods:The effect of BMP-4 on rat hepatic oval cells was examined by using the WB-F344 rat hepatocytic epithelial...Objective:To explore the role of bone morphogenetic protein 4(BMP-4) in hepatic progenitor cells(HPCs).Methods:The effect of BMP-4 on rat hepatic oval cells was examined by using the WB-F344 rat hepatocytic epithelial stem-cell-like cell line.This hepatocytic cell line could exert various hepatocytc functions including the secretion of albumin and urea.Immunohistochemistry was used to examine the effects of BMP-4 and its antagonist,Noggin,on the proliferation and differentiation of these cells,cellular uptake and excretion of indocyanine green,the periodic acid-schiff(PAS) assay for glycogen storage and the expression of hepatic markers.Results:Our results showed for the first time that BMP-4 may acted as a potential inducer of hepatic differentiation in rat hepatic oval cells.Conclusions:This cell source offers a much-needed attractive and expandable source for future investigations of drug screening,stem cell technologies and cellular transplantation,in a society with increasing levels of liver disease and damage.展开更多
·AIM: To investigate the effect of all-trans retinoic acid(ATRA) on retinol dehydrogenase 5(RDH5), matrix metalloproteinase-2(MMP-2) and transforming growth factor-β2(TGF-β2) transcription levels, and the effec...·AIM: To investigate the effect of all-trans retinoic acid(ATRA) on retinol dehydrogenase 5(RDH5), matrix metalloproteinase-2(MMP-2) and transforming growth factor-β2(TGF-β2) transcription levels, and the effect of RDH5 on MMP-2 and TGF-β2 in retinal pigment epithelium(RPE) cells.·METHODS: After adult RPE cell line-19(ARPE-19 cells) intervened with gradient concentrations of ATRA(0-20 μmol/L) for 24h, flow cytometry was used to detect the proliferation and apoptosis of cells in each group, and quantitative realtime polymerase chain reaction(q RT-PCR) was used to detect RDH5, MMP-2 and TGF-β2 m RNA expression. Then, after ARPE-19 cells transfected with three different si RNA targets for 48h, the RDH5 knockdown efficiency of each group and expression of MMP-2 and TGF-β2 m RNA within them was detected by q RT-PCR. ·RESULTS: Flow cytometry results showed that ATRA could inhibit the proliferation of RPE cells and promote the apoptosis of RPE cells, and the difference of apoptosis was statistically significant when the ATRA concentration exceeded 5 μmol/L and compared with the normal control group(P=0.027 and P=0.031, respectively). q RT-PCR results showed that ATRA could significantly inhibit the expression level of RDH5 m RNA(P<0.001) and promote the expression of MMP-2 and TGF-β2 m RNA(P=0.03 and P<0.001, respectively) in a dose-dependent manner, especially when treated with 5 μmol/L ATRA. The knockdown efficiency of RDH5 si RNA varies with different targets, among which RDH5 si RNA-435 had the highest knockdown efficiency, i.e., more than 50% lower than that of the negative control group(P=0.02). When RDH5 was knocked down for 48h, the results of q RT-PCR showed that the expressions of MMP-2 and TGF-β2 m RNA were significantly up-regulated(P<0.001).·CONCLUSION: ATRA inhibits the expression of RDH5 and promotes MMP-2 and TGF-β2, and further RDH5 knockdown significantly upregulates MMP-2 and TGF-β2. These findings suggest that RDH5 may be involved in an epithelial-mesenchymal transition of RPE cells mediated by ATRA.展开更多
Objective:To investigate the effect of the gap junction blocker 1-heptanol on the in vitro chondrogenic differentiation of mouse bone marrow mesenchymal stem cells(MSCs) following induction by GDF-5. Methods:MSCs ...Objective:To investigate the effect of the gap junction blocker 1-heptanol on the in vitro chondrogenic differentiation of mouse bone marrow mesenchymal stem cells(MSCs) following induction by GDF-5. Methods:MSCs were isolated from mouse bone marrow and cultured in vitro. After 3 passages cells were induced to undergo chondrogenic differentiation with recombinant human GDF-5(100 ng/ml), with or without 1-heptanol(2.5 la mol/L). The effect of 1-heptanol on MSCs proliferation was investigated using the MTT assay. Type II collagen mRNA and protein were examined by RT-PCR and immunocytochemistry respectively, and the sulfate glycosaminoglycan was assessed by Alcian blue dye staining. Connexin43(Cx43) protein was examined by western blotting. Results:GDF-5 induced proliferation and chondrogenic differentiation of MSCs. While 1-heptanol treatment had no effect on this proliferation, it inhibited the expression of both type II collagen mRNA and protein. The Alcian blue staining revealed that 1-heptanol also inhibited the deposition of the typical cartilage extracellular matrix promoted by recombinant GDF-5. Western blotting demonstrated that 1-heptanol had no effect on the expression of Cx43. Conclusion:These results suggest that mouse bone marrow MSCs can be differentiated into a chondrogenic phenotype by GDF- 5 administration in vitro. While the gap junction blocker, 1-heptanol, did not reduce gap junction Cx43, these intercellular communication pathways clearly played an important functional role in GDF-5-induced cartilage differentiation.展开更多
The effects of transforming growth factor-β1 (TGF-β1) are currently controversial. Whether TGF-β1 promotes or inhibits revascularization under different conditions remains poorly understood. Based on previous stu...The effects of transforming growth factor-β1 (TGF-β1) are currently controversial. Whether TGF-β1 promotes or inhibits revascularization under different conditions remains poorly understood. Based on previous studies, the current experiment established rat models of cerebral ischemia and reperfusion injury (IRI), and demonstrated that pathological and functional damage was also increased after IRI. The most serious damage was observed at 3 days after reperfusion, at which time microvascular density fell to its lowest level. Soon afterwards, microvascular density increased, new collateral circulation was gradually established at 4 to 7 days after reperfusion, and pathological damage and neurological deficits were improved. TGF-β1, activin receptor-like kinase 5 (ALK5) mRNA and protein expression levels increased gradually over time. In contrast, ALK1 mRNA and protein expression decreased over the same period. A significant negative correlation was detected between microvascular density and expression of the ALK5 gene transcript. There was no correlation between microvascular density and ALK1 gene transcriptional expression following cerebral IRI in a rat model. These findings suggest that ALK5, rather than ALK1, is the critical receptor in the TGF-β1 signal pathways after cerebral IRI.展开更多
Background:Clinical assessment and treatment guidance for heart failure depends on a variety of biomarkers.The objective of this study was to investigate the prognostic predictive value of growth differentiation facto...Background:Clinical assessment and treatment guidance for heart failure depends on a variety of biomarkers.The objective of this study was to investigate the prognostic predictive value of growth differentiation factor-15(GDF-15)and N-terminal prohormone of brain natriuretic peptide(NT-proBNP)in assessing hospitalized patients with acute heart failure(AHF).Methods:In total,260 patients who were admitted for AHF in the First Affiliated Hospital of Nanjing Medical University were enrolled from April 2012 to May 2016.Medical history and blood samples were collected within 24 h after the admission.The primary endpoint was the all-cause mortality within 1 year.The patients were divided into survival group and death group based on the endpoint.With established mortality risk factors and serum GDF-15 level,receiver-operator characteristic(ROC)analyses were performed.Cox regression analyses were used to further analyze the combination values of NT-proBNP and GDF-15.Results:Baseline GDF-15 and NT-proBNP were significantly higher amongst deceased than those in survivors(P<0.001).In ROC analyses,area under curve(AUC)for GDF-15 to predict 1-year mortality was 0.707(95%confidence interval[CI]:0.648–0.762,P<0.001),and for NT-proBNP was 0.682(95%CI:0.622–0.738,P<0.001).No statistically significant difference was found between the two markers(P=0.650).Based on the optimal cut-offs(GDF-15:4526.0 ng/L;NT-proBNP:1978.0 ng/L),the combination of GDF-15 and NT-proBNP increased AUC for 1-year mortality prediction(AUC=0.743,95%CI:0.685–0.795,P<0.001).Conclusions:GDF-15,as a prognostic marker in patients with AHF,is not inferior to NT-proBNP.Combining the two markers could provide an early recognition of high-risk patients and improve the prediction values of AHF long-term prognosis.Clinical trial registration:ChiCTR-ONC-12001944,http://www.chictr.org.cn.展开更多
Growth differentiation factor 15(GDF-15)is a member of the transforming growth factor-βsuperfamily.It is widely distributed in the central and peripheral nervous systems.Whether and how GDF-15 modulates nociceptive s...Growth differentiation factor 15(GDF-15)is a member of the transforming growth factor-βsuperfamily.It is widely distributed in the central and peripheral nervous systems.Whether and how GDF-15 modulates nociceptive signaling remains unclear.Behaviorally,we found that peripheral GDF-15 significantly elevated nociceptive response thresholds to mechanical and thermal stimuli in naïve and arthritic rats.Electrophysiologically,we demonstrated that GDF-15 decreased the excitability of small-diameter dorsal root ganglia(DRG)neurons.Furthermore,GDF-15 concentration-dependently suppressed tetrodotoxin-resistant sodium channel Nav1.8 currents,and shifted the steady-state inactivation curves of Nav1.8 in a hyperpolarizing direction.GDF-15 also reduced window currents and slowed down the recovery rate of Nav1.8 channels,suggesting that GDF-15 accelerated inactivation and slowed recovery of the channel.Immunohistochemistry results showed that activin receptor-like kinase-2(ALK2)was widely expressed in DRG medium-and small-diameter neurons,and some of them were Nav1.8-positive.Blockade of ALK2 prevented the GDF-15-induced inhibition of Nav1.8 currents and nociceptive behaviors.Inhibition of PKA and ERK,but not PKC,blocked the inhibitory effect of GDF-15 on Nav1.8 currents.These results suggest a functional link between GDF-15 and Nav1.8 in DRG neurons via ALK2 receptors and PKA associated with MEK/ERK,which mediate the peripheral analgesia of GDF-15.展开更多
基金All authors have no conflict of interest regarding this paper. This work was supported by Grant National Natural Science Foundation of China (81400262) & Backbone Fund of Peking University Third Hospital.
文摘BackgroundGrowth differentiation factor (GDF)-15, a divergent member of the transforming growth factor beta super-family does appear to be up-regulated in response to experimental pressure overload and progression of heart failure (HF). HF frequently develops after myocardial infarction (MI), contributing to worse outcome. The aim of this study is to assess the correlation between GDF-15 levels and markers related to collagen turnover in different stages of HF.MethodsThe study consists of a cohort of 179 patients, including stable angina pectoris patients (AP group,n= 50), old MI patients without HF (OMI group,n = 56), old MI patients with HF (OMI-HF group,n= 38) and normal Control group (n = 35). Both indicators reflecting the synthesis and degradation rates of collagen including precollagen I N-terminal peptide (PINP), type I collagen carboxy-terminal peptide (ICTP), precollagen III N-terminal peptide (PIIINP) and GDF-15 were measured using an enzyme-linked inmunosorbent assay.ResultsThe plasma GDF-15 level was higher in OMI-HF group (1373.4 ± 275.4 ng/L) than OMI group (1036.1 ± 248.6 ng/L), AP group (784.6 ± 222.4 ng/L) and Control group (483.8 ± 186.4 ng/L) (P〈 0.001). The indi-cators of collagen turnover (ICTP, PINP, PIIINP) all increased in the OMI-HF group compared with Control group (3.03 ± 1.02μg/Lvs. 2.08 ± 0.95μg/L, 22.2 ± 6.6μg/Lvs. 16.7 ± 5.1μg/L and 13.2 ± 7.9μg/Lvs. 6.4 ± 2.1μg/L, respectively;P〈 0.01). GDF-15 positively cor-related with ICTP and PIIINP (r = 0.302,P〈 0.001 andr= 0.206,P= 0.006, respectively). GDF-15 positively correlated to the echocardio-graphic diastolic indicators E/Em and left atrial pressure (r= 0.349 and r= 0.358, respectively;P〈 0.01), and inversely correlated to the systolic indicators left ventricular ejection fraction and the average of peak systolic myocardial velocities (Sm) (r=-0.623 and r=-0.365, respectively;P〈 0.01).ConclusionPlasma GDF-15 is associated with the indicators of type I and III collagen turnover.
基金supported by the Beijing Municipal Science and Technology Committee(D0906006000091)the Ministry of Science and Technology of the People’s Republic of China,State Science and Technology Support Program(No.2011BAI11B05).
文摘Background Growth differentiation factor-15(GDF-15)is involved in multiple processes that are associated with coronary artery disease(CAD).However,little is known about the association between GDF-15 and the future ischemic events in patients with intermediate CAD.This study was conducted to investigate whether plasma GDF-15 constituted risk biomarkers for future cardiovascular events in patients with intermediate CAD.Methods A prospective study was performed based on 541 patients with intermediate CAD(20%–70%).GDF-15 of each patient was determined in a blinded manner.The primary endpoint was major adverse cardiac event(MACE),which was defined as a composite of all-cause death,nonfatal myocardial infarction,revascularization and readmission due to angina pectoris.Results After a median follow-up of 64 months,504 patients(93.2%)completed the follow-up.Overall,the combined endpoint of MACE appeared in 134 patients(26.6%)in the overall population:26 patients died,11 patients suffered a nonfatal myocardial infarction,51 patients underwent revascularization,and 46 patients were readmitted for angina pectoris.The plasma levels of GDF-15(median:1172.02 vs.965.25 pg/m L,P=0.014)were higher in patients with ischemic events than those without events.After adjusting for traditional risk factors,higher GDF-15 levels were significantly associated with higher incidence of the composite endpoint of MACE(HR=1.244,95%CI:1.048–1.478,Quartile 4 vs.Quartile 1,P=0.013).Conclusions The higher level of GDF-15 was an independent predictor of long-term adverse cardiovascular events in patients with intermediate CAD.
文摘Objective To observe the effect of growth differentiation factor-5 (GDF-5) on the growth and anabolic metabolism of articular chondrocytes. Methods The articular chondrocytes isolated from rats were treated with various concentrations of rmGDF-5, and the growth of chondrocytes measured by MTT assay, the cellular cartilage matrices formation detected sulfated glycosaminoglycan by Alcian blue staining and type Ⅱcollagen by RT-PCR. Results After 7 days culture, MTT assay showed that GDF-5 enhanced the growth of chondrocytes in a dose-dependent manner, RT-PCR showed that GDF-5 clearly induced the synthesis of type Ⅱ collagen because of the col2a1 mRNA band more and more strong in a dose-dependent. Chondrocytes were cultured with GDF-5 for 14 days, the intensity of Alcian blue staining was greatly enhanced, especially, at a high concentration of 1000ng/mL, and GDF-5 enhanced the accumulation of the Alcian blue-stainable material in a concentration-dependent manner and in a does-dependent manner. Conclusion GDF-5 enhanced the growth of mature articular chondrocytes, and stimulated the cellular cartilage matrices formation in mono-layer culture.
文摘Parkinson’s disease is the most common movement disorder worldwide,affecting over 6 million people.It is an age-related disease,occurring in 1%of people over the age of 60,and 3%of the population over 80 years.The disease is characterized by the progressive loss of midbrain dopaminergic neurons from the substantia nigra,and their axons,which innervate the striatum,resulting in the characteristic motor and non-motor symptoms of Parkinson’s disease.This is paralleled by the intracellular accumulation ofα-synuclein in several regions of the nervous system.Current therapies are solely symptomatic and do not stop or slow disease progression.One promising disease-modifying strategy to arrest the loss of dopaminergic neurons is the targeted delivery of neurotrophic factors to the substantia nigra or striatum,to protect the remaining dopaminergic neurons of the nigrostriatal pathway.However,clinical trials of two well-established neurotrophic factors,glial cell line-derived neurotrophic factor and neurturin,have failed to meet their primary end-points.This failure is thought to be at least partly due to the downregulation byα-synuclein of Ret,the common co-receptor of glial cell line-derived neurorophic factor and neurturin.Growth/differentiation factor 5 is a member of the bone morphogenetic protein family of neurotrophic factors,that signals through the Ret-independent canonical Smad signaling pathway.Here,we review the evidence for the neurotrophic potential of growth/differentiation factor 5 in in vitro and in vivo models of Parkinson’s disease.We discuss new work on growth/differentiation factor 5’s mechanisms of action,as well as data showing that viral delivery of growth/differentiation factor 5 to the substantia nigra is neuroprotective in theα-synuclein rat model of Parkinson’s disease.These data highlight the potential for growth/differentiation factor 5 as a disease-modifying therapy for Parkinson’s disease.
文摘Objective To explore the feasibility and effectiveness of the self-assembly cartilage tissue engineered with chondrogenically differentiated human bone mesenchymal stem cells (hBMCs) induced by growth differentiation factor-5 (GDF-5)
基金Supported by The Grant of Medicine and Health Key Projects of Zhejiang Province, Science and Technology Fund of Ministry of Health of the People’s Republic of China, No. WKJ2007-2-037Shaoxing Key Project for Science and Technology, No. 2007A23008the Natural Science Foundation of Zhejiang Province, China, No. Y2090337
文摘AIM: To identify the key cytokines involved in hepatic differentiation of mouse bone marrow mesenchymal stem cells (mBM-MSCs) under liver-injury conditions. METHODS: Abdominal injection of CCl4 was adopted to duplicate a mouse acute liver injury model. Global gene expression analysis was performed to evaluate the potential genes involved in hepatic commitment under liver-injury conditions. The cytokines involved in hepatic differentiation of mBM-MSCs was function-ally examined by depletion experiment using specifi c antibodies, followed by rescue experiment and direct inducing assay. The hepatic differentiation was characterized by the expression of hepatic lineage genes and proteins, as well as functional features. RESULTS: Cytokines potentially participating in hepatic fate commitment under liver-injury conditions were initially measured by microarray. Among the up-regulated genes determined, 18 cytokines known to closely relate to liver growth, repair and development, were selected for further identif ication. The f ibroblast growth factor-4 (FGF-4), hepatocyte growth factor (HGF) and oncostatin M (OSM) were fi nally found to be involved in hepatic differentiation of mBM-MSCs under liver-injury conditions. Hepatic differentiation could be dramatically decreased after removing FGF-4, HGF and OSM from the liver-injury conditioned medium, and could be rescued by supplementing these cytokines. The FGF-4, HGF and OSM play different roles in the hepatic differentiation of mBM-MSCs, in which FGF-4 and HGF are essential for the initiation of hepatic differentiation, while OSM is critical for the maturation of hepatocytes. CONCLUSION: FGF-4, HGF and OSM are the key cytokines involved in the liver-injury conditioned medium for the hepatic differentiation of mBM-MSCs.
文摘Objective:To explore the role of bone morphogenetic protein 4(BMP-4) in hepatic progenitor cells(HPCs).Methods:The effect of BMP-4 on rat hepatic oval cells was examined by using the WB-F344 rat hepatocytic epithelial stem-cell-like cell line.This hepatocytic cell line could exert various hepatocytc functions including the secretion of albumin and urea.Immunohistochemistry was used to examine the effects of BMP-4 and its antagonist,Noggin,on the proliferation and differentiation of these cells,cellular uptake and excretion of indocyanine green,the periodic acid-schiff(PAS) assay for glycogen storage and the expression of hepatic markers.Results:Our results showed for the first time that BMP-4 may acted as a potential inducer of hepatic differentiation in rat hepatic oval cells.Conclusions:This cell source offers a much-needed attractive and expandable source for future investigations of drug screening,stem cell technologies and cellular transplantation,in a society with increasing levels of liver disease and damage.
基金Supported by Project of Science&Technology Department of Sichuan Province (No.23NSFSC1940)City and College Cooperation (No.22SXFWDF0003)。
文摘·AIM: To investigate the effect of all-trans retinoic acid(ATRA) on retinol dehydrogenase 5(RDH5), matrix metalloproteinase-2(MMP-2) and transforming growth factor-β2(TGF-β2) transcription levels, and the effect of RDH5 on MMP-2 and TGF-β2 in retinal pigment epithelium(RPE) cells.·METHODS: After adult RPE cell line-19(ARPE-19 cells) intervened with gradient concentrations of ATRA(0-20 μmol/L) for 24h, flow cytometry was used to detect the proliferation and apoptosis of cells in each group, and quantitative realtime polymerase chain reaction(q RT-PCR) was used to detect RDH5, MMP-2 and TGF-β2 m RNA expression. Then, after ARPE-19 cells transfected with three different si RNA targets for 48h, the RDH5 knockdown efficiency of each group and expression of MMP-2 and TGF-β2 m RNA within them was detected by q RT-PCR. ·RESULTS: Flow cytometry results showed that ATRA could inhibit the proliferation of RPE cells and promote the apoptosis of RPE cells, and the difference of apoptosis was statistically significant when the ATRA concentration exceeded 5 μmol/L and compared with the normal control group(P=0.027 and P=0.031, respectively). q RT-PCR results showed that ATRA could significantly inhibit the expression level of RDH5 m RNA(P<0.001) and promote the expression of MMP-2 and TGF-β2 m RNA(P=0.03 and P<0.001, respectively) in a dose-dependent manner, especially when treated with 5 μmol/L ATRA. The knockdown efficiency of RDH5 si RNA varies with different targets, among which RDH5 si RNA-435 had the highest knockdown efficiency, i.e., more than 50% lower than that of the negative control group(P=0.02). When RDH5 was knocked down for 48h, the results of q RT-PCR showed that the expressions of MMP-2 and TGF-β2 m RNA were significantly up-regulated(P<0.001).·CONCLUSION: ATRA inhibits the expression of RDH5 and promotes MMP-2 and TGF-β2, and further RDH5 knockdown significantly upregulates MMP-2 and TGF-β2. These findings suggest that RDH5 may be involved in an epithelial-mesenchymal transition of RPE cells mediated by ATRA.
基金supported by the National Natural Science Foundation of China(30471753)
文摘Objective:To investigate the effect of the gap junction blocker 1-heptanol on the in vitro chondrogenic differentiation of mouse bone marrow mesenchymal stem cells(MSCs) following induction by GDF-5. Methods:MSCs were isolated from mouse bone marrow and cultured in vitro. After 3 passages cells were induced to undergo chondrogenic differentiation with recombinant human GDF-5(100 ng/ml), with or without 1-heptanol(2.5 la mol/L). The effect of 1-heptanol on MSCs proliferation was investigated using the MTT assay. Type II collagen mRNA and protein were examined by RT-PCR and immunocytochemistry respectively, and the sulfate glycosaminoglycan was assessed by Alcian blue dye staining. Connexin43(Cx43) protein was examined by western blotting. Results:GDF-5 induced proliferation and chondrogenic differentiation of MSCs. While 1-heptanol treatment had no effect on this proliferation, it inhibited the expression of both type II collagen mRNA and protein. The Alcian blue staining revealed that 1-heptanol also inhibited the deposition of the typical cartilage extracellular matrix promoted by recombinant GDF-5. Western blotting demonstrated that 1-heptanol had no effect on the expression of Cx43. Conclusion:These results suggest that mouse bone marrow MSCs can be differentiated into a chondrogenic phenotype by GDF- 5 administration in vitro. While the gap junction blocker, 1-heptanol, did not reduce gap junction Cx43, these intercellular communication pathways clearly played an important functional role in GDF-5-induced cartilage differentiation.
基金a grant of Supportive Fund for Young Scientists from the Department of Science & Technology of Shandong Province, China, No. 2004BS03013
文摘The effects of transforming growth factor-β1 (TGF-β1) are currently controversial. Whether TGF-β1 promotes or inhibits revascularization under different conditions remains poorly understood. Based on previous studies, the current experiment established rat models of cerebral ischemia and reperfusion injury (IRI), and demonstrated that pathological and functional damage was also increased after IRI. The most serious damage was observed at 3 days after reperfusion, at which time microvascular density fell to its lowest level. Soon afterwards, microvascular density increased, new collateral circulation was gradually established at 4 to 7 days after reperfusion, and pathological damage and neurological deficits were improved. TGF-β1, activin receptor-like kinase 5 (ALK5) mRNA and protein expression levels increased gradually over time. In contrast, ALK1 mRNA and protein expression decreased over the same period. A significant negative correlation was detected between microvascular density and expression of the ALK5 gene transcript. There was no correlation between microvascular density and ALK1 gene transcriptional expression following cerebral IRI in a rat model. These findings suggest that ALK5, rather than ALK1, is the critical receptor in the TGF-β1 signal pathways after cerebral IRI.
文摘Background:Clinical assessment and treatment guidance for heart failure depends on a variety of biomarkers.The objective of this study was to investigate the prognostic predictive value of growth differentiation factor-15(GDF-15)and N-terminal prohormone of brain natriuretic peptide(NT-proBNP)in assessing hospitalized patients with acute heart failure(AHF).Methods:In total,260 patients who were admitted for AHF in the First Affiliated Hospital of Nanjing Medical University were enrolled from April 2012 to May 2016.Medical history and blood samples were collected within 24 h after the admission.The primary endpoint was the all-cause mortality within 1 year.The patients were divided into survival group and death group based on the endpoint.With established mortality risk factors and serum GDF-15 level,receiver-operator characteristic(ROC)analyses were performed.Cox regression analyses were used to further analyze the combination values of NT-proBNP and GDF-15.Results:Baseline GDF-15 and NT-proBNP were significantly higher amongst deceased than those in survivors(P<0.001).In ROC analyses,area under curve(AUC)for GDF-15 to predict 1-year mortality was 0.707(95%confidence interval[CI]:0.648–0.762,P<0.001),and for NT-proBNP was 0.682(95%CI:0.622–0.738,P<0.001).No statistically significant difference was found between the two markers(P=0.650).Based on the optimal cut-offs(GDF-15:4526.0 ng/L;NT-proBNP:1978.0 ng/L),the combination of GDF-15 and NT-proBNP increased AUC for 1-year mortality prediction(AUC=0.743,95%CI:0.685–0.795,P<0.001).Conclusions:GDF-15,as a prognostic marker in patients with AHF,is not inferior to NT-proBNP.Combining the two markers could provide an early recognition of high-risk patients and improve the prediction values of AHF long-term prognosis.Clinical trial registration:ChiCTR-ONC-12001944,http://www.chictr.org.cn.
基金This work was supported by the National Natural Science Foundation of China(82021002,31771164,and 31930042)the National Key R&D Program of China(2017YFB0403803)+1 种基金the Innovative Research Team of High-level Local Universities in Shanghai,Shanghai Municipal Science and Technology Major Project(2018SHZDZX01)Zhang Jiang Laboratory.
文摘Growth differentiation factor 15(GDF-15)is a member of the transforming growth factor-βsuperfamily.It is widely distributed in the central and peripheral nervous systems.Whether and how GDF-15 modulates nociceptive signaling remains unclear.Behaviorally,we found that peripheral GDF-15 significantly elevated nociceptive response thresholds to mechanical and thermal stimuli in naïve and arthritic rats.Electrophysiologically,we demonstrated that GDF-15 decreased the excitability of small-diameter dorsal root ganglia(DRG)neurons.Furthermore,GDF-15 concentration-dependently suppressed tetrodotoxin-resistant sodium channel Nav1.8 currents,and shifted the steady-state inactivation curves of Nav1.8 in a hyperpolarizing direction.GDF-15 also reduced window currents and slowed down the recovery rate of Nav1.8 channels,suggesting that GDF-15 accelerated inactivation and slowed recovery of the channel.Immunohistochemistry results showed that activin receptor-like kinase-2(ALK2)was widely expressed in DRG medium-and small-diameter neurons,and some of them were Nav1.8-positive.Blockade of ALK2 prevented the GDF-15-induced inhibition of Nav1.8 currents and nociceptive behaviors.Inhibition of PKA and ERK,but not PKC,blocked the inhibitory effect of GDF-15 on Nav1.8 currents.These results suggest a functional link between GDF-15 and Nav1.8 in DRG neurons via ALK2 receptors and PKA associated with MEK/ERK,which mediate the peripheral analgesia of GDF-15.