Growth-associated protein 43 plays a key role in neurite outgrowth through cytoskeleton remodeling.We have previously demonstrated that structural damage of peripheral nerves induces growth-associated protein 43 upreg...Growth-associated protein 43 plays a key role in neurite outgrowth through cytoskeleton remodeling.We have previously demonstrated that structural damage of peripheral nerves induces growth-associated protein 43 upregulation to promote growth cone formation.Conversely,the limited regenerative capacity of the central nervous system due to an inhibitory environment prevents major changes in neurite outgrowth and should be presumably associated with low levels of growth-associated protein 43 expression.However,central alterations due to peripheral nerve damage have never been assessed using the growthassociated protein 43 marker.In this study,we used the tubulization technique to repair 1 cm-long nerve gaps in the rat nerve injury/repair model and detected growth-associated protein 43 expression in the peripheral and central nervous systems.First,histological analysis of the regeneration process confirmed an active regeneration process of the nerve gaps through the conduit from 10 days onwards.The growth-associated protein 43 expression profile varied across regions and follow-up times,from a localized expression to an abundant and consistent expression throughout the regeneration tissue,confirming the presence of an active nerve regeneration process.Second,spinal cord changes were also histologically assessed,and no apparent changes in the structural and cellular organization were observed using routine staining methods.Surprisingly,remarkable differences and local changes appeared in growth-associated protein 43 expression at the spinal cord level,in particular at 20 days post-repair and beyond.Growth-associated protein 43 protein was first localized in the gracile fasciculus and was homogeneously distributed in the left posterior cord.These findings differed from the growth-associated protein 43 pattern observed in the healthy control,which did not express growth-associated protein 43 at these levels.Our results revealed a differential expression in growth-associated protein 43 protein not only in the regenerating nerve tissue but also in the spinal cord after peripheral nerve transection.These findings open the possibility of using this marker to monitor changes in the central nervous system after peripheral nerve injury.展开更多
BACKGROUND: Transplantation of bone marrow-derived mesenchymal stem cells (BMSCs) improves motor functional recovery, but the mechanisms remain unclear. OBJECTIVE: To investigate expression of growth-associated pr...BACKGROUND: Transplantation of bone marrow-derived mesenchymal stem cells (BMSCs) improves motor functional recovery, but the mechanisms remain unclear. OBJECTIVE: To investigate expression of growth-associated protein 43 (GAP-43) and neural cell adhesion molecule following BMSC transplantation to the lateral ventricle in rats with acute focal cerebral ischemic brain damage. DESIGN, TIME AND SETTING: A randomized, controlled, animal experiment using immunohistochemistry was performed at the laboratories of Department of Neurology, Renmin Hospital of Wuhan University and Doctoral Scientific Research Work Station of C-BONS PHARMA, Hubei Province, China, from January 2007 to December 2008. MATERIALS: Monoclonal mouse anti-rat 5-bromo-2-deoxyuridine and neural cell adhesion molecule antibodies were purchased from Sigma, USA; monoclonal mouse anti-rat GAP-43 antibody was purchased from Wuhan Boster, China. METHODS: Rat models of right middle cerebral artery occlusion were established using the thread method. At 1 day after middle cerebral artery occlusion, 20μL culture solution, containing 5×10^5 BMSCs, was transplanted to the left lateral ventricle using micro-injection. MAIN OUTCOME MEASURES: Scores of neurological impairment were measured to assess neural function. Expression of GAP-43 and neural cell adhesion molecule at the lesion areas was examined by immunohistochemistry. RESULTS: GAP-43 and neural cell adhesion molecule expression was low in brain tissues of the sham-operated group, but expression increased at the ischemic boundary (P 〈 0.05). Transplantation of BMSCs further enhanced expression of GAP-43 and neural cell adhesion molecule (P 〈 0.05) and remarkably improved neurological impairment of ischemic rats (P 〈 0.05). CONCLUSION: BMSC transplantation promoted neurological recovery in rats by upregulating expression of GAP-43 and neural cell adhesion molecule.展开更多
In our previous study, we reported that prenatal restraint stress could induce cognitive deficits, which correlated with a change in expression of growth-associated protein 43 in the hippocampus. In this study, we inv...In our previous study, we reported that prenatal restraint stress could induce cognitive deficits, which correlated with a change in expression of growth-associated protein 43 in the hippocampus. In this study, we investigated the effects of enriched environment on cognitive abilities in prenatally stressed rat offspring, as well as the underlying mechanisms. Reverse transcription-PCR and western blot assay results revealed that growth-associated protein 43 mRNA and protein levels were upregulated on postnatal day 15 in the prenatal restraint stress group. Growth-associated protein 43 expression was significantly lower in the prenatal restraint stress group compared with the negative control and prenatal restraint stress plus enriched environment groups on postnatal days 30 and 50. Morris water maze test demonstrated that cognitive abilities were noticeably increased in rats from the prenatal restraint stress plus enriched environment group on postnatal day 50. These results indicate that enriched environment can improve the spatial learning and memory ability of prenatally stressed offspring by upregulating growth-associated protein 43 expression.展开更多
The purpose of this study is to explore the expression of growth-associated protein(GAP-43) in spinal cord segments connected with injured sciatic nerve by the treatment with brazilein in mice. Unilateral sciatic ne...The purpose of this study is to explore the expression of growth-associated protein(GAP-43) in spinal cord segments connected with injured sciatic nerve by the treatment with brazilein in mice. Unilateral sciatic nerve interruption and anastomosis were performed. Physiological saline(blank group), high dose, middle dose and low dose of brazilein were administrated intragastrically to healthy adult BALB/c mice in separate groups. L4―6 spinal segments connected with the sciatic nerve were harvested. Real-time PCR(Polymerase chain reaction) and Western blot analysis were performed to detect the expression of GAP-43 in spinal segments. Histological staining on myelin and the electrophysiology were performed to examine the sciatic nerve recovery. GAP-43 was activated in spinal cord L4―6 connected with injured sciatic nerve. In the survival time of 12 h, 24 h, 3 d, 5 d, 7 d and 14 d, GAP-43 expression in the motor neurons of spinal cord of the high dose group and that in the middle dose group were significantly higher than those on the low dose and blank groups. Myelin in the high dose group and that in the middle dose group were more mature and the potential amplitude and MNCV(motor nerve conduction velocity) in the high and middle dose groups were obviously higher than those in the low dose group and blank group. Brazilein facilitates the expression of GAP-43 in neurons in spinal cord L4―6 segments connected with injured sciatic nerve, which promotes nerve regeneration.展开更多
Studies have demonstrated that amyloid precursor protein (APP) expression increases in multiple sclerosis tissues during acutely and chronically active stages. To determine the relationship between axonal injury and...Studies have demonstrated that amyloid precursor protein (APP) expression increases in multiple sclerosis tissues during acutely and chronically active stages. To determine the relationship between axonal injury and regeneration in multiple sclerosis, an animal model of experimental autoimmune encephalomyelitis was induced using different doses of myelin basic protein peptide. APP and growth-associated protein 43 (GAP-43), which is considered a specific marker of neural regeneration, were assessed by western blot analysis. Expression of APP and GAP-43, as well as the correlation between these two proteins, in brain white matter and spinal cord tissues of experimental autoimmune encephalomyelitis rats at different pathological stages was analyzed. Results showed that APP and GAP-43 expression increased during the acute stage and decreased during remission, with a positive correlation between APP and GAP-43 expression in brain white matter and spinal cord tissues. These results suggest that APP and GAP-43 could provide nutritional and protective effects on damaged neurons.展开更多
BACKGROUND: Experimental data indicate that human growth-associated protein 43 mRNA expression coincides with axonal growth during nerve ganglion development; while neurocan, secreted from astrocytes, can inhibit spr...BACKGROUND: Experimental data indicate that human growth-associated protein 43 mRNA expression coincides with axonal growth during nerve ganglion development; while neurocan, secreted from astrocytes, can inhibit sprouting and elongation of the axonal growth cone. OBJECTIVE: To verify regulatory effects of cyclovirobuxine D (CVB-D) extracted from Chinese box branchlet on human growth-associated protein 43 (GAP-43), and neurocan expression in brain tissue of stroke-prone renovascular hypertensive (RHRSP) rats, at different time points after cerebral ischemia/reperfusion. DESIGN: Randomized grouping design and controlled animal study. SETTING: This study was performed at the Center of Guangdong Hospital of Traditional Chinese Medicine (a national key laboratory) from March 2003 to September 2006. MATERIALS: 100 healthy male Sprague-Dawley rats, aged 2 3 months and weighing 90-120 g, were selected for this study. CVB-D was provided by Nanjing Xiaoying Pharmaceutical Factory (Batch number: 307701). METHODS: The initial tip of renal arteries was clamped bilaterally for 10 weeks to establish the RHRSP model. 100 RHRSP rats were randomly divided into 4 groups: naive group (n = 10), sham surgery group (n = 10), CVB-D group (n = 40), and lesion group (n = 40). Rats in the naive group did not undergo any treatment, and cervical vessels of rats in the sham surgery group were exposed, but not blocked. The right middle cerebral artery of rats in the CVB-D group and lesion group were occluded to establish cerebral ischemia. Rats in the CVB-D group were intraperitoneally injected with CVB-D (6.48 mg/kg) every day and with saline (1.5 mL/injection) twice a day. Rats in the lesion group were intraperitoneally injected with saline (2 mL/injection). MAIN OUTCOME MEASURES: Immunohistochemistry was applied to detect GAP-43 and neurocan expression in the ischemic penumbra region of CVB-D and lesion brains at 2 hours post-cerebral ischemia and at 1, 7, 14, and 30 days post-perfusion (n = 10 at each time point). Similarly, GAP-43 and neurocan expression was detected in the right hemisphere of naive and sham-operated animals. The results were expressed as positive cells. RESULTS: A total of 100 rats were included in the final analysis. The number of GAP-43 positive cells increased in the CVB-D group 1, 7, 14, and 30 days post-cerebral ischemia/perfusion compared to the lesion group, as indicated by a significant difference between the CVB-D and lesion group (P 〈 0.054).01). The number of neurocan-positive cells decreased in the CVB-D group on the first day compared to the model group; however, there was no significant difference between the two groups (P 〉 0.05). On post-ischemia days 7, 14, and 30, the number of neurocan-positive cells in the CVB-D group was significantly less than in the lesion group (P 〈 0.05). Both, GAP-43 and neurocan expression was not detectable in brains of naive and sham-operated animals. CONCLUSION: CVB-D treatment up-regulated GAP-43 expression and down-regulated neurocan expression in the ischemic region of RHRSP rats.展开更多
BACKGROUND: Ketamine is a noncompetitive N-methyl-D-aspartate (NMDA) receptor antagonists and plays an important role in the treatment of pain. OBJECTIVE: To analyze the preemptive analgesic effects of different d...BACKGROUND: Ketamine is a noncompetitive N-methyl-D-aspartate (NMDA) receptor antagonists and plays an important role in the treatment of pain. OBJECTIVE: To analyze the preemptive analgesic effects of different doses of ketamine on growth-associated protein-43 (GAP43) expression in dorsal root ganglion in a rat model of chronic sciatic nerve constricted injury, and to study the differences between high-dose and low-dose ketamine DESIGN: Randomized controlled animal study. SETTING: Medical College of Shantou University. MATERIALS: Thirty-five adult male Sprague Dawley rats were provided by the Experimental Animal Center of Guangzhou University of Traditional Chinese Medicine. Ketamine hydrochloride injection was provided by Hengrui Pharmaceutical Co., Ltd., Jiangsu. METHODS: This study was performed at the Immunological Laboratory, Medical College of Shantou University from September to December 2006. Model of chronic sciatic nerve constricted injury: after anesthesia, the right sciatic nerve was exposed and ligated l-cm distal to the ischiadic tuberosity with a No. 3-0 cat gut suture. Grouping and intervention: 35 rats were randomly divided into 4 groups: normal control group (n = 5), chronic constriction injury (CCI) group (n = 10), low-dose ketamine group (n = 10), and high-dose ketamine group (n = 10). Rats in the normal control group did not undergo any surgery or drug intervention. Rats in the CCI group received intraperitoneal injection of saline (1 mL), and their sciatic nerves were ligated after 10 minutes. Rats in the low-dose ketamine group underwent intraperitoneal injection of ketamine (25 mg/kg) 10 minutes prior to ligation of sciatic nerve; while, rats in the high-dose ketamine group were given intraperitoneal injection of ketamine (50 mg/kg) 10 minutes prior to ligation of sciatic nerve. On the third and the seventh days after surgery, dorsal root ganglion were resected from the sciatic nerve and cut into sections. MAIN OUTCOME MEASURES: GAP-43 expression in dorsal root ganglion was detected by immunohistochemistry and image analysis system, as well as semi-quantitative analysis. RESULTS: Thirty-five Sprague Dawley rats were included in the final analysis. Qualitative analysis: GAP-43 expression in the CCI group was higher than in the normal control group. Quantitative analysis: after three post-operative days, GAP-43 expression in the CCI group was significantly higher than in the normal control group (t = 22.919, 7.319, P 〈 0.05). GAP-43 expression in the low-dose and high-dose ketamine group was significantly lower than in the CCI group (t = 11.166, 26.474, P 〈 0.05). After seven postoperative days, GAP-43 expression in the low-dose and high-dose ketamine groups was significantly lower than in the CCI group (t = 2.382, 5.016, P 〈 0.05). CONCLUSION: Preoperative administration of ketamine inhibited the increased GAP-43 expression in dorsal root ganglion during neuropathic pain.展开更多
BACKGROUND: Growth-associated protein-43 (GAP-43) expression in the nervous system has been demonstrated to promote neural regeneration, neuronal growth and development, as well as synaptic reconstruction. Neurofil...BACKGROUND: Growth-associated protein-43 (GAP-43) expression in the nervous system has been demonstrated to promote neural regeneration, neuronal growth and development, as well as synaptic reconstruction. Neurofilament 200 (NF200) expression could reflect degree of injury and repair in injured spinal axons. OBJECTIVE: To observe NF200 expression changes in a rat model of complete spinal cord injury following GAP-43 treatment and to explore the effects of GAP-43 following spinal cord injury. DESIGN, TIME AND SETTING: A randomized, controlled, animal experiment was performed at the Laboratory of Histology and Embryology of Kunming Medical University between March 2007 and October 2008. MATERIALS: GAP-43 and GAP-43 antibody were provided by Beijing Boao Biology, China; mouse anti-rat NF200 antibody was purchased from Chemicon, USA. METHODS: Female, 8-week-old, Sprague Dawley rats were randomly assigned into three groups following complete spinal cord injury, with 20 animals in each group: GAP-43 antibody, GAP-43, and model groups. In addition, each group was subdivided into four subgroups according to sampling time after modeling, Le., 3-, 5-, 9-, and 15-day groups, with 5 rats in each group. GAP-43 antibody or GAP-43 was injected into injury sites of the spinal cord, 5 μg/0.2 mL, respectively, twice daily for three consecutive days, followed by three additional days of injection, once daily. The model group did not receive any treatment following injury. MAIN OUTCOME MEASURES: NF200 expression in the damaged spinal area at different stages was detected by immunohistochemistry; lower limb motion function following injury was evaluated using the Basso, Beattie and Bresnahan (BBB) locomotor rating scale. RESULTS: NF200 expression was significantly reduced in the GAP-43 antibody group, compared with GAP-43 and model groups, at 3 and 5 days after spinal cord injury (P 〈 0.05). In addition, the model group expressed significantly less NF200 than the GAP-43 group (P 〈 0.05). BBB scores from the GAP-43 antibody and model groups were remarkably less than the GAP-43 group (P 〈 0.05). At 9 and 15 days of injury after drug withdrawal, NF200 expression was increased in the GAP-43 antibody group, and NF200 expression and BBB scores in the GAP-43 antibody and GAP-43 groups were significantly greater than in the model group (P 〈 0.05). In particular, the GAP-43 group exhibited greater BBB scores than the GAP-43 antibody group at day 9 (P 〈 0.05). CONCLUSION: GAP-43 promoted NF200 expression and recovery of lower limb function. Early administration of GAP-43 antibody produced reversible nerve inhibition, which was rapidly restored following withdrawal.展开更多
The traditional Chinese medicine Buyang Huanwu Decoction has been shown to improve the neu- rological function of patients with stroke. However, the precise mechanisms underlying its effect remain poorly understood. I...The traditional Chinese medicine Buyang Huanwu Decoction has been shown to improve the neu- rological function of patients with stroke. However, the precise mechanisms underlying its effect remain poorly understood. In this study, we established a rat model of cerebral ischemia by middle cerebral artery occlusion and intragastrically administered 5 g/kg Buyang Huanwu Decoction, once per day, for 1, 7, 14 and 28 days after cerebral ischemia. Immunohistochemical staining revealed a number of cells positive for the neural stem cell marker nestin in the cerebral cortex, the subven- tricular zone and the ipsilateral hippocampal dentate gyrus in rat models of cerebral ischemia. Buyang Huanwu Decoction significantly increased the number of cells positive for 5-bromodeoxyuridine (BrdU), a cell proliferation-related marker, microtubule-associated protein-2, a marker of neuronal differentiation, and growth-associated protein 43, a marker of synaptic plasticity in the ischemic rat cerebral regions. The number of positive cells peaked at 14 and 28 days after intragastric administration of Buyang Huanwu Decoction. These findings suggest that Buyang Huanwu Decoction can promote the proliferation and differentiation of neural stem cells and en- hance synaptic plasticity in ischemic rat brain tissue.展开更多
Cerebral ischemia activates an endogenous repair program that induces plastic changes in neurons. In this study, we investigated the effects of environmental enrichment on spatial learning and memory as well as on syn...Cerebral ischemia activates an endogenous repair program that induces plastic changes in neurons. In this study, we investigated the effects of environmental enrichment on spatial learning and memory as well as on synaptic remodeling in a mouse model of chronic cerebral ischemia, produced by subjecting adult male C57 BL/6 mice to permanent left middle cerebral artery occlusion. Three days postoperatively, mice were randomly assigned to the environmental enrichment and standard housing groups. Mice in the standard housing group were housed and fed a standard diet. Mice in the environmental enrichment group were housed in a cage with various toys and fed a standard diet. Then, 28 days postoperatively, spatial learning and memory were tested using the Morris water maze. The expression levels of growth-associated protein 43, synaptophysin and postsynaptic density protein 95 in the hippocampus were analyzed by western blot assay. The number of synapses was evaluated by electron microscopy. In the water maze test, mice in the environmental enrichment group had a shorter escape latency, traveled markedly longer distances, spent more time in the correct quadrant(northeast zone), and had a higher frequency of crossings compared with the standard housing group. The expression levels of growth-associated protein 43, synaptophysin and postsynaptic density protein 95 were substantially upregulated in the hippocampus in the environmental enrichment group compared with the standard housing group. Furthermore, electron microscopy revealed that environmental enrichment increased the number of synapses in the hippocampal CA1 region. Collectively, these findings suggest that environmental enrichment ameliorates the spatial learning and memory impairment induced by permanent middle cerebral artery occlusion. Environmental enrichment in mice with cerebral ischemia likely promotes cognitive recovery by inducing plastic changes in synapses.展开更多
Ginsenoside Rb1 has been reported to exert anti-aging and anti-neurodegenerative effects. In the present study, we investigate whether ginsenoside Rb1 is involved in neurite outgrowth and neuroprotection against damag...Ginsenoside Rb1 has been reported to exert anti-aging and anti-neurodegenerative effects. In the present study, we investigate whether ginsenoside Rb1 is involved in neurite outgrowth and neuroprotection against damage induced by amyloid beta(25–35) in cultured hippocampal neurons, and explore the underlying mechanisms. Ginsenoside Rb1 significantly increased neurite outgrowth in hippocampal neurons, and increased the expression of phosphorylated-Akt and phosphorylated extracellular signal-regulated kinase 1/2. These effects were abrogated by API-2 and PD98059, inhibitors of the signaling proteins Akt and MEK. Additionally, cultured hippocampal neurons were exposed to amyloid beta(25–35) for 30 minutes; ginsenoside Rb1 prevented apoptosis induced by amyloid beta(25–35), and this effect was blocked by API-2 and PD98059. Furthermore, ginsenoside Rb1 significantly reversed the reduction in phosphorylated-Akt and phosphorylated extracellular signal-regulated kinase 1/2 levels induced by amyloid beta(25–35), and API-2 neutralized the effect of ginsenoside Rb1. The present results indicate that ginsenoside Rb1 enhances neurite outgrowth and protects against neurotoxicity induced by amyloid beta(25–35) via a mechanism involving Akt and extracellular signal-regulated kinase 1/2 signaling.展开更多
The present study investigated the effects of catalpol, the main constituent of the Chinese herb Rehmannia root, on neurons following brain ischemia, A rat model of focal permanent brain ischemia was established using...The present study investigated the effects of catalpol, the main constituent of the Chinese herb Rehmannia root, on neurons following brain ischemia, A rat model of focal permanent brain ischemia was established using electrocoagulation, The rats were intrapedtoneally injected with catalpol, at a dose of 5 mg/kg, daily for 1 week, Results showed that the number of neuronal synapses in the motor cortex and growth associated protein 43 expression were increased following catalpol treatment, indicating that catalpol might contribute to neuroplasticity and ameliorate functional neurological deficits induced by cerebral ischemia.展开更多
Fasudil,a Rho-associated protein kinase(ROCK)inhibitor,has a protective effect on the central nervous system.In addition,environmental enrichment is a promising technique for inducing the recovery of motor impairments...Fasudil,a Rho-associated protein kinase(ROCK)inhibitor,has a protective effect on the central nervous system.In addition,environmental enrichment is a promising technique for inducing the recovery of motor impairments in ischemic stroke models.The present study aimed to explore whether environmental enrichment combined with fasudil can facilitate motor function recovery and induce cortical axonal regeneration after stroke.First,a mouse model of ischemic cerebral stroke was established by photochemical embolization of the left sensorimotor cortex.Fasudil solution(10 mg/kg per day)was injected intraperitoneally for 21 days after the photothrombotic stroke.An environmental enrichment intervention was performed on days 7-21 after the photothrombotic stroke.The results revealed that environmental enrichment combined with fasudil improved motor function,increased growth-associated protein 43 expression in the infarcted cerebral cortex,promoted axonal regeneration on the contralateral side,and downregulated ROCK,p-LIM domain kinase(LIMK)1,and p-cofilin expression.The combined intervention was superior to monotherapy.These findings suggest that environmental enrichment combined with fasudil treatment promotes motor recovery after stroke,at least partly by stimulating axonal regeneration.The underlying mechanism might involve ROCK/LIMK1/cofilin pathway regulation.This study was approved by the Institutional Animal Care and Use Committee of Fudan University,China(approval No.20160858A232)on February 24,2016.展开更多
High glucose affects primary afferent neurons in dorsal root ganglia by inhibiting neurite elongation,causing oxidative stress,and inducing neuronal apoptosis and mitochondrial dysfunction,which finally result in neur...High glucose affects primary afferent neurons in dorsal root ganglia by inhibiting neurite elongation,causing oxidative stress,and inducing neuronal apoptosis and mitochondrial dysfunction,which finally result in neuronal damage.Proanthocyanidin,a potent antioxidant,has been shown to have neuroprotective effects.Proanthocyanidin B2 is a common dimer of oligomeric proanthocyanidins.To date,no studies have reported the neuroprotective effects of proanthocyanidin B2 against high-glucose-related neurotoxicity in dorsal root ganglion neurons.In this study,10 μg/m L proanthocyanidin B2 was used to investigate its effect on 45 m M high-glucose-cultured dorsal root ganglion neurons.We observed that challenge with high levels of glucose increased neuronal reactive oxygen species and promoted apoptosis,decreased cell viability,inhibited outgrowth of neurites,and decreased growth-associated protein 43 protein and m RNA levels.Proanthocyanidin B2 administration reversed the neurotoxic effects caused by glucose challenge.Blockage of the phosphatidylinositol 3 kinase/Akt signaling pathway with 10 μM LY294002 eliminated the protective effects of proanthocyanidin B2.Therefore,proanthocyanidin B2 might be a potential novel agent for the treatment of peripheral diabetic neuropathy.展开更多
Rho kinase inhibitor fasudil hydrochloride has been shown to reduce cerebral vasospasm, to inhibit inflammation and apoptosis and to promote the recovery of neurological function. However, the effect of fasudil hydroc...Rho kinase inhibitor fasudil hydrochloride has been shown to reduce cerebral vasospasm, to inhibit inflammation and apoptosis and to promote the recovery of neurological function. However, the effect of fasudil hydrochloride on claudin-5 protein expression has not been reported after cerebral ischemia/reperfusion. Therefore, this study sought to explore the effects of fasudil hydrochloride on blood-brain barrier permeability, growth-associated protein-43 and claudin-5 protein expression, and to further understand the neuroprotective effect of fasudil hydrochloride. A focal cerebral ischemia/reperfusion model was established using the intraluminal suture technique. Fasudil hydrochloride (15 mg/kg) was intraperitoneally injected once a day. Neurological deficit was evaluated using Longa's method. Changes in permeability of blood-brain barrier were measured using Evans blue. Changes in RhoA, growth-associated protein-43 and claudin-5 protein expression were detected using immunohistochemistry and western blotting. Results revealed that fasudil hydrochloride noticeably contributed to the recovery of neurological function, improved the function of blood-brain barrier, inhibited RhoA protein expression, and upregulated growth-associated protein-43 and claudin-5 protein expression following cerebral ischemia/reperfusion. Results indicated that Rho kinase exhibits a certain effect on neurovascular damage following cerebral ischemia/reperfusion. Intervention targeted Rho kinase might be a new therapeutic target in the treatment of cerebral ischemia/reperfusion.展开更多
Rapamycin, similar to FKS06, can promote neural regeneration in vitro. We assumed that the mechanisms of action of rapamycin and FK506 in promoting peripheral nerve regeneration were similar. This study compared the e...Rapamycin, similar to FKS06, can promote neural regeneration in vitro. We assumed that the mechanisms of action of rapamycin and FK506 in promoting peripheral nerve regeneration were similar. This study compared the effects of different concentrations of raparnycin and FK506 on Sc hwann cells and investigated effects and mechanisms of rapamycin on improving peripheral nerve regeneration. Results demonstrated that the lowest rapamycin concentration (1.53 nmol/L) more significantly promoted Schwann cell migration than the highest FK506 concentration (100μmol/L). Rapamycin promoted the secretion of nerve growth factors and upregulated growth-associated protein 43 expression in Schwann cells, but did not significantly affect Schwann cell proliferation. Therefore, rapamycin has potential application in peripheral nerve regeneration therapy.展开更多
Glial cell line-derived neurotrophic factor recombinant adenovirus vector-transfected bone marrow mesenchymal stem cells were induced to differentiate into neuron-like cells using inductive medium containing retinoic ...Glial cell line-derived neurotrophic factor recombinant adenovirus vector-transfected bone marrow mesenchymal stem cells were induced to differentiate into neuron-like cells using inductive medium containing retinoic acid and epidermal growth factor. Cell viability, micro- tubule-associated protein 2-positive cell ratio, and the expression levels of glial cell line-derived neurotrophic factor, nerve growth factor and growth-associated protein-43 protein in the su- pernatant were significantly higher in glial cell line-derived neurotrophic factor/bone marrow mesenchymal stem cells compared with empty virus plasmid-transfected bone marrow mes- enchymal stem cells. Furthermore, microtubule-associated protein 2, glial cell line-derived neurotrophic factor, nerve growth factor and growth-associated protein743 mRNA levels in cell pellets were statistically higher in glial cell line-derived neurotrophic factor/bone marrow mesen- chymal stem cells compared with empty virus plasmid-transfected bone marrow mesenchymal stem cells. These results suggest that glial cell line-derived neurotrophic factor/bone marrow mesenchymal stem cells have a higher rate of induction into neuron-like cells, and this enhanced differentiation into neuron-like cells may be associated with up-regulated expression of glial cell line-derived neurotrophic factor, nerve growth factor and growth-associated protein-43.展开更多
A large body of evidence shows that spinal circuits are significantly affected by training, and that intrinsic circuits that drive locomotor tasks are located in lumbosacral spinal segments in rats with complete spina...A large body of evidence shows that spinal circuits are significantly affected by training, and that intrinsic circuits that drive locomotor tasks are located in lumbosacral spinal segments in rats with complete spinal cord transection. However, after incomplete lesions, the effect of treadmil training has been debated, which is likely because of the difficulty of separating spontaneous stepping from specific training-induced effects. In this study, rats with moderate spinal cord contusion were sub-jected to either step training on a treadmil or used in the model (control) group. The treadmil training began at day 7 post-injury and lasted 20 ± 10 minutes per day, 5 days per week for 10 weeks. The speed of the treadmil was set to 3 m/min and was increased on a daily basis according to the tolerance of each rat. After 3 weeks of step training, the step training group exhibited a sig-nificantly greater improvement in the Basso, Beattie and Bresnahan score than the model group. The expression of growth-associated protein-43 in the spinal cord lesion site and the number of tyrosine hydroxylase-positive ventral neurons in the second lumbar spinal segment were greater in the step training group than in the model group at 11 weeks post-injury, while the levels of brain-derived neurotrophic factor protein in the spinal cord lesion site showed no difference between the two groups. These results suggest that treadmil training significantly improves functional re-covery and neural plasticity after incomplete spinal cord injury.展开更多
Puerarin is a natural isoflavone isolated from plants of the genus Pueraria and functions as a protector against cerebral ischemia. We hypothesized that puerarin can be involved in the repair of peripheral nerve injur...Puerarin is a natural isoflavone isolated from plants of the genus Pueraria and functions as a protector against cerebral ischemia. We hypothesized that puerarin can be involved in the repair of peripheral nerve injuries. To test this hypothesis, doses of 10, 5, or 2.5 mg/kg per day puer- arin (8-(β-D-Glucopyranosyl-7-hydroxy-3-(4-hydroxyphenyl)-4H-l-benzopyran-4-one) were injected intraperitoneally into mouse models of sciatic nerve injury. Puerarin at the middle and high doses significantly up-regulated the expression of growth-associated protein 43 in the L4_6 segments of the spinal cord from mice at 1, 2, and 4 weeks after modeling, and reduced the atro- phy of the triceps surae on the affected side and promoted the regeneration of nerve fibers of the damaged spinal cord at 8 weeks after injury. We conclude that puerarin exerts an ongoing role to activate growth-associated protein 43 in the corresponding segment of the spinal cord after sciat- ic nerve injury, thus contributing to neural regeneration after sciatic nerve injuries.展开更多
AIM: To explore the effect of the Notch signaling pathway on retinal ganglion cells(RGCs) and optic nerve in rats with acute ocular hypertension(OH).METHODS: Totally 48 Sprague-Dawley(SD) rats were included, a...AIM: To explore the effect of the Notch signaling pathway on retinal ganglion cells(RGCs) and optic nerve in rats with acute ocular hypertension(OH).METHODS: Totally 48 Sprague-Dawley(SD) rats were included, among which 36 rats were selected to establish acute OH models. OH rats received a single intravitreal injection of 2 μL phosphate buffered solution(PBS) and another group of OH rats received a single intravitreal injection of 10 μmol/L γ-secretase inhibitor(DAPT). Quantitative real-time polymerase chain reaction(qPCR) and Western blot assay were adopted to determine the mRNA level of Notch and the protein levels of Notch, Bcl-2, Bax, caspase-3, and growth-associated protein 43(GAP-43). The RGC apoptosis conditions were assessed by TUNEL staining.RESULTS: The OH rats and PBS-injected rats had increased expression levels of Notch1, Bax, caspase-3, and GAP-43, decreased expression levels of Bcl-2, and increased RGC apoptosis, with severer macular edema and RGCs more loosely aligned, when compared with the normal rats. The DAPT-treated rats displayed increased expression levels of Notch1, Bax, caspase-3, and GAP-43, decreased expression levels of Bcl-2, and increased RGC apoptosis, in comparison with the OH rats and PBSinjected rats. RGCs were hardly observed and macular edema became severe in the DAPT-treated rat.CONCLUSION: The Notch signaling pathway may suppress the apoptosis of retinal ganglion cells and enhances the regeneration of the damaged optic nerves in rats with acute OH.展开更多
基金financed by the Spanish"Plan Nacional de Investigación Cientifica,Desorrollo e Innovación Tecnológica,Ministerio de Economíay Competitividod(Instituto de Solud CarlosⅢ)",grant Nos:FIS PI17-0393,FIS PI20-0318co-financed by the"Fondo Europeo de Desorrollo Regional ERDF-FEDER European Union",grant No.P18-RT-5059+2 种基金by"Plan Andaluz de Investigación,Desarrollo e Innovación(PAIDI 2020)Consejerio de Transformoción Económico,Industria,Conocimiento y Universidades,Junta de Andolucío,Espa?a",and grant No.A-CTS-498-UGR18by"Programa Operotivo FEDER Andalucía 2014-2020,Universidod de Granada,Junta de Andalucía,Espa?a",ca-funded by ERDF-FEDER,the European Union(all to VC)。
文摘Growth-associated protein 43 plays a key role in neurite outgrowth through cytoskeleton remodeling.We have previously demonstrated that structural damage of peripheral nerves induces growth-associated protein 43 upregulation to promote growth cone formation.Conversely,the limited regenerative capacity of the central nervous system due to an inhibitory environment prevents major changes in neurite outgrowth and should be presumably associated with low levels of growth-associated protein 43 expression.However,central alterations due to peripheral nerve damage have never been assessed using the growthassociated protein 43 marker.In this study,we used the tubulization technique to repair 1 cm-long nerve gaps in the rat nerve injury/repair model and detected growth-associated protein 43 expression in the peripheral and central nervous systems.First,histological analysis of the regeneration process confirmed an active regeneration process of the nerve gaps through the conduit from 10 days onwards.The growth-associated protein 43 expression profile varied across regions and follow-up times,from a localized expression to an abundant and consistent expression throughout the regeneration tissue,confirming the presence of an active nerve regeneration process.Second,spinal cord changes were also histologically assessed,and no apparent changes in the structural and cellular organization were observed using routine staining methods.Surprisingly,remarkable differences and local changes appeared in growth-associated protein 43 expression at the spinal cord level,in particular at 20 days post-repair and beyond.Growth-associated protein 43 protein was first localized in the gracile fasciculus and was homogeneously distributed in the left posterior cord.These findings differed from the growth-associated protein 43 pattern observed in the healthy control,which did not express growth-associated protein 43 at these levels.Our results revealed a differential expression in growth-associated protein 43 protein not only in the regenerating nerve tissue but also in the spinal cord after peripheral nerve transection.These findings open the possibility of using this marker to monitor changes in the central nervous system after peripheral nerve injury.
文摘BACKGROUND: Transplantation of bone marrow-derived mesenchymal stem cells (BMSCs) improves motor functional recovery, but the mechanisms remain unclear. OBJECTIVE: To investigate expression of growth-associated protein 43 (GAP-43) and neural cell adhesion molecule following BMSC transplantation to the lateral ventricle in rats with acute focal cerebral ischemic brain damage. DESIGN, TIME AND SETTING: A randomized, controlled, animal experiment using immunohistochemistry was performed at the laboratories of Department of Neurology, Renmin Hospital of Wuhan University and Doctoral Scientific Research Work Station of C-BONS PHARMA, Hubei Province, China, from January 2007 to December 2008. MATERIALS: Monoclonal mouse anti-rat 5-bromo-2-deoxyuridine and neural cell adhesion molecule antibodies were purchased from Sigma, USA; monoclonal mouse anti-rat GAP-43 antibody was purchased from Wuhan Boster, China. METHODS: Rat models of right middle cerebral artery occlusion were established using the thread method. At 1 day after middle cerebral artery occlusion, 20μL culture solution, containing 5×10^5 BMSCs, was transplanted to the left lateral ventricle using micro-injection. MAIN OUTCOME MEASURES: Scores of neurological impairment were measured to assess neural function. Expression of GAP-43 and neural cell adhesion molecule at the lesion areas was examined by immunohistochemistry. RESULTS: GAP-43 and neural cell adhesion molecule expression was low in brain tissues of the sham-operated group, but expression increased at the ischemic boundary (P 〈 0.05). Transplantation of BMSCs further enhanced expression of GAP-43 and neural cell adhesion molecule (P 〈 0.05) and remarkably improved neurological impairment of ischemic rats (P 〈 0.05). CONCLUSION: BMSC transplantation promoted neurological recovery in rats by upregulating expression of GAP-43 and neural cell adhesion molecule.
基金supported by a grant from Guangzhou Medical University in China,No. 2010-2012
文摘In our previous study, we reported that prenatal restraint stress could induce cognitive deficits, which correlated with a change in expression of growth-associated protein 43 in the hippocampus. In this study, we investigated the effects of enriched environment on cognitive abilities in prenatally stressed rat offspring, as well as the underlying mechanisms. Reverse transcription-PCR and western blot assay results revealed that growth-associated protein 43 mRNA and protein levels were upregulated on postnatal day 15 in the prenatal restraint stress group. Growth-associated protein 43 expression was significantly lower in the prenatal restraint stress group compared with the negative control and prenatal restraint stress plus enriched environment groups on postnatal days 30 and 50. Morris water maze test demonstrated that cognitive abilities were noticeably increased in rats from the prenatal restraint stress plus enriched environment group on postnatal day 50. These results indicate that enriched environment can improve the spatial learning and memory ability of prenatally stressed offspring by upregulating growth-associated protein 43 expression.
基金Supported by the Fund of Administration of Traditional Chinese Medicine of Jilin ProvinceChina(No.20080934)
文摘The purpose of this study is to explore the expression of growth-associated protein(GAP-43) in spinal cord segments connected with injured sciatic nerve by the treatment with brazilein in mice. Unilateral sciatic nerve interruption and anastomosis were performed. Physiological saline(blank group), high dose, middle dose and low dose of brazilein were administrated intragastrically to healthy adult BALB/c mice in separate groups. L4―6 spinal segments connected with the sciatic nerve were harvested. Real-time PCR(Polymerase chain reaction) and Western blot analysis were performed to detect the expression of GAP-43 in spinal segments. Histological staining on myelin and the electrophysiology were performed to examine the sciatic nerve recovery. GAP-43 was activated in spinal cord L4―6 connected with injured sciatic nerve. In the survival time of 12 h, 24 h, 3 d, 5 d, 7 d and 14 d, GAP-43 expression in the motor neurons of spinal cord of the high dose group and that in the middle dose group were significantly higher than those on the low dose and blank groups. Myelin in the high dose group and that in the middle dose group were more mature and the potential amplitude and MNCV(motor nerve conduction velocity) in the high and middle dose groups were obviously higher than those in the low dose group and blank group. Brazilein facilitates the expression of GAP-43 in neurons in spinal cord L4―6 segments connected with injured sciatic nerve, which promotes nerve regeneration.
基金the National Natural Science Foundation of China,No. 30873230Beijing Natural Science Foundation,No. 7092014+1 种基金Scientific Research Common Program of Beijing Municipal Education Commission,No. KM2007100025015Fund-ing Project for Academic Human Resources Devel-opment in Institutions of Higher Learning Under the Jurisdiction of Beijing Mu-nicipality,No. PHR201008401
文摘Studies have demonstrated that amyloid precursor protein (APP) expression increases in multiple sclerosis tissues during acutely and chronically active stages. To determine the relationship between axonal injury and regeneration in multiple sclerosis, an animal model of experimental autoimmune encephalomyelitis was induced using different doses of myelin basic protein peptide. APP and growth-associated protein 43 (GAP-43), which is considered a specific marker of neural regeneration, were assessed by western blot analysis. Expression of APP and GAP-43, as well as the correlation between these two proteins, in brain white matter and spinal cord tissues of experimental autoimmune encephalomyelitis rats at different pathological stages was analyzed. Results showed that APP and GAP-43 expression increased during the acute stage and decreased during remission, with a positive correlation between APP and GAP-43 expression in brain white matter and spinal cord tissues. These results suggest that APP and GAP-43 could provide nutritional and protective effects on damaged neurons.
基金the grants from Guangdong Province Administration of Traditional Chinese Medicine, No.103142
文摘BACKGROUND: Experimental data indicate that human growth-associated protein 43 mRNA expression coincides with axonal growth during nerve ganglion development; while neurocan, secreted from astrocytes, can inhibit sprouting and elongation of the axonal growth cone. OBJECTIVE: To verify regulatory effects of cyclovirobuxine D (CVB-D) extracted from Chinese box branchlet on human growth-associated protein 43 (GAP-43), and neurocan expression in brain tissue of stroke-prone renovascular hypertensive (RHRSP) rats, at different time points after cerebral ischemia/reperfusion. DESIGN: Randomized grouping design and controlled animal study. SETTING: This study was performed at the Center of Guangdong Hospital of Traditional Chinese Medicine (a national key laboratory) from March 2003 to September 2006. MATERIALS: 100 healthy male Sprague-Dawley rats, aged 2 3 months and weighing 90-120 g, were selected for this study. CVB-D was provided by Nanjing Xiaoying Pharmaceutical Factory (Batch number: 307701). METHODS: The initial tip of renal arteries was clamped bilaterally for 10 weeks to establish the RHRSP model. 100 RHRSP rats were randomly divided into 4 groups: naive group (n = 10), sham surgery group (n = 10), CVB-D group (n = 40), and lesion group (n = 40). Rats in the naive group did not undergo any treatment, and cervical vessels of rats in the sham surgery group were exposed, but not blocked. The right middle cerebral artery of rats in the CVB-D group and lesion group were occluded to establish cerebral ischemia. Rats in the CVB-D group were intraperitoneally injected with CVB-D (6.48 mg/kg) every day and with saline (1.5 mL/injection) twice a day. Rats in the lesion group were intraperitoneally injected with saline (2 mL/injection). MAIN OUTCOME MEASURES: Immunohistochemistry was applied to detect GAP-43 and neurocan expression in the ischemic penumbra region of CVB-D and lesion brains at 2 hours post-cerebral ischemia and at 1, 7, 14, and 30 days post-perfusion (n = 10 at each time point). Similarly, GAP-43 and neurocan expression was detected in the right hemisphere of naive and sham-operated animals. The results were expressed as positive cells. RESULTS: A total of 100 rats were included in the final analysis. The number of GAP-43 positive cells increased in the CVB-D group 1, 7, 14, and 30 days post-cerebral ischemia/perfusion compared to the lesion group, as indicated by a significant difference between the CVB-D and lesion group (P 〈 0.054).01). The number of neurocan-positive cells decreased in the CVB-D group on the first day compared to the model group; however, there was no significant difference between the two groups (P 〉 0.05). On post-ischemia days 7, 14, and 30, the number of neurocan-positive cells in the CVB-D group was significantly less than in the lesion group (P 〈 0.05). Both, GAP-43 and neurocan expression was not detectable in brains of naive and sham-operated animals. CONCLUSION: CVB-D treatment up-regulated GAP-43 expression and down-regulated neurocan expression in the ischemic region of RHRSP rats.
文摘BACKGROUND: Ketamine is a noncompetitive N-methyl-D-aspartate (NMDA) receptor antagonists and plays an important role in the treatment of pain. OBJECTIVE: To analyze the preemptive analgesic effects of different doses of ketamine on growth-associated protein-43 (GAP43) expression in dorsal root ganglion in a rat model of chronic sciatic nerve constricted injury, and to study the differences between high-dose and low-dose ketamine DESIGN: Randomized controlled animal study. SETTING: Medical College of Shantou University. MATERIALS: Thirty-five adult male Sprague Dawley rats were provided by the Experimental Animal Center of Guangzhou University of Traditional Chinese Medicine. Ketamine hydrochloride injection was provided by Hengrui Pharmaceutical Co., Ltd., Jiangsu. METHODS: This study was performed at the Immunological Laboratory, Medical College of Shantou University from September to December 2006. Model of chronic sciatic nerve constricted injury: after anesthesia, the right sciatic nerve was exposed and ligated l-cm distal to the ischiadic tuberosity with a No. 3-0 cat gut suture. Grouping and intervention: 35 rats were randomly divided into 4 groups: normal control group (n = 5), chronic constriction injury (CCI) group (n = 10), low-dose ketamine group (n = 10), and high-dose ketamine group (n = 10). Rats in the normal control group did not undergo any surgery or drug intervention. Rats in the CCI group received intraperitoneal injection of saline (1 mL), and their sciatic nerves were ligated after 10 minutes. Rats in the low-dose ketamine group underwent intraperitoneal injection of ketamine (25 mg/kg) 10 minutes prior to ligation of sciatic nerve; while, rats in the high-dose ketamine group were given intraperitoneal injection of ketamine (50 mg/kg) 10 minutes prior to ligation of sciatic nerve. On the third and the seventh days after surgery, dorsal root ganglion were resected from the sciatic nerve and cut into sections. MAIN OUTCOME MEASURES: GAP-43 expression in dorsal root ganglion was detected by immunohistochemistry and image analysis system, as well as semi-quantitative analysis. RESULTS: Thirty-five Sprague Dawley rats were included in the final analysis. Qualitative analysis: GAP-43 expression in the CCI group was higher than in the normal control group. Quantitative analysis: after three post-operative days, GAP-43 expression in the CCI group was significantly higher than in the normal control group (t = 22.919, 7.319, P 〈 0.05). GAP-43 expression in the low-dose and high-dose ketamine group was significantly lower than in the CCI group (t = 11.166, 26.474, P 〈 0.05). After seven postoperative days, GAP-43 expression in the low-dose and high-dose ketamine groups was significantly lower than in the CCI group (t = 2.382, 5.016, P 〈 0.05). CONCLUSION: Preoperative administration of ketamine inhibited the increased GAP-43 expression in dorsal root ganglion during neuropathic pain.
文摘BACKGROUND: Growth-associated protein-43 (GAP-43) expression in the nervous system has been demonstrated to promote neural regeneration, neuronal growth and development, as well as synaptic reconstruction. Neurofilament 200 (NF200) expression could reflect degree of injury and repair in injured spinal axons. OBJECTIVE: To observe NF200 expression changes in a rat model of complete spinal cord injury following GAP-43 treatment and to explore the effects of GAP-43 following spinal cord injury. DESIGN, TIME AND SETTING: A randomized, controlled, animal experiment was performed at the Laboratory of Histology and Embryology of Kunming Medical University between March 2007 and October 2008. MATERIALS: GAP-43 and GAP-43 antibody were provided by Beijing Boao Biology, China; mouse anti-rat NF200 antibody was purchased from Chemicon, USA. METHODS: Female, 8-week-old, Sprague Dawley rats were randomly assigned into three groups following complete spinal cord injury, with 20 animals in each group: GAP-43 antibody, GAP-43, and model groups. In addition, each group was subdivided into four subgroups according to sampling time after modeling, Le., 3-, 5-, 9-, and 15-day groups, with 5 rats in each group. GAP-43 antibody or GAP-43 was injected into injury sites of the spinal cord, 5 μg/0.2 mL, respectively, twice daily for three consecutive days, followed by three additional days of injection, once daily. The model group did not receive any treatment following injury. MAIN OUTCOME MEASURES: NF200 expression in the damaged spinal area at different stages was detected by immunohistochemistry; lower limb motion function following injury was evaluated using the Basso, Beattie and Bresnahan (BBB) locomotor rating scale. RESULTS: NF200 expression was significantly reduced in the GAP-43 antibody group, compared with GAP-43 and model groups, at 3 and 5 days after spinal cord injury (P 〈 0.05). In addition, the model group expressed significantly less NF200 than the GAP-43 group (P 〈 0.05). BBB scores from the GAP-43 antibody and model groups were remarkably less than the GAP-43 group (P 〈 0.05). At 9 and 15 days of injury after drug withdrawal, NF200 expression was increased in the GAP-43 antibody group, and NF200 expression and BBB scores in the GAP-43 antibody and GAP-43 groups were significantly greater than in the model group (P 〈 0.05). In particular, the GAP-43 group exhibited greater BBB scores than the GAP-43 antibody group at day 9 (P 〈 0.05). CONCLUSION: GAP-43 promoted NF200 expression and recovery of lower limb function. Early administration of GAP-43 antibody produced reversible nerve inhibition, which was rapidly restored following withdrawal.
基金supported by grants from the National Nature Science Foundation of China,No.30873355,81072939,81273989,81202694the Foundation of Educational Commission of Hunan Province in China,No.11C0954
文摘The traditional Chinese medicine Buyang Huanwu Decoction has been shown to improve the neu- rological function of patients with stroke. However, the precise mechanisms underlying its effect remain poorly understood. In this study, we established a rat model of cerebral ischemia by middle cerebral artery occlusion and intragastrically administered 5 g/kg Buyang Huanwu Decoction, once per day, for 1, 7, 14 and 28 days after cerebral ischemia. Immunohistochemical staining revealed a number of cells positive for the neural stem cell marker nestin in the cerebral cortex, the subven- tricular zone and the ipsilateral hippocampal dentate gyrus in rat models of cerebral ischemia. Buyang Huanwu Decoction significantly increased the number of cells positive for 5-bromodeoxyuridine (BrdU), a cell proliferation-related marker, microtubule-associated protein-2, a marker of neuronal differentiation, and growth-associated protein 43, a marker of synaptic plasticity in the ischemic rat cerebral regions. The number of positive cells peaked at 14 and 28 days after intragastric administration of Buyang Huanwu Decoction. These findings suggest that Buyang Huanwu Decoction can promote the proliferation and differentiation of neural stem cells and en- hance synaptic plasticity in ischemic rat brain tissue.
基金supported by the National Natural Science Foundation of China,No.81672242(to YW)the Key Construction Projects of Shanghai Health and Family Planning on Weak Discipline,China,No.2015ZB0401(to YW)
文摘Cerebral ischemia activates an endogenous repair program that induces plastic changes in neurons. In this study, we investigated the effects of environmental enrichment on spatial learning and memory as well as on synaptic remodeling in a mouse model of chronic cerebral ischemia, produced by subjecting adult male C57 BL/6 mice to permanent left middle cerebral artery occlusion. Three days postoperatively, mice were randomly assigned to the environmental enrichment and standard housing groups. Mice in the standard housing group were housed and fed a standard diet. Mice in the environmental enrichment group were housed in a cage with various toys and fed a standard diet. Then, 28 days postoperatively, spatial learning and memory were tested using the Morris water maze. The expression levels of growth-associated protein 43, synaptophysin and postsynaptic density protein 95 in the hippocampus were analyzed by western blot assay. The number of synapses was evaluated by electron microscopy. In the water maze test, mice in the environmental enrichment group had a shorter escape latency, traveled markedly longer distances, spent more time in the correct quadrant(northeast zone), and had a higher frequency of crossings compared with the standard housing group. The expression levels of growth-associated protein 43, synaptophysin and postsynaptic density protein 95 were substantially upregulated in the hippocampus in the environmental enrichment group compared with the standard housing group. Furthermore, electron microscopy revealed that environmental enrichment increased the number of synapses in the hippocampal CA1 region. Collectively, these findings suggest that environmental enrichment ameliorates the spatial learning and memory impairment induced by permanent middle cerebral artery occlusion. Environmental enrichment in mice with cerebral ischemia likely promotes cognitive recovery by inducing plastic changes in synapses.
基金supported by grants from the National Natural Science Foundation of China,No.30971531,81070987
文摘Ginsenoside Rb1 has been reported to exert anti-aging and anti-neurodegenerative effects. In the present study, we investigate whether ginsenoside Rb1 is involved in neurite outgrowth and neuroprotection against damage induced by amyloid beta(25–35) in cultured hippocampal neurons, and explore the underlying mechanisms. Ginsenoside Rb1 significantly increased neurite outgrowth in hippocampal neurons, and increased the expression of phosphorylated-Akt and phosphorylated extracellular signal-regulated kinase 1/2. These effects were abrogated by API-2 and PD98059, inhibitors of the signaling proteins Akt and MEK. Additionally, cultured hippocampal neurons were exposed to amyloid beta(25–35) for 30 minutes; ginsenoside Rb1 prevented apoptosis induced by amyloid beta(25–35), and this effect was blocked by API-2 and PD98059. Furthermore, ginsenoside Rb1 significantly reversed the reduction in phosphorylated-Akt and phosphorylated extracellular signal-regulated kinase 1/2 levels induced by amyloid beta(25–35), and API-2 neutralized the effect of ginsenoside Rb1. The present results indicate that ginsenoside Rb1 enhances neurite outgrowth and protects against neurotoxicity induced by amyloid beta(25–35) via a mechanism involving Akt and extracellular signal-regulated kinase 1/2 signaling.
基金the National Natural Science Foundation of China, No. 81073084the Fundamental Research Funds for the Central Universities, No.XDJK2009C081+1 种基金the Natural Science Foundation Project of CQ CSTC, No.2010BB5127Science and Technology Innovative Capacity Construction Program of Chongqing(CSTC) No.2009CB1010
文摘The present study investigated the effects of catalpol, the main constituent of the Chinese herb Rehmannia root, on neurons following brain ischemia, A rat model of focal permanent brain ischemia was established using electrocoagulation, The rats were intrapedtoneally injected with catalpol, at a dose of 5 mg/kg, daily for 1 week, Results showed that the number of neuronal synapses in the motor cortex and growth associated protein 43 expression were increased following catalpol treatment, indicating that catalpol might contribute to neuroplasticity and ameliorate functional neurological deficits induced by cerebral ischemia.
基金This study was supported by the National Natural Science Foundation of China,Nos.81672242(to YW),81972141(to YW)Shanghai Sailing Program,No.20YF1403500(to QZ)and Shanghai Municipal Key Clinical Specialty of China,No.shslczdzk02702(to YW).
文摘Fasudil,a Rho-associated protein kinase(ROCK)inhibitor,has a protective effect on the central nervous system.In addition,environmental enrichment is a promising technique for inducing the recovery of motor impairments in ischemic stroke models.The present study aimed to explore whether environmental enrichment combined with fasudil can facilitate motor function recovery and induce cortical axonal regeneration after stroke.First,a mouse model of ischemic cerebral stroke was established by photochemical embolization of the left sensorimotor cortex.Fasudil solution(10 mg/kg per day)was injected intraperitoneally for 21 days after the photothrombotic stroke.An environmental enrichment intervention was performed on days 7-21 after the photothrombotic stroke.The results revealed that environmental enrichment combined with fasudil improved motor function,increased growth-associated protein 43 expression in the infarcted cerebral cortex,promoted axonal regeneration on the contralateral side,and downregulated ROCK,p-LIM domain kinase(LIMK)1,and p-cofilin expression.The combined intervention was superior to monotherapy.These findings suggest that environmental enrichment combined with fasudil treatment promotes motor recovery after stroke,at least partly by stimulating axonal regeneration.The underlying mechanism might involve ROCK/LIMK1/cofilin pathway regulation.This study was approved by the Institutional Animal Care and Use Committee of Fudan University,China(approval No.20160858A232)on February 24,2016.
基金supported by the National Natural Science Foundation of China,No.81501935the Shandong Provincial Natural Science Foundation of China,No.ZR2014HQ065
文摘High glucose affects primary afferent neurons in dorsal root ganglia by inhibiting neurite elongation,causing oxidative stress,and inducing neuronal apoptosis and mitochondrial dysfunction,which finally result in neuronal damage.Proanthocyanidin,a potent antioxidant,has been shown to have neuroprotective effects.Proanthocyanidin B2 is a common dimer of oligomeric proanthocyanidins.To date,no studies have reported the neuroprotective effects of proanthocyanidin B2 against high-glucose-related neurotoxicity in dorsal root ganglion neurons.In this study,10 μg/m L proanthocyanidin B2 was used to investigate its effect on 45 m M high-glucose-cultured dorsal root ganglion neurons.We observed that challenge with high levels of glucose increased neuronal reactive oxygen species and promoted apoptosis,decreased cell viability,inhibited outgrowth of neurites,and decreased growth-associated protein 43 protein and m RNA levels.Proanthocyanidin B2 administration reversed the neurotoxic effects caused by glucose challenge.Blockage of the phosphatidylinositol 3 kinase/Akt signaling pathway with 10 μM LY294002 eliminated the protective effects of proanthocyanidin B2.Therefore,proanthocyanidin B2 might be a potential novel agent for the treatment of peripheral diabetic neuropathy.
基金funded by the National Natural Science Foundation of China,No.30870855the Natural Science Foundation of Beijing,No.7082028Beijing Municipal Health System High-Level Technician Cultivation Project,No.2009-3-07
文摘Rho kinase inhibitor fasudil hydrochloride has been shown to reduce cerebral vasospasm, to inhibit inflammation and apoptosis and to promote the recovery of neurological function. However, the effect of fasudil hydrochloride on claudin-5 protein expression has not been reported after cerebral ischemia/reperfusion. Therefore, this study sought to explore the effects of fasudil hydrochloride on blood-brain barrier permeability, growth-associated protein-43 and claudin-5 protein expression, and to further understand the neuroprotective effect of fasudil hydrochloride. A focal cerebral ischemia/reperfusion model was established using the intraluminal suture technique. Fasudil hydrochloride (15 mg/kg) was intraperitoneally injected once a day. Neurological deficit was evaluated using Longa's method. Changes in permeability of blood-brain barrier were measured using Evans blue. Changes in RhoA, growth-associated protein-43 and claudin-5 protein expression were detected using immunohistochemistry and western blotting. Results revealed that fasudil hydrochloride noticeably contributed to the recovery of neurological function, improved the function of blood-brain barrier, inhibited RhoA protein expression, and upregulated growth-associated protein-43 and claudin-5 protein expression following cerebral ischemia/reperfusion. Results indicated that Rho kinase exhibits a certain effect on neurovascular damage following cerebral ischemia/reperfusion. Intervention targeted Rho kinase might be a new therapeutic target in the treatment of cerebral ischemia/reperfusion.
基金supported by the Major State Basic Research Development Program of China(973 Program),No.2011CB606205the National Natural Science Foundation of China,No.51172171 and 51103112+2 种基金the Key Project of Chinese Ministry of Education,No.313041the Natural Science Foundation of Hubei Province,No.2013CFB354the Fundamental Research Funds for the Central Universities,No.WUT:2013-IV-099
文摘Rapamycin, similar to FKS06, can promote neural regeneration in vitro. We assumed that the mechanisms of action of rapamycin and FK506 in promoting peripheral nerve regeneration were similar. This study compared the effects of different concentrations of raparnycin and FK506 on Sc hwann cells and investigated effects and mechanisms of rapamycin on improving peripheral nerve regeneration. Results demonstrated that the lowest rapamycin concentration (1.53 nmol/L) more significantly promoted Schwann cell migration than the highest FK506 concentration (100μmol/L). Rapamycin promoted the secretion of nerve growth factors and upregulated growth-associated protein 43 expression in Schwann cells, but did not significantly affect Schwann cell proliferation. Therefore, rapamycin has potential application in peripheral nerve regeneration therapy.
文摘Glial cell line-derived neurotrophic factor recombinant adenovirus vector-transfected bone marrow mesenchymal stem cells were induced to differentiate into neuron-like cells using inductive medium containing retinoic acid and epidermal growth factor. Cell viability, micro- tubule-associated protein 2-positive cell ratio, and the expression levels of glial cell line-derived neurotrophic factor, nerve growth factor and growth-associated protein-43 protein in the su- pernatant were significantly higher in glial cell line-derived neurotrophic factor/bone marrow mesenchymal stem cells compared with empty virus plasmid-transfected bone marrow mes- enchymal stem cells. Furthermore, microtubule-associated protein 2, glial cell line-derived neurotrophic factor, nerve growth factor and growth-associated protein743 mRNA levels in cell pellets were statistically higher in glial cell line-derived neurotrophic factor/bone marrow mesen- chymal stem cells compared with empty virus plasmid-transfected bone marrow mesenchymal stem cells. These results suggest that glial cell line-derived neurotrophic factor/bone marrow mesenchymal stem cells have a higher rate of induction into neuron-like cells, and this enhanced differentiation into neuron-like cells may be associated with up-regulated expression of glial cell line-derived neurotrophic factor, nerve growth factor and growth-associated protein-43.
基金sponsored by the National Natural Science Foundation of China,No.30872604,81171862
文摘A large body of evidence shows that spinal circuits are significantly affected by training, and that intrinsic circuits that drive locomotor tasks are located in lumbosacral spinal segments in rats with complete spinal cord transection. However, after incomplete lesions, the effect of treadmil training has been debated, which is likely because of the difficulty of separating spontaneous stepping from specific training-induced effects. In this study, rats with moderate spinal cord contusion were sub-jected to either step training on a treadmil or used in the model (control) group. The treadmil training began at day 7 post-injury and lasted 20 ± 10 minutes per day, 5 days per week for 10 weeks. The speed of the treadmil was set to 3 m/min and was increased on a daily basis according to the tolerance of each rat. After 3 weeks of step training, the step training group exhibited a sig-nificantly greater improvement in the Basso, Beattie and Bresnahan score than the model group. The expression of growth-associated protein-43 in the spinal cord lesion site and the number of tyrosine hydroxylase-positive ventral neurons in the second lumbar spinal segment were greater in the step training group than in the model group at 11 weeks post-injury, while the levels of brain-derived neurotrophic factor protein in the spinal cord lesion site showed no difference between the two groups. These results suggest that treadmil training significantly improves functional re-covery and neural plasticity after incomplete spinal cord injury.
基金supported by the National Natural Science Foundation of China,No.81250016
文摘Puerarin is a natural isoflavone isolated from plants of the genus Pueraria and functions as a protector against cerebral ischemia. We hypothesized that puerarin can be involved in the repair of peripheral nerve injuries. To test this hypothesis, doses of 10, 5, or 2.5 mg/kg per day puer- arin (8-(β-D-Glucopyranosyl-7-hydroxy-3-(4-hydroxyphenyl)-4H-l-benzopyran-4-one) were injected intraperitoneally into mouse models of sciatic nerve injury. Puerarin at the middle and high doses significantly up-regulated the expression of growth-associated protein 43 in the L4_6 segments of the spinal cord from mice at 1, 2, and 4 weeks after modeling, and reduced the atro- phy of the triceps surae on the affected side and promoted the regeneration of nerve fibers of the damaged spinal cord at 8 weeks after injury. We conclude that puerarin exerts an ongoing role to activate growth-associated protein 43 in the corresponding segment of the spinal cord after sciat- ic nerve injury, thus contributing to neural regeneration after sciatic nerve injuries.
基金Supported by Fund of Hainan Provincial Health Department(No.1601032037A2001)
文摘AIM: To explore the effect of the Notch signaling pathway on retinal ganglion cells(RGCs) and optic nerve in rats with acute ocular hypertension(OH).METHODS: Totally 48 Sprague-Dawley(SD) rats were included, among which 36 rats were selected to establish acute OH models. OH rats received a single intravitreal injection of 2 μL phosphate buffered solution(PBS) and another group of OH rats received a single intravitreal injection of 10 μmol/L γ-secretase inhibitor(DAPT). Quantitative real-time polymerase chain reaction(qPCR) and Western blot assay were adopted to determine the mRNA level of Notch and the protein levels of Notch, Bcl-2, Bax, caspase-3, and growth-associated protein 43(GAP-43). The RGC apoptosis conditions were assessed by TUNEL staining.RESULTS: The OH rats and PBS-injected rats had increased expression levels of Notch1, Bax, caspase-3, and GAP-43, decreased expression levels of Bcl-2, and increased RGC apoptosis, with severer macular edema and RGCs more loosely aligned, when compared with the normal rats. The DAPT-treated rats displayed increased expression levels of Notch1, Bax, caspase-3, and GAP-43, decreased expression levels of Bcl-2, and increased RGC apoptosis, in comparison with the OH rats and PBSinjected rats. RGCs were hardly observed and macular edema became severe in the DAPT-treated rat.CONCLUSION: The Notch signaling pathway may suppress the apoptosis of retinal ganglion cells and enhances the regeneration of the damaged optic nerves in rats with acute OH.