In order to break through the limitationof thelatitude/longitudegrid and hexagon grid, a new subdivision unit, Half-honeycomb Trapezoid, is proposed. Based on the summarization of the geometric properties and subdivis...In order to break through the limitationof thelatitude/longitudegrid and hexagon grid, a new subdivision unit, Half-honeycomb Trapezoid, is proposed. Based on the summarization of the geometric properties and subdivision performance of Half-honeycomb Trapezoid, a new discrete global topographic grid system is established, and its compatibility with hexagonal grid is analyzed. At last, the visualization of multi-resolution global grid is achieved.展开更多
Compression ratio is significant for cellular structures on energy absorption. In the present work, theoretical formulas to determine the initial densification strain of honeycomb structure were put forward by means o...Compression ratio is significant for cellular structures on energy absorption. In the present work, theoretical formulas to determine the initial densification strain of honeycomb structure were put forward by means of minimum energy principle. Detailed densification strain points were identified, with full fold model for kinds of specimens. To validate, corresponding numerical simulations were carried out with explicit finite element method. Excellent agreement in terms of initial densification stain point has been observed between the theoretical calculation and numerical simulation. The results show that: (1) a different honeycomb structure has different initial densification strain point, and its geometric configuration of cells plays an evident role on densification; (2) half-wave length of the wrinkle of honeycomb in folding process significantly influences on the densification strain point; (3) the initial densification point is an decreasing power function of the ratio of foil thickness to cell length, with the exponent 2/3. These achievements provide important references for design in cellular energy absorption devices.展开更多
基金Supported by Key Scientific and Technological Project of Anhui Province(No.1401b042009)Provincal Natural Science Foundation of the Higher Education Institutions of Anhui(No.KJ2014ZD27)
文摘In order to break through the limitationof thelatitude/longitudegrid and hexagon grid, a new subdivision unit, Half-honeycomb Trapezoid, is proposed. Based on the summarization of the geometric properties and subdivision performance of Half-honeycomb Trapezoid, a new discrete global topographic grid system is established, and its compatibility with hexagonal grid is analyzed. At last, the visualization of multi-resolution global grid is achieved.
基金Project(51505502)supported by the National Natural Science Foundation of ChinaProject(2015BAG13B01)supported by the National Key Technology Support Program,China+1 种基金Project(ZZYJKT2017-09)supported by the State Key Laboratory of High Performance Complex Manufacturing,ChinaProject supported by the Open End Fund for the Valuable and Precision Instrument of Central Sonth University,China
文摘Compression ratio is significant for cellular structures on energy absorption. In the present work, theoretical formulas to determine the initial densification strain of honeycomb structure were put forward by means of minimum energy principle. Detailed densification strain points were identified, with full fold model for kinds of specimens. To validate, corresponding numerical simulations were carried out with explicit finite element method. Excellent agreement in terms of initial densification stain point has been observed between the theoretical calculation and numerical simulation. The results show that: (1) a different honeycomb structure has different initial densification strain point, and its geometric configuration of cells plays an evident role on densification; (2) half-wave length of the wrinkle of honeycomb in folding process significantly influences on the densification strain point; (3) the initial densification point is an decreasing power function of the ratio of foil thickness to cell length, with the exponent 2/3. These achievements provide important references for design in cellular energy absorption devices.