期刊文献+
共找到1,057篇文章
< 1 2 53 >
每页显示 20 50 100
An Improved Harris Hawk Optimization Algorithm for Flexible Job Shop Scheduling Problem
1
作者 Zhaolin Lv Yuexia Zhao +2 位作者 Hongyue Kang Zhenyu Gao Yuhang Qin 《Computers, Materials & Continua》 SCIE EI 2024年第2期2337-2360,共24页
Flexible job shop scheduling problem(FJSP)is the core decision-making problem of intelligent manufacturing production management.The Harris hawk optimization(HHO)algorithm,as a typical metaheuristic algorithm,has been... Flexible job shop scheduling problem(FJSP)is the core decision-making problem of intelligent manufacturing production management.The Harris hawk optimization(HHO)algorithm,as a typical metaheuristic algorithm,has been widely employed to solve scheduling problems.However,HHO suffers from premature convergence when solving NP-hard problems.Therefore,this paper proposes an improved HHO algorithm(GNHHO)to solve the FJSP.GNHHO introduces an elitism strategy,a chaotic mechanism,a nonlinear escaping energy update strategy,and a Gaussian random walk strategy to prevent premature convergence.A flexible job shop scheduling model is constructed,and the static and dynamic FJSP is investigated to minimize the makespan.This paper chooses a two-segment encoding mode based on the job and the machine of the FJSP.To verify the effectiveness of GNHHO,this study tests it in 23 benchmark functions,10 standard job shop scheduling problems(JSPs),and 5 standard FJSPs.Besides,this study collects data from an agricultural company and uses the GNHHO algorithm to optimize the company’s FJSP.The optimized scheduling scheme demonstrates significant improvements in makespan,with an advancement of 28.16%for static scheduling and 35.63%for dynamic scheduling.Moreover,it achieves an average increase of 21.50%in the on-time order delivery rate.The results demonstrate that the performance of the GNHHO algorithm in solving FJSP is superior to some existing algorithms. 展开更多
关键词 Flexible job shop scheduling improved Harris hawk optimization algorithm(GNHHO) premature convergence maximum completion time(makespan)
下载PDF
The Hawking Hubble Temperature as the Minimum Temperature, the Planck Temperature as the Maximum Temperature, and the CMB Temperature as Their Geometric Mean Temperature
2
作者 Espen Gaarder Haug Eugene Terry Tatum 《Journal of Applied Mathematics and Physics》 2024年第10期3328-3348,共21页
Using a rigorous mathematical approach, we demonstrate how the Cosmic Microwave Background (CMB) temperature could simply be a form of geometric mean temperature between the minimum time-dependent Hawking Hubble tempe... Using a rigorous mathematical approach, we demonstrate how the Cosmic Microwave Background (CMB) temperature could simply be a form of geometric mean temperature between the minimum time-dependent Hawking Hubble temperature and the maximum Planck temperature of the expanding universe over the course of cosmic time. This mathematical discovery suggests a re-consideration of Rh=ctcosmological models, including black hole cosmological models, even if it possibly could also be consistent with the Λ-CDM model. Most importantly, this paper contributes to the growing literature in the past year asserting a tightly constrained mathematical relationship between the CMB temperature, the Hubble constant, and other global parameters of the Hubble sphere. Our approach suggests a solid theoretical framework for predicting and understanding the CMB temperature rather than solely observing it.1. 展开更多
关键词 hawking Temperature Planck Temperature CMB Temperature Geometric Mean Compton Wavelength Hubble Sphere Cosmological Models
下载PDF
Bayesian Classifier Based on Robust Kernel Density Estimation and Harris Hawks Optimisation
3
作者 Bi Iritie A-D Boli Chenghao Wei 《International Journal of Internet and Distributed Systems》 2024年第1期1-23,共23页
In real-world applications, datasets frequently contain outliers, which can hinder the generalization ability of machine learning models. Bayesian classifiers, a popular supervised learning method, rely on accurate pr... In real-world applications, datasets frequently contain outliers, which can hinder the generalization ability of machine learning models. Bayesian classifiers, a popular supervised learning method, rely on accurate probability density estimation for classifying continuous datasets. However, achieving precise density estimation with datasets containing outliers poses a significant challenge. This paper introduces a Bayesian classifier that utilizes optimized robust kernel density estimation to address this issue. Our proposed method enhances the accuracy of probability density distribution estimation by mitigating the impact of outliers on the training sample’s estimated distribution. Unlike the conventional kernel density estimator, our robust estimator can be seen as a weighted kernel mapping summary for each sample. This kernel mapping performs the inner product in the Hilbert space, allowing the kernel density estimation to be considered the average of the samples’ mapping in the Hilbert space using a reproducing kernel. M-estimation techniques are used to obtain accurate mean values and solve the weights. Meanwhile, complete cross-validation is used as the objective function to search for the optimal bandwidth, which impacts the estimator. The Harris Hawks Optimisation optimizes the objective function to improve the estimation accuracy. The experimental results show that it outperforms other optimization algorithms regarding convergence speed and objective function value during the bandwidth search. The optimal robust kernel density estimator achieves better fitness performance than the traditional kernel density estimator when the training data contains outliers. The Naïve Bayesian with optimal robust kernel density estimation improves the generalization in the classification with outliers. 展开更多
关键词 CLASSIFICATION Robust Kernel Density Estimation M-ESTIMATION Harris hawks Optimisation Algorithm Complete Cross-Validation
下载PDF
An Improved Harris Hawk Optimization Algorithm
4
作者 GuangYa Chong Yongliang YUAN 《Mechanical Engineering Science》 2024年第1期21-25,共5页
Aiming at the problems that the original Harris Hawk optimization algorithm is easy to fall into local optimum and slow in finding the optimum,this paper proposes an improved Harris Hawk optimization algorithm(GHHO).F... Aiming at the problems that the original Harris Hawk optimization algorithm is easy to fall into local optimum and slow in finding the optimum,this paper proposes an improved Harris Hawk optimization algorithm(GHHO).Firstly,we used a Gaussian chaotic mapping strategy to initialize the positions of individuals in the population,which enriches the initial individual species characteristics.Secondly,by optimizing the energy parameter and introducing the cosine strategy,the algorithm's ability to jump out of the local optimum is enhanced,which improves the performance of the algorithm.Finally,comparison experiments with other intelligent algorithms were conducted on 13 classical test function sets.The results show that GHHO has better performance in all aspects compared to other optimization algorithms.The improved algorithm is more suitable for generalization to real optimization problems. 展开更多
关键词 Harris hawk optimization algorithm chaotic mapping cosine strategy function optimization
下载PDF
基于Hawkes过程的车联网协同缓存及资源分配 被引量:1
5
作者 孙艳华 邢玉萍 +2 位作者 乔兰 王朱伟 张延华 《北京工业大学学报》 CAS CSCD 北大核心 2023年第1期11-19,共9页
随着网络流量呈指数级增长,能够访问多媒体内容的智能汽车也面临巨大的流量压力,为此提出了一种基于Hawkes过程更新内容流行度的车联网协同缓存及资源分配框架.研究了在路边单元和智能车辆中的协同缓存及资源分配策略,同时,考虑到内容... 随着网络流量呈指数级增长,能够访问多媒体内容的智能汽车也面临巨大的流量压力,为此提出了一种基于Hawkes过程更新内容流行度的车联网协同缓存及资源分配框架.研究了在路边单元和智能车辆中的协同缓存及资源分配策略,同时,考虑到内容缓存的更新周期远大于信道条件的变化周期,提出了双时间尺度模型.首先,使用基于Hawkes过程的方法,考虑内容请求的新鲜度和时效性,根据历史内容请求记录更新流行度;然后,对路边单元和车辆协作缓存策略的数据传输吞吐量和缓存能耗进行建模,以最大化边缘设备的缓存效益为目标,并利用深度强化学习求解优化问题.仿真结果表明,所提出策略相比其他策略可以得到更高的效益. 展开更多
关键词 车联网 多接入边缘计算 资源分配 深度强化学习 hawkes过程 边缘缓存
下载PDF
利用Hawkes过程模型的移动边缘计算服务质量预测
6
作者 李媛媛 付晓东 +2 位作者 刘骊 刘利军 彭玮 《小型微型计算机系统》 CSCD 北大核心 2023年第7期1571-1577,共7页
移动边缘计算为用户提供高性能、低延时、高带宽的网络服务.在移动边缘计算环境中,服务质量预测对提高用户的满意度具有重要作用.目标用户的相似用户在历史时刻使用该边缘服务器访问服务的服务质量高,对目标用户访问该边缘服务器有激励... 移动边缘计算为用户提供高性能、低延时、高带宽的网络服务.在移动边缘计算环境中,服务质量预测对提高用户的满意度具有重要作用.目标用户的相似用户在历史时刻使用该边缘服务器访问服务的服务质量高,对目标用户访问该边缘服务器有激励作用,并且使用该边缘服务器服务质量高的相似用户越多,起到的激励作用也会累加.考虑到激励作用可以提高服务质量预测准确性,本文提出基于Hawkes过程模型的移动边缘计算服务质量预测方法.方法首先确定目标用户的相似用户,再提取相似用户在边缘服务器上的服务质量数据,使用最大似然估计方法训练Hawkes过程模型,得到训练后的各参数值,最后使用Hawkes过程模型对目标用户使用附近边缘服务器服务质量高的概率进行预测,得到概率最高的边缘服务器,以提高用户的满意度.与现有方法的对比实验表明,本文所提出的方法对移动边缘服务环境中未知QoS的预测更为准确. 展开更多
关键词 移动边缘计算 QoS预测 hawkes过程模型
下载PDF
Hawk‐eye‐inspired perception algorithm of stereo vision for obtaining orchard 3D point cloud navigation map 被引量:1
7
作者 Zichao Zhang Jian Chen +2 位作者 Xinyu Xu Cunjia Liu Yu Han 《CAAI Transactions on Intelligence Technology》 SCIE EI 2023年第3期987-1001,共15页
The binocular stereo vision is the lowest cost sensor for obtaining 3D information.Considering the weakness of long‐distance measurement and stability,the improvement of accuracy and stability of stereo vision is urg... The binocular stereo vision is the lowest cost sensor for obtaining 3D information.Considering the weakness of long‐distance measurement and stability,the improvement of accuracy and stability of stereo vision is urgently required for application of precision agriculture.To address the challenges of stereo vision long‐distance measurement and stable perception without hardware upgrade,inspired by hawk eyes,higher resolution perception and the adaptive HDR(High Dynamic Range)were introduced in this paper.Simulating the function from physiological structure of‘deep fovea’and‘shallow fovea’of hawk eye,the higher resolution reconstruction method in this paper was aimed at ac-curacy improving.Inspired by adjustment of pupils,the adaptive HDR method was proposed for high dynamic range optimisation and stable perception.In various light conditions,compared with default stereo vision,the accuracy of proposed algorithm was improved by 28.0%evaluated by error ratio,and the stability was improved by 26.56%by disparity accuracy.For fixed distance measurement,the maximum improvement was 78.6%by standard deviation.Based on the hawk‐eye‐inspired perception algorithm,the point cloud of orchard was improved both in quality and quantity.The hawk‐eye‐inspired perception algorithm contributed great advance in binocular 3D point cloud recon-struction in orchard navigation map. 展开更多
关键词 adaptive high dynamic range binocular stereo vision hawk‐eye‐inspired perception point cloud of orchard super‐resolution generative adversarial network
下载PDF
Computing Connected Resolvability of Graphs Using Binary Enhanced Harris Hawks Optimization 被引量:1
8
作者 Basma Mohamed Linda Mohaisen Mohamed Amin 《Intelligent Automation & Soft Computing》 SCIE 2023年第5期2349-2361,共13页
In this paper,we consider the NP-hard problem offinding the minimum connected resolving set of graphs.A vertex set B of a connected graph G resolves G if every vertex of G is uniquely identified by its vector of distanc... In this paper,we consider the NP-hard problem offinding the minimum connected resolving set of graphs.A vertex set B of a connected graph G resolves G if every vertex of G is uniquely identified by its vector of distances to the ver-tices in B.A resolving set B of G is connected if the subgraph B induced by B is a nontrivial connected subgraph of G.The cardinality of the minimal resolving set is the metric dimension of G and the cardinality of minimum connected resolving set is the connected metric dimension of G.The problem is solved heuristically by a binary version of an enhanced Harris Hawk Optimization(BEHHO)algorithm.This is thefirst attempt to determine the connected resolving set heuristically.BEHHO combines classical HHO with opposition-based learning,chaotic local search and is equipped with an S-shaped transfer function to convert the contin-uous variable into a binary one.The hawks of BEHHO are binary encoded and are used to represent which one of the vertices of a graph belongs to the connected resolving set.The feasibility is enforced by repairing hawks such that an addi-tional node selected from V\B is added to B up to obtain the connected resolving set.The proposed BEHHO algorithm is compared to binary Harris Hawk Optimi-zation(BHHO),binary opposition-based learning Harris Hawk Optimization(BOHHO),binary chaotic local search Harris Hawk Optimization(BCHHO)algorithms.Computational results confirm the superiority of the BEHHO for determining connected metric dimension. 展开更多
关键词 Connected resolving set binary optimization harris hawks algorithm
下载PDF
Enhanced Harris Hawks Optimization Integrated with Coot Bird Optimization for Solving Continuous Numerical Optimization Problems
9
作者 Hao Cui Yanling Guo +4 位作者 Yaning Xiao Yangwei Wang Jian Li Yapeng Zhang Haoyu Zhang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第11期1635-1675,共41页
Harris Hawks Optimization(HHO)is a novel meta-heuristic algorithm that imitates the predation characteristics of Harris Hawk and combines Lévy flight to solve complex multidimensional problems.Nevertheless,the ba... Harris Hawks Optimization(HHO)is a novel meta-heuristic algorithm that imitates the predation characteristics of Harris Hawk and combines Lévy flight to solve complex multidimensional problems.Nevertheless,the basic HHO algorithm still has certain limitations,including the tendency to fall into the local optima and poor convergence accuracy.Coot Bird Optimization(CBO)is another new swarm-based optimization algorithm.CBO originates from the regular and irregular motion of a bird called Coot on the water’s surface.Although the framework of CBO is slightly complicated,it has outstanding exploration potential and excellent capability to avoid falling into local optimal solutions.This paper proposes a novel enhanced hybrid algorithm based on the basic HHO and CBO named Enhanced Harris Hawks Optimization Integrated with Coot Bird Optimization(EHHOCBO).EHHOCBO can provide higher-quality solutions for numerical optimization problems.It first embeds the leadership mechanism of CBO into the population initialization process of HHO.This way can take full advantage of the valuable solution information to provide a good foundation for the global search of the hybrid algorithm.Secondly,the Ensemble Mutation Strategy(EMS)is introduced to generate the mutant candidate positions for consideration,further improving the hybrid algorithm’s exploration trend and population diversity.To further reduce the likelihood of falling into the local optima and speed up the convergence,Refracted Opposition-Based Learning(ROBL)is adopted to update the current optimal solution in the swarm.Using 23 classical benchmark functions and the IEEE CEC2017 test suite,the performance of the proposed EHHOCBO is comprehensively evaluated and compared with eight other basic meta-heuristic algorithms and six improved variants.Experimental results show that EHHOCBO can achieve better solution accuracy,faster convergence speed,and a more robust ability to jump out of local optima than other advanced optimizers in most test cases.Finally,EHHOCBOis applied to address four engineering design problems.Our findings indicate that the proposed method also provides satisfactory performance regarding the convergence accuracy of the optimal global solution. 展开更多
关键词 Harris hawks optimization coot bird optimization hybrid ensemblemutation strategy refracted opposition-based learning
下载PDF
Multiobjective Economic/Environmental Dispatch Using Harris Hawks Optimization Algorithm
10
作者 T.Mahalekshmi P.Maruthupandi 《Intelligent Automation & Soft Computing》 SCIE 2023年第4期445-460,共16页
The eminence of Economic Dispatch(ED)in power systems is signifi-cantly high as it involves in scheduling the available power from various power plants with less cost by compensating equality and inequality constrictio... The eminence of Economic Dispatch(ED)in power systems is signifi-cantly high as it involves in scheduling the available power from various power plants with less cost by compensating equality and inequality constrictions.The emission of toxic gases from power plants leads to environmental imbalance and so it is highly mandatory to rectify this issues for obtaining optimal perfor-mance in the power systems.In this present study,the Economic and Emission Dispatch(EED)problems are resolved as multi objective Economic Dispatch pro-blems by using Harris Hawk’s Optimization(HHO),which is capable enough to resolve the concerned issue in a wider range.In addition,the clustering approach is employed to maintain the size of the Pareto Optimal(PO)set during each itera-tion and fuzzy based approach is employed to extricate compromise solution from the Pareto front.To meet the equality constraint effectively,a new demand-based constraint handling mechanism is adopted.This paper also includes Wind energy conversion system(WECS)in EED problem.The conventional thermal generator cost is taken into account while considering the overall cost functions of wind energy like overestimated,underestimated and proportional costs.The quality of the non-dominated solution set is measured using quality metrics such as Set Spacing(SP)and Hyper-Volume(HV)and the solutions are compared with other conventional algorithms to prove its efficiency.The present study is validated with the outcomes of various literature papers. 展开更多
关键词 Optimization harris hawks clustering technique non-dominated solution
下载PDF
Harris Hawks Optimizer with Graph Convolutional Network Based Weed Detection in Precision Agriculture
11
作者 Saud Yonbawi Sultan Alahmari +4 位作者 T.Satyanarayana Murthy Padmakar Maddala E.Laxmi Lydia Seifedine Kadry Jungeun Kim 《Computer Systems Science & Engineering》 SCIE EI 2023年第8期1533-1547,共15页
Precision agriculture includes the optimum and adequate use of resources depending on several variables that govern crop yield.Precision agriculture offers a novel solution utilizing a systematic technique for current... Precision agriculture includes the optimum and adequate use of resources depending on several variables that govern crop yield.Precision agriculture offers a novel solution utilizing a systematic technique for current agricultural problems like balancing production and environmental concerns.Weed control has become one of the significant problems in the agricultural sector.In traditional weed control,the entire field is treated uniformly by spraying the soil,a single herbicide dose,weed,and crops in the same way.For more precise farming,robots could accomplish targeted weed treatment if they could specifically find the location of the dispensable plant and identify the weed type.This may lessen by large margin utilization of agrochemicals on agricultural fields and favour sustainable agriculture.This study presents a Harris Hawks Optimizer with Graph Convolutional Network based Weed Detection(HHOGCN-WD)technique for Precision Agriculture.The HHOGCN-WD technique mainly focuses on identifying and classifying weeds for precision agriculture.For image pre-processing,the HHOGCN-WD model utilizes a bilateral normal filter(BNF)for noise removal.In addition,coupled convolutional neural network(CCNet)model is utilized to derive a set of feature vectors.To detect and classify weed,the GCN model is utilized with the HHO algorithm as a hyperparameter optimizer to improve the detection performance.The experimental results of the HHOGCN-WD technique are investigated under the benchmark dataset.The results indicate the promising performance of the presented HHOGCN-WD model over other recent approaches,with increased accuracy of 99.13%. 展开更多
关键词 Weed detection precision agriculture graph convolutional network harris hawks optimizer hyperparameter tuning
下载PDF
Fire Hawk Optimizer with Deep Learning Enabled Human Activity Recognition
12
作者 Mohammed Alonazi Mrim M.Alnfiai 《Computer Systems Science & Engineering》 SCIE EI 2023年第6期3135-3150,共16页
Human-Computer Interaction(HCI)is a sub-area within computer science focused on the study of the communication between people(users)and computers and the evaluation,implementation,and design of user interfaces for com... Human-Computer Interaction(HCI)is a sub-area within computer science focused on the study of the communication between people(users)and computers and the evaluation,implementation,and design of user interfaces for computer systems.HCI has accomplished effective incorporation of the human factors and software engineering of computing systems through the methods and concepts of cognitive science.Usability is an aspect of HCI dedicated to guar-anteeing that human–computer communication is,amongst other things,efficient,effective,and sustaining for the user.Simultaneously,Human activity recognition(HAR)aim is to identify actions from a sequence of observations on the activities of subjects and the environmental conditions.The vision-based HAR study is the basis of several applications involving health care,HCI,and video surveillance.This article develops a Fire Hawk Optimizer with Deep Learning Enabled Activ-ity Recognition(FHODL-AR)on HCI driven usability.In the presented FHODL-AR technique,the input images are investigated for the identification of different human activities.For feature extraction,a modified SqueezeNet model is intro-duced by the inclusion of few bypass connections to the SqueezeNet among Fire modules.Besides,the FHO algorithm is utilized as a hyperparameter optimization algorithm,which in turn boosts the classification performance.To detect and cate-gorize different kinds of activities,probabilistic neural network(PNN)classifier is applied.The experimental validation of the FHODL-AR technique is tested using benchmark datasets,and the outcomes reported the improvements of the FHODL-AR technique over other recent approaches. 展开更多
关键词 Activity recognition fire hawks optimizer deep learning USABILITY human computer interaction
下载PDF
Hawking Temperature and the Quantum Pressure of the Schwarzschild Black Hole
13
作者 Kapil P. Chandra 《Journal of High Energy Physics, Gravitation and Cosmology》 CAS 2023年第2期515-518,共4页
There is no term for pressure ( P∇V) in the first law of black hole thermodynamics. To address this question, we study the first law of black hole thermodynamics and derive an expression for it. We report that this pr... There is no term for pressure ( P∇V) in the first law of black hole thermodynamics. To address this question, we study the first law of black hole thermodynamics and derive an expression for it. We report that this pressure corresponds to the Hawking temperature and is inversely proportional to the quartic of the Schwarzschild radius. It implies that a lighter and smaller black hole exerts more pressure on its surrounding environment. It might shed light on the other thermodynamic aspects of the black hole. 展开更多
关键词 hawking Temperature Black Hole Thermodynamics Black Holes
下载PDF
基于PixHawk开源飞控的清洁无人机功能模块的设计
14
作者 张唯一 冉腾辉 +2 位作者 石萌 赖雅馨 毛应彪 《清洗世界》 CAS 2023年第7期56-58,共3页
高空清洁无人机在高空清洁领域具有重要的研究意义,可以解决高空外墙清洁危险性高、效率低以及成本高的问题,具有良好的社会价值。文章基于Pix Hawk开源飞控对多旋翼无人机的功能模块进行了设计,为清洁模块、飞行控制器模块和伞降模块... 高空清洁无人机在高空清洁领域具有重要的研究意义,可以解决高空外墙清洁危险性高、效率低以及成本高的问题,具有良好的社会价值。文章基于Pix Hawk开源飞控对多旋翼无人机的功能模块进行了设计,为清洁模块、飞行控制器模块和伞降模块提供了方案,在保障清洁效果的同时,提高清洁效率,降低清洁成本,促进高空清洁行业的发展。 展开更多
关键词 高空清洁 多旋翼无人机 Pix hawk飞控 功能模块
下载PDF
整体单级de-Sitter时空背景的Hawking辐射
15
作者 韩亦文 《四川师范学院学报(自然科学版)》 2002年第2期149-151,158,共4页
利用被改进后的Damour Ruffini方法研究了整体单级de Sitter黑洞在标量场的Hawing温度与时空的视界方程 ,采用Tortoise坐标变换 ,给出了Klein Gordon方程在视界附近的渐近解 ,导出了Hawking温度 ,得到了热谱 .
关键词 整体单级de-Sitter时空 hawkING辐射 黑洞 视界方程 Tortoise价值 波动方程 hawkING温度 Damour-Ruffim方法
下载PDF
Hawkes过程分支比估计——一种简单的非参数方法 被引量:4
16
作者 吴奔 张波 《统计研究》 CSSCI 北大核心 2015年第3期92-99,共8页
Hawkes自激发过程是近年来被广泛用于金融建模的一个良好模型。本文提出了一种Hawkes自激发过程的分支比的简单估计方法,该方法是对Hardiman和Bouchaud提出的均值-方差估计量的改进。在继承均值-方差估计量形式简便的优点的同时,克服其... Hawkes自激发过程是近年来被广泛用于金融建模的一个良好模型。本文提出了一种Hawkes自激发过程的分支比的简单估计方法,该方法是对Hardiman和Bouchaud提出的均值-方差估计量的改进。在继承均值-方差估计量形式简便的优点的同时,克服其参数难以选择的缺陷,减小了估计的系统性偏差。模拟结果验证了改进的效果,同时我们将该估计方法用于我国股市内生性水平的分析之中。 展开更多
关键词 hawkes过程 分支比 内生性
下载PDF
基于Hawkes过程的尾部风险溢酬分析 被引量:8
17
作者 陈淼鑫 徐亮 《管理科学学报》 CSSCI CSCD 北大核心 2019年第6期97-112,共16页
基于Hawkes过程,利用台指期权和期货数据,估计尾部风险溢酬及其两个组成部分(正跳和负跳的尾部风险溢酬),并进一步探讨其对台指收益率预测力的差异,以及与投资者情绪之间的不同关系.实证结果发现:中国台湾市场上负跳(正跳)的尾部风险溢... 基于Hawkes过程,利用台指期权和期货数据,估计尾部风险溢酬及其两个组成部分(正跳和负跳的尾部风险溢酬),并进一步探讨其对台指收益率预测力的差异,以及与投资者情绪之间的不同关系.实证结果发现:中国台湾市场上负跳(正跳)的尾部风险溢酬均值为正(负),整体的尾部风险溢酬受负跳的影响更大.负跳(正跳)的尾部风险溢酬对未来1个月~6个月的台指收益率均有(没有)显著的预测力,但整体的尾部风险溢酬对未来收益率预测的效果并不稳定.投资者情绪对正跳(负跳)的尾部风险溢酬具有显著为正(负)的解释力,但对整体的尾部风险溢酬则不具有显著的解释力. 展开更多
关键词 尾部风险溢酬 hawkes过程 跳跃 投资者情绪
下载PDF
动态球对称黑洞中Dirac粒子的Hawking辐射 被引量:1
18
作者 曹江陵 杨波 《重庆大学学报(自然科学版)》 EI CAS CSCD 北大核心 2005年第7期133-136,共4页
在动态球对称黑洞时空中求解狄拉克方程,采用了Tortoise坐标变换将狄拉克方程变成Tortoise坐标下的形式,在视界面附近化成了标准的波动方程,得到在视界面附近狄拉克粒子的Hawking辐射温度,成功地导出了Hawking热谱公式.该谱由黑洞的度... 在动态球对称黑洞时空中求解狄拉克方程,采用了Tortoise坐标变换将狄拉克方程变成Tortoise坐标下的形式,在视界面附近化成了标准的波动方程,得到在视界面附近狄拉克粒子的Hawking辐射温度,成功地导出了Hawking热谱公式.该谱由黑洞的度规分量g00和g01决定. 展开更多
关键词 狄拉克方程 hawkING辐射 黑洞 TORTOISE坐标变换
下载PDF
变加速直线运动黑洞中Dirac粒子的Hawking辐射 被引量:1
19
作者 杨波 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2007年第2期361-364,共4页
在加速直线运动时空中,采用新的Tortoise坐标变换将Dirac方程在黑洞视界面附近化成了典型的波动方程,得到在视界面附近带Dirac粒子的Hawking辐射温度,导出了Hawk-ing热辐射谱.
关键词 黑洞 DIRAC方程 hawkING辐射 Tortoise坐标
下载PDF
动态Dilaton-Maxwell黑洞中Dirac粒子的Hawking辐射 被引量:4
20
作者 沈有根 《中国科学院上海天文台年刊》 1998年第19期82-88,共7页
给出了动态Dilaton-Maxwell黑洞背景下Dirac方程的退耦与分离变量,并通过适当的变换在动态Dilaton-Maxwell黑洞的视界附近找到了静止质量不为零的Dirac方程的有物理意义的解,导出了Hawking热谱公式、辐射温度和视界面方程。从而解决... 给出了动态Dilaton-Maxwell黑洞背景下Dirac方程的退耦与分离变量,并通过适当的变换在动态Dilaton-Maxwell黑洞的视界附近找到了静止质量不为零的Dirac方程的有物理意义的解,导出了Hawking热谱公式、辐射温度和视界面方程。从而解决了Dirac粒子在DilatonMaxwell黑洞背景下Hawking蒸发的问题。 展开更多
关键词 DIRAC粒子 hawkING辐射 黑洞 热辐射 度规 量子效应
下载PDF
上一页 1 2 53 下一页 到第
使用帮助 返回顶部