期刊文献+
共找到387篇文章
< 1 2 20 >
每页显示 20 50 100
Bayesian Classifier Based on Robust Kernel Density Estimation and Harris Hawks Optimisation
1
作者 Bi Iritie A-D Boli Chenghao Wei 《International Journal of Internet and Distributed Systems》 2024年第1期1-23,共23页
In real-world applications, datasets frequently contain outliers, which can hinder the generalization ability of machine learning models. Bayesian classifiers, a popular supervised learning method, rely on accurate pr... In real-world applications, datasets frequently contain outliers, which can hinder the generalization ability of machine learning models. Bayesian classifiers, a popular supervised learning method, rely on accurate probability density estimation for classifying continuous datasets. However, achieving precise density estimation with datasets containing outliers poses a significant challenge. This paper introduces a Bayesian classifier that utilizes optimized robust kernel density estimation to address this issue. Our proposed method enhances the accuracy of probability density distribution estimation by mitigating the impact of outliers on the training sample’s estimated distribution. Unlike the conventional kernel density estimator, our robust estimator can be seen as a weighted kernel mapping summary for each sample. This kernel mapping performs the inner product in the Hilbert space, allowing the kernel density estimation to be considered the average of the samples’ mapping in the Hilbert space using a reproducing kernel. M-estimation techniques are used to obtain accurate mean values and solve the weights. Meanwhile, complete cross-validation is used as the objective function to search for the optimal bandwidth, which impacts the estimator. The Harris Hawks Optimisation optimizes the objective function to improve the estimation accuracy. The experimental results show that it outperforms other optimization algorithms regarding convergence speed and objective function value during the bandwidth search. The optimal robust kernel density estimator achieves better fitness performance than the traditional kernel density estimator when the training data contains outliers. The Naïve Bayesian with optimal robust kernel density estimation improves the generalization in the classification with outliers. 展开更多
关键词 CLASSIFICATION Robust Kernel Density Estimation M-ESTIMATION Harris hawks Optimisation Algorithm Complete Cross-Validation
下载PDF
基于Harris Hawks优化算法的介质波导滤波器优化设计 被引量:2
2
作者 舒佩文 麦健业 褚庆昕 《电波科学学报》 CSCD 北大核心 2021年第5期787-796,共10页
Harris Hawks优化(Harris Hawks optimization, HHO)算法是一种模拟鸟群合作捕食行为的新型群智能算法.介质波导滤波器是当前5G移动通信设备急需的器件,因此如何利用新型优化算法高效且精确地对介质波导滤波器进行优化设计十分重要.文... Harris Hawks优化(Harris Hawks optimization, HHO)算法是一种模拟鸟群合作捕食行为的新型群智能算法.介质波导滤波器是当前5G移动通信设备急需的器件,因此如何利用新型优化算法高效且精确地对介质波导滤波器进行优化设计十分重要.文中首先描述了HHO算法流程,并结合滤波器优化问题提出了一种通用框架;然后基于稳态假设对HHO算法的更新方程进行了理论分析,依据所导出的方程分析了算法的动态特性及收敛行为;最后利用HHO算法实现了两款介质波导滤波器的优化设计.为验证算法性能,将本文算法与三个著名的群智能算法进行比较.实验结果表明,HHO算法的收敛速度、效率和精度都明显优于目前业内主流应用的自适应差分进化算法、花粉授粉优化算法和灰狼优化算法. 展开更多
关键词 群智能优化算法 5G移动通信 Harris hawks优化(HHO)算法 滤波器优化设计 介质波导滤波器
下载PDF
Prediction of flyrock distance induced by mine blasting using a novel Harris Hawks optimization-based multi-layer perceptron neural network 被引量:13
3
作者 Bhatawdekar Ramesh Murlidhar Hoang Nguyen +4 位作者 Jamal Rostami XuanNam Bui Danial Jahed Armaghani Prashanth Ragam Edy Tonnizam Mohamad 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2021年第6期1413-1427,共15页
In mining or construction projects,for exploitation of hard rock with high strength properties,blasting is frequently applied to breaking or moving them using high explosive energy.However,use of explosives may lead t... In mining or construction projects,for exploitation of hard rock with high strength properties,blasting is frequently applied to breaking or moving them using high explosive energy.However,use of explosives may lead to the flyrock phenomenon.Flyrock can damage structures or nearby equipment in the surrounding areas and inflict harm to humans,especially workers in the working sites.Thus,prediction of flyrock is of high importance.In this investigation,examination and estimation/forecast of flyrock distance induced by blasting through the application of five artificial intelligent algorithms were carried out.One hundred and fifty-two blasting events in three open-pit granite mines in Johor,Malaysia,were monitored to collect field data.The collected data include blasting parameters and rock mass properties.Site-specific weathering index(WI),geological strength index(GSI) and rock quality designation(RQD)are rock mass properties.Multi-layer perceptron(MLP),random forest(RF),support vector machine(SVM),and hybrid models including Harris Hawks optimization-based MLP(known as HHO-MLP) and whale optimization algorithm-based MLP(known as WOA-MLP) were developed.The performance of various models was assessed through various performance indices,including a10-index,coefficient of determination(R^(2)),root mean squared error(RMSE),mean absolute percentage error(MAPE),variance accounted for(VAF),and root squared error(RSE).The a10-index values for MLP,RF,SVM,HHO-MLP and WOA-MLP are 0.953,0.933,0.937,0.991 and 0.972,respectively.R^(2) of HHO-MLP is 0.998,which achieved the best performance among all five machine learning(ML) models. 展开更多
关键词 Flyrock Harris hawks optimization(HHO) Multi-layer perceptron(MLP) Random forest(RF) Support vector machine(SVM) Whale optimization algorithm(WOA)
下载PDF
Modified Harris Hawks Optimization Based Test Case Prioritization for Software Testing 被引量:1
4
作者 Manar Ahmed Hamza Abdelzahir Abdelmaboud +5 位作者 Souad Larabi-Marie-Sainte Haya Mesfer Alshahrani Mesfer Al Duhayyim Hamza Awad Ibrahim Mohammed Rizwanullah Ishfaq Yaseen 《Computers, Materials & Continua》 SCIE EI 2022年第7期1951-1965,共15页
Generally,software testing is considered as a proficient technique to achieve improvement in quality and reliability of the software.But,the quality of test cases has a considerable influence on fault revealing capabi... Generally,software testing is considered as a proficient technique to achieve improvement in quality and reliability of the software.But,the quality of test cases has a considerable influence on fault revealing capability of software testing activity.Test Case Prioritization(TCP)remains a challenging issue since prioritizing test cases is unsatisfactory in terms of Average Percentage of Faults Detected(APFD)and time spent upon execution results.TCP ismainly intended to design a collection of test cases that can accomplish early optimization using preferred characteristics.The studies conducted earlier focused on prioritizing the available test cases in accelerating fault detection rate during software testing.In this aspect,the current study designs aModified Harris Hawks Optimization based TCP(MHHO-TCP)technique for software testing.The aim of the proposed MHHO-TCP technique is to maximize APFD and minimize the overall execution time.In addition,MHHO algorithm is designed to boost the exploration and exploitation abilities of conventional HHO algorithm.In order to validate the enhanced efficiency of MHHO-TCP technique,a wide range of simulations was conducted on different benchmark programs and the results were examined under several aspects.The experimental outcomes highlight the improved efficiency of MHHO-TCP technique over recent approaches under different measures. 展开更多
关键词 Software testing harris hawks optimization test case prioritization apfd execution time metaheuristics
下载PDF
Computing Connected Resolvability of Graphs Using Binary Enhanced Harris Hawks Optimization 被引量:1
5
作者 Basma Mohamed Linda Mohaisen Mohamed Amin 《Intelligent Automation & Soft Computing》 SCIE 2023年第5期2349-2361,共13页
In this paper,we consider the NP-hard problem offinding the minimum connected resolving set of graphs.A vertex set B of a connected graph G resolves G if every vertex of G is uniquely identified by its vector of distanc... In this paper,we consider the NP-hard problem offinding the minimum connected resolving set of graphs.A vertex set B of a connected graph G resolves G if every vertex of G is uniquely identified by its vector of distances to the ver-tices in B.A resolving set B of G is connected if the subgraph B induced by B is a nontrivial connected subgraph of G.The cardinality of the minimal resolving set is the metric dimension of G and the cardinality of minimum connected resolving set is the connected metric dimension of G.The problem is solved heuristically by a binary version of an enhanced Harris Hawk Optimization(BEHHO)algorithm.This is thefirst attempt to determine the connected resolving set heuristically.BEHHO combines classical HHO with opposition-based learning,chaotic local search and is equipped with an S-shaped transfer function to convert the contin-uous variable into a binary one.The hawks of BEHHO are binary encoded and are used to represent which one of the vertices of a graph belongs to the connected resolving set.The feasibility is enforced by repairing hawks such that an addi-tional node selected from V\B is added to B up to obtain the connected resolving set.The proposed BEHHO algorithm is compared to binary Harris Hawk Optimi-zation(BHHO),binary opposition-based learning Harris Hawk Optimization(BOHHO),binary chaotic local search Harris Hawk Optimization(BCHHO)algorithms.Computational results confirm the superiority of the BEHHO for determining connected metric dimension. 展开更多
关键词 Connected resolving set binary optimization harris hawks algorithm
下载PDF
Enhanced Harris Hawks Optimization Integrated with Coot Bird Optimization for Solving Continuous Numerical Optimization Problems
6
作者 Hao Cui Yanling Guo +4 位作者 Yaning Xiao Yangwei Wang Jian Li Yapeng Zhang Haoyu Zhang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第11期1635-1675,共41页
Harris Hawks Optimization(HHO)is a novel meta-heuristic algorithm that imitates the predation characteristics of Harris Hawk and combines Lévy flight to solve complex multidimensional problems.Nevertheless,the ba... Harris Hawks Optimization(HHO)is a novel meta-heuristic algorithm that imitates the predation characteristics of Harris Hawk and combines Lévy flight to solve complex multidimensional problems.Nevertheless,the basic HHO algorithm still has certain limitations,including the tendency to fall into the local optima and poor convergence accuracy.Coot Bird Optimization(CBO)is another new swarm-based optimization algorithm.CBO originates from the regular and irregular motion of a bird called Coot on the water’s surface.Although the framework of CBO is slightly complicated,it has outstanding exploration potential and excellent capability to avoid falling into local optimal solutions.This paper proposes a novel enhanced hybrid algorithm based on the basic HHO and CBO named Enhanced Harris Hawks Optimization Integrated with Coot Bird Optimization(EHHOCBO).EHHOCBO can provide higher-quality solutions for numerical optimization problems.It first embeds the leadership mechanism of CBO into the population initialization process of HHO.This way can take full advantage of the valuable solution information to provide a good foundation for the global search of the hybrid algorithm.Secondly,the Ensemble Mutation Strategy(EMS)is introduced to generate the mutant candidate positions for consideration,further improving the hybrid algorithm’s exploration trend and population diversity.To further reduce the likelihood of falling into the local optima and speed up the convergence,Refracted Opposition-Based Learning(ROBL)is adopted to update the current optimal solution in the swarm.Using 23 classical benchmark functions and the IEEE CEC2017 test suite,the performance of the proposed EHHOCBO is comprehensively evaluated and compared with eight other basic meta-heuristic algorithms and six improved variants.Experimental results show that EHHOCBO can achieve better solution accuracy,faster convergence speed,and a more robust ability to jump out of local optima than other advanced optimizers in most test cases.Finally,EHHOCBOis applied to address four engineering design problems.Our findings indicate that the proposed method also provides satisfactory performance regarding the convergence accuracy of the optimal global solution. 展开更多
关键词 Harris hawks optimization coot bird optimization hybrid ensemblemutation strategy refracted opposition-based learning
下载PDF
Swarming Behavior of Harris Hawks Optimizer for Arabic Opinion Mining
7
作者 Diaa Salam Abd Elminaam Nabil Neggaz +1 位作者 Ibrahim Abdulatief Ahmed Ahmed El Sawy Abouelyazed 《Computers, Materials & Continua》 SCIE EI 2021年第12期4129-4149,共21页
At present,the immense development of social networks allows generating a significant amount of textual data,which has facilitated researchers to explore the field of opinion mining.In addition,the processing of textu... At present,the immense development of social networks allows generating a significant amount of textual data,which has facilitated researchers to explore the field of opinion mining.In addition,the processing of textual opinions based on the term frequency-inverse document frequency method gives rise to a dimensionality problem.This study aims to detect the nature of opinions in the Arabic language employing a swarm intelligence(SI)-based algorithm,Harris hawks algorithm,to select the most relevant terms.The experimental study has been tested on two datasets:Arabic Jordanian General Tweets and Opinion Corpus for Arabic.In terms of accuracy and number of features,the results are better than those of other SI based algorithms,such as grey wolf optimizer and grasshopper optimization algorithm,and other algorithms in the literature,such as differential evolution,genetic algorithm,particle swarm optimization,basic and enhanced whale optimizer algorithm,slap swarm algorithm,and ant–lion optimizer. 展开更多
关键词 Arabic opinion mining Harris hawks optimizer feature selection AJGT and OCA datasets
下载PDF
Harris Hawks Optimizer with Graph Convolutional Network Based Weed Detection in Precision Agriculture
8
作者 Saud Yonbawi Sultan Alahmari +4 位作者 T.Satyanarayana Murthy Padmakar Maddala E.Laxmi Lydia Seifedine Kadry Jungeun Kim 《Computer Systems Science & Engineering》 SCIE EI 2023年第8期1533-1547,共15页
Precision agriculture includes the optimum and adequate use of resources depending on several variables that govern crop yield.Precision agriculture offers a novel solution utilizing a systematic technique for current... Precision agriculture includes the optimum and adequate use of resources depending on several variables that govern crop yield.Precision agriculture offers a novel solution utilizing a systematic technique for current agricultural problems like balancing production and environmental concerns.Weed control has become one of the significant problems in the agricultural sector.In traditional weed control,the entire field is treated uniformly by spraying the soil,a single herbicide dose,weed,and crops in the same way.For more precise farming,robots could accomplish targeted weed treatment if they could specifically find the location of the dispensable plant and identify the weed type.This may lessen by large margin utilization of agrochemicals on agricultural fields and favour sustainable agriculture.This study presents a Harris Hawks Optimizer with Graph Convolutional Network based Weed Detection(HHOGCN-WD)technique for Precision Agriculture.The HHOGCN-WD technique mainly focuses on identifying and classifying weeds for precision agriculture.For image pre-processing,the HHOGCN-WD model utilizes a bilateral normal filter(BNF)for noise removal.In addition,coupled convolutional neural network(CCNet)model is utilized to derive a set of feature vectors.To detect and classify weed,the GCN model is utilized with the HHO algorithm as a hyperparameter optimizer to improve the detection performance.The experimental results of the HHOGCN-WD technique are investigated under the benchmark dataset.The results indicate the promising performance of the presented HHOGCN-WD model over other recent approaches,with increased accuracy of 99.13%. 展开更多
关键词 Weed detection precision agriculture graph convolutional network harris hawks optimizer hyperparameter tuning
下载PDF
Multiobjective Economic/Environmental Dispatch Using Harris Hawks Optimization Algorithm
9
作者 T.Mahalekshmi P.Maruthupandi 《Intelligent Automation & Soft Computing》 SCIE 2023年第4期445-460,共16页
The eminence of Economic Dispatch(ED)in power systems is signifi-cantly high as it involves in scheduling the available power from various power plants with less cost by compensating equality and inequality constrictio... The eminence of Economic Dispatch(ED)in power systems is signifi-cantly high as it involves in scheduling the available power from various power plants with less cost by compensating equality and inequality constrictions.The emission of toxic gases from power plants leads to environmental imbalance and so it is highly mandatory to rectify this issues for obtaining optimal perfor-mance in the power systems.In this present study,the Economic and Emission Dispatch(EED)problems are resolved as multi objective Economic Dispatch pro-blems by using Harris Hawk’s Optimization(HHO),which is capable enough to resolve the concerned issue in a wider range.In addition,the clustering approach is employed to maintain the size of the Pareto Optimal(PO)set during each itera-tion and fuzzy based approach is employed to extricate compromise solution from the Pareto front.To meet the equality constraint effectively,a new demand-based constraint handling mechanism is adopted.This paper also includes Wind energy conversion system(WECS)in EED problem.The conventional thermal generator cost is taken into account while considering the overall cost functions of wind energy like overestimated,underestimated and proportional costs.The quality of the non-dominated solution set is measured using quality metrics such as Set Spacing(SP)and Hyper-Volume(HV)and the solutions are compared with other conventional algorithms to prove its efficiency.The present study is validated with the outcomes of various literature papers. 展开更多
关键词 Optimization harris hawks clustering technique non-dominated solution
下载PDF
The Liberal Hawks and the China Strategy of the Biden Administration
10
作者 Zhang Zhaoxi 《Contemporary International Relations》 2022年第6期73-94,共22页
Since the Biden administration came to power, the liberal hawks who uphold the liberal internationalist strategy have regained a significant influence on foreign affairs and national security, prioritized the repair o... Since the Biden administration came to power, the liberal hawks who uphold the liberal internationalist strategy have regained a significant influence on foreign affairs and national security, prioritized the repair of U.S. hegemony, and maintained strategic competition with China initiated by the Trump administration. When compared with the paradigm of competition of the Trump administration, the liberal hawks of the Biden administration have improved the strategic logic of competition with China and refined the relevant policy layout to render it compatible with the overall agenda of the Democratic Party. Enhancing strategic competition with China under the leadership of the liberal hawks has not been in the interests of China, the United States(U.S.), or the entire world. The healthy and stable development of China–U.S. relations requires additional rational and pragmatic policies from the side of the U.S. 展开更多
关键词 liberal hawks Biden administration China-U.S.relations strategic competition
下载PDF
Crisscross Harris Hawks Optimizer for Global Tasks and Feature Selection 被引量:1
11
作者 Xin Wang Xiaogang Dong +1 位作者 Yanan Zhang Huiling Chen 《Journal of Bionic Engineering》 SCIE EI CSCD 2023年第3期1153-1174,共22页
Harris Hawks Optimizer (HHO) is a recent well-established optimizer based on the hunting characteristics of Harris hawks, which shows excellent efficiency in solving a variety of optimization issues. However, it under... Harris Hawks Optimizer (HHO) is a recent well-established optimizer based on the hunting characteristics of Harris hawks, which shows excellent efficiency in solving a variety of optimization issues. However, it undergoes weak global search capability because of the levy distribution in its optimization process. In this paper, a variant of HHO is proposed using Crisscross Optimization Algorithm (CSO) to compensate for the shortcomings of original HHO. The novel developed optimizer called Crisscross Harris Hawks Optimizer (CCHHO), which can effectively achieve high-quality solutions with accelerated convergence on a variety of optimization tasks. In the proposed algorithm, the vertical crossover strategy of CSO is used for adjusting the exploitative ability adaptively to alleviate the local optimum;the horizontal crossover strategy of CSO is considered as an operator for boosting explorative trend;and the competitive operator is adopted to accelerate the convergence rate. The effectiveness of the proposed optimizer is evaluated using 4 kinds of benchmark functions, 3 constrained engineering optimization issues and feature selection problems on 13 datasets from the UCI repository. Comparing with nine conventional intelligence algorithms and 9 state-of-the-art algorithms, the statistical results reveal that the proposed CCHHO is significantly more effective than HHO, CSO, CCNMHHO and other competitors, and its advantage is not influenced by the increase of problems’ dimensions. Additionally, experimental results also illustrate that the proposed CCHHO outperforms some existing optimizers in working out engineering design optimization;for feature selection problems, it is superior to other feature selection methods including CCNMHHO in terms of fitness, error rate and length of selected features. 展开更多
关键词 Harris hawks optimization Bioinspired algorithm Global optimization Engineering optimization Feature selection
原文传递
Harris Hawks Algorithm Incorporating Tuna Swarm Algorithm and Differential Variance Strategy
12
作者 XU Xiaohan YANG Haima +4 位作者 ZHENG Heqing LI Jun LIU Jin ZHANG Dawei HUANG Hongxin 《Wuhan University Journal of Natural Sciences》 CAS CSCD 2023年第6期461-473,共13页
Because of the low convergence accuracy of the basic Harris Hawks algorithm,which quickly falls into the local optimal,a Harris Hawks algorithm combining tuna swarm algorithm and differential mutation strategy(TDHHO)i... Because of the low convergence accuracy of the basic Harris Hawks algorithm,which quickly falls into the local optimal,a Harris Hawks algorithm combining tuna swarm algorithm and differential mutation strategy(TDHHO)is proposed.The escape energy factor of nonlinear periodic energy decline balances the ability of global exploration and regional development.The parabolic foraging approach of the tuna swarm algorithm is introduced to enhance the global exploration ability of the algorithm and accelerate the convergence speed.The difference variation strategy is used to mutate the individual position and calculate the fitness,and the fitness of the original individual position is compared.The greedy technique is used to select the one with better fitness of the objective function,which increases the diversity of the population and improves the possibility of the algorithm jumping out of the local extreme value.The test function tests the TDHHO algorithm,and compared with other optimization algorithms,the experimental results show that the convergence speed and optimization accuracy of the improved Harris Hawks are improved.Finally,the enhanced Harris Hawks algorithm is applied to engineering optimization and wireless sensor networks(WSN)coverage optimization problems,and the feasibility of the TDHHO algorithm in practical application is further verified. 展开更多
关键词 Harris hawks optimization nonlinear periodic energy decreases differential mutation strategy wireless sensor networks(WSN)coverage optimization results
原文传递
ATLANTA HAWKS 逆水行舟
13
作者 新兵卫 《篮球俱乐部》 2010年第11期84-87,共4页
体育界有种说法叫"瓶颈",大致是一支球队长期处于一个成绩不上不下的阶段,始终不能再进一步。连续两年折戟东区半决赛的亚特兰大老鹰正处于这样一个阶段,他们为此不惜在今年夏天炒掉了功勋教练迈克·伍德森,可惜休赛期一... 体育界有种说法叫"瓶颈",大致是一支球队长期处于一个成绩不上不下的阶段,始终不能再进一步。连续两年折戟东区半决赛的亚特兰大老鹰正处于这样一个阶段,他们为此不惜在今年夏天炒掉了功勋教练迈克·伍德森,可惜休赛期一连串的操作后球队实力并没有提高,这支球队恐怕也将就此退出东区一流球队的行列。 展开更多
关键词 亚特兰大老鹰 凯尔特人 助理教练 波特兰开拓者 ATLANTA hawks 密尔沃基雄鹿 常规赛
原文传递
An Improved Harris Hawks Optimization Algorithm with Multi-strategy for Community Detection in Social Network 被引量:6
14
作者 Farhad Soleimanian Gharehchopogh 《Journal of Bionic Engineering》 SCIE EI CSCD 2023年第3期1175-1197,共23页
The purpose of community detection in complex networks is to identify the structural location of nodes. Complex network methods are usually graphical, with graph nodes representing objects and edges representing conne... The purpose of community detection in complex networks is to identify the structural location of nodes. Complex network methods are usually graphical, with graph nodes representing objects and edges representing connections between things. Communities are node clusters with many internal links but minimal intergroup connections. Although community detection has attracted much attention in social media research, most face functional weaknesses because the structure of society is unclear or the characteristics of nodes in society are not the same. Also, many existing algorithms have complex and costly calculations. This paper proposes different Harris Hawk Optimization (HHO) algorithm methods (such as Improved HHO Opposition-Based Learning(OBL) (IHHOOBL), Improved HHO Lévy Flight (IHHOLF), and Improved HHO Chaotic Map (IHHOCM)) were designed to balance exploitation and exploration in this algorithm for community detection in the social network. The proposed methods are evaluated on 12 different datasets based on NMI and modularity criteria. The findings reveal that the IHHOOBL method has better detection accuracy than IHHOLF and IHHOCM. Also, to offer the efficiency of the , state-of-the-art algorithms have been used as comparisons. The improvement percentage of IHHOOBL compared to the state-of-the-art algorithm is about 7.18%. 展开更多
关键词 Bionic algorithm Complex network Community detection Harris hawk optimization algorithm Opposition-based learning Levy flight Chaotic maps
原文传递
Enhancing Cancer Classification through a Hybrid Bio-Inspired Evolutionary Algorithm for Biomarker Gene Selection 被引量:1
15
作者 Hala AlShamlan Halah AlMazrua 《Computers, Materials & Continua》 SCIE EI 2024年第4期675-694,共20页
In this study,our aim is to address the problem of gene selection by proposing a hybrid bio-inspired evolutionary algorithm that combines Grey Wolf Optimization(GWO)with Harris Hawks Optimization(HHO)for feature selec... In this study,our aim is to address the problem of gene selection by proposing a hybrid bio-inspired evolutionary algorithm that combines Grey Wolf Optimization(GWO)with Harris Hawks Optimization(HHO)for feature selection.Themotivation for utilizingGWOandHHOstems fromtheir bio-inspired nature and their demonstrated success in optimization problems.We aimto leverage the strengths of these algorithms to enhance the effectiveness of feature selection in microarray-based cancer classification.We selected leave-one-out cross-validation(LOOCV)to evaluate the performance of both two widely used classifiers,k-nearest neighbors(KNN)and support vector machine(SVM),on high-dimensional cancer microarray data.The proposed method is extensively tested on six publicly available cancer microarray datasets,and a comprehensive comparison with recently published methods is conducted.Our hybrid algorithm demonstrates its effectiveness in improving classification performance,Surpassing alternative approaches in terms of precision.The outcomes confirm the capability of our method to substantially improve both the precision and efficiency of cancer classification,thereby advancing the development ofmore efficient treatment strategies.The proposed hybridmethod offers a promising solution to the gene selection problem in microarray-based cancer classification.It improves the accuracy and efficiency of cancer diagnosis and treatment,and its superior performance compared to other methods highlights its potential applicability in realworld cancer classification tasks.By harnessing the complementary search mechanisms of GWO and HHO,we leverage their bio-inspired behavior to identify informative genes relevant to cancer diagnosis and treatment. 展开更多
关键词 Bio-inspired algorithms BIOINFORMATICS cancer classification evolutionary algorithm feature selection gene expression grey wolf optimizer harris hawks optimization k-nearest neighbor support vector machine
下载PDF
基于跳聚集现象随机波动率短期利率模型的影响研究
16
作者 张新军 江良 +1 位作者 林琦 宋丽平 《工程数学学报》 CSCD 北大核心 2024年第1期17-38,共22页
构建了具有自我激励机制跳的随机波动率短期利率模型,应用Hawkes过程描述自我激励机制的跳,从而刻画了跳的聚集现象。基于微分算子展开给出精确的矩函数,进一步应用广义矩方法给出模型的参数估计值和统计推断。实证结果揭示了在随机波... 构建了具有自我激励机制跳的随机波动率短期利率模型,应用Hawkes过程描述自我激励机制的跳,从而刻画了跳的聚集现象。基于微分算子展开给出精确的矩函数,进一步应用广义矩方法给出模型的参数估计值和统计推断。实证结果揭示了在随机波动模型条件下,引入自我激励机制跳的模型将不会明显地改变了拟合效果,但是在统计意义上接受强度满足Hawkes过程,而且所构建的模型也能很好地刻画跳的聚集现象。最后,使用过滤方法给出随机波动率、跳的幅度、跳的概率和随机跳强度的估计,特别是跳的概率估计值可作为市场压力测试的一个重要指标。 展开更多
关键词 短期利率模型 随机波动率 跳的聚集 Hawkes过程
下载PDF
HHO optimized support vector machine classifier for traditional Chinese medicine syndrome differentiation of diabetic retinopathy
17
作者 Li Xiao Cheng-Wu Wang +4 位作者 Ying Deng Yi-Jing Yang Jing Lu Jun-Feng Yan Qing-Hua Peng 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2024年第6期991-1000,共10页
AIM:To develop a classifier for traditional Chinese medicine(TCM)syndrome differentiation of diabetic retinopathy(DR),using optimized machine learning algorithms,which can provide the basis for TCM objective and intel... AIM:To develop a classifier for traditional Chinese medicine(TCM)syndrome differentiation of diabetic retinopathy(DR),using optimized machine learning algorithms,which can provide the basis for TCM objective and intelligent syndrome differentiation.METHODS:Collated data on real-world DR cases were collected.A variety of machine learning methods were used to construct TCM syndrome classification model,and the best performance was selected as the basic model.Genetic Algorithm(GA)was used for feature selection to obtain the optimal feature combination.Harris Hawk Optimization(HHO)was used for parameter optimization,and a classification model based on feature selection and parameter optimization was constructed.The performance of the model was compared with other optimization algorithms.The models were evaluated with accuracy,precision,recall,and F1 score as indicators.RESULTS:Data on 970 cases that met screening requirements were collected.Support Vector Machine(SVM)was the best basic classification model.The accuracy rate of the model was 82.05%,the precision rate was 82.34%,the recall rate was 81.81%,and the F1 value was 81.76%.After GA screening,the optimal feature combination contained 37 feature values,which was consistent with TCM clinical practice.The model based on optimal combination and SVM(GA_SVM)had an accuracy improvement of 1.92%compared to the basic classifier.SVM model based on HHO and GA optimization(HHO_GA_SVM)had the best performance and convergence speed compared with other optimization algorithms.Compared with the basic classification model,the accuracy was improved by 3.51%.CONCLUSION:HHO and GA optimization can improve the model performance of SVM in TCM syndrome differentiation of DR.It provides a new method and research idea for TCM intelligent assisted syndrome differentiation. 展开更多
关键词 traditional Chinese medicine diabetic retinopathy Harris Hawk Optimization Support Vector Machine syndrome differentiation
下载PDF
An Improved Harris Hawk Optimization Algorithm for Flexible Job Shop Scheduling Problem
18
作者 Zhaolin Lv Yuexia Zhao +2 位作者 Hongyue Kang Zhenyu Gao Yuhang Qin 《Computers, Materials & Continua》 SCIE EI 2024年第2期2337-2360,共24页
Flexible job shop scheduling problem(FJSP)is the core decision-making problem of intelligent manufacturing production management.The Harris hawk optimization(HHO)algorithm,as a typical metaheuristic algorithm,has been... Flexible job shop scheduling problem(FJSP)is the core decision-making problem of intelligent manufacturing production management.The Harris hawk optimization(HHO)algorithm,as a typical metaheuristic algorithm,has been widely employed to solve scheduling problems.However,HHO suffers from premature convergence when solving NP-hard problems.Therefore,this paper proposes an improved HHO algorithm(GNHHO)to solve the FJSP.GNHHO introduces an elitism strategy,a chaotic mechanism,a nonlinear escaping energy update strategy,and a Gaussian random walk strategy to prevent premature convergence.A flexible job shop scheduling model is constructed,and the static and dynamic FJSP is investigated to minimize the makespan.This paper chooses a two-segment encoding mode based on the job and the machine of the FJSP.To verify the effectiveness of GNHHO,this study tests it in 23 benchmark functions,10 standard job shop scheduling problems(JSPs),and 5 standard FJSPs.Besides,this study collects data from an agricultural company and uses the GNHHO algorithm to optimize the company’s FJSP.The optimized scheduling scheme demonstrates significant improvements in makespan,with an advancement of 28.16%for static scheduling and 35.63%for dynamic scheduling.Moreover,it achieves an average increase of 21.50%in the on-time order delivery rate.The results demonstrate that the performance of the GNHHO algorithm in solving FJSP is superior to some existing algorithms. 展开更多
关键词 Flexible job shop scheduling improved Harris hawk optimization algorithm(GNHHO) premature convergence maximum completion time(makespan)
下载PDF
On a Heuristic Viewpoint Concerning the Conversion and Transformation of Sound into Light
19
作者 Alessandro Rizzo 《Journal of High Energy Physics, Gravitation and Cosmology》 CAS 2024年第1期363-385,共23页
In the study of Terrestrial Gamma-ray Flashes (TGFs) and Sonoluminescence, we observe parallels with larger cosmic events. Specifically, sonoluminescence involves the rapid collapse of bubbles, which closely resembles... In the study of Terrestrial Gamma-ray Flashes (TGFs) and Sonoluminescence, we observe parallels with larger cosmic events. Specifically, sonoluminescence involves the rapid collapse of bubbles, which closely resembles gravitational collapse in space. This observation suggests the potential formation of low-density quantum black holes. These entities, which might be related to dark matter, are thought to experience a kind of transient evaporation similar to Hawking radiation seen in cosmic black holes. Consequently, sonoluminescence could be a valuable tool for investigating phenomena typically linked to cosmic scale events. Furthermore, the role of the Higgs boson is considered in this context, possibly connecting it to both TGFs and sonoluminescence. This research could enhance our understanding of the quantum mechanics of black holes and their relation to dark matter on Earth. 展开更多
关键词 Planck Mass Gravity LIGHT PHONONS Phononic Field Vacuum Hydrodynamics SONOLUMINESCENCE Hawking Radiation Quantum Black Holes Theory of General Singularity
下载PDF
The Hawking Hubble Temperature as the Minimum Temperature, the Planck Temperature as the Maximum Temperature, and the CMB Temperature as Their Geometric Mean Temperature
20
作者 Espen Gaarder Haug Eugene Terry Tatum 《Journal of Applied Mathematics and Physics》 2024年第10期3328-3348,共21页
Using a rigorous mathematical approach, we demonstrate how the Cosmic Microwave Background (CMB) temperature could simply be a form of geometric mean temperature between the minimum time-dependent Hawking Hubble tempe... Using a rigorous mathematical approach, we demonstrate how the Cosmic Microwave Background (CMB) temperature could simply be a form of geometric mean temperature between the minimum time-dependent Hawking Hubble temperature and the maximum Planck temperature of the expanding universe over the course of cosmic time. This mathematical discovery suggests a re-consideration of Rh=ctcosmological models, including black hole cosmological models, even if it possibly could also be consistent with the Λ-CDM model. Most importantly, this paper contributes to the growing literature in the past year asserting a tightly constrained mathematical relationship between the CMB temperature, the Hubble constant, and other global parameters of the Hubble sphere. Our approach suggests a solid theoretical framework for predicting and understanding the CMB temperature rather than solely observing it.1. 展开更多
关键词 Hawking Temperature Planck Temperature CMB Temperature Geometric Mean Compton Wavelength Hubble Sphere Cosmological Models
下载PDF
上一页 1 2 20 下一页 到第
使用帮助 返回顶部