期刊文献+
共找到16,919篇文章
< 1 2 250 >
每页显示 20 50 100
Recent Advancements in the Development of Self Healing Concrete-A Systematic Review
1
作者 A Ravi Theja M Srinivasula Reddy +1 位作者 Bharat Bhushan Jindal C Sashidhar 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第6期1449-1460,共12页
Mechanical as well as durability properties are pivotal for any type of concrete which gets adversely affected due to cracks that may form due to loading beyond its capacity.Concrete has the intrinsic property to heal... Mechanical as well as durability properties are pivotal for any type of concrete which gets adversely affected due to cracks that may form due to loading beyond its capacity.Concrete has the intrinsic property to heal itself to some extent but not fully as the passive form of autogenous healing plays an inferior role for a complete repair of a cementitious material.The self-healing capabilities can be enhanced by adding chemical admixtures,polymers,and bacteria strains induced calcium carbonate precipitation,etc.In this paper,the advancements in the development and performance of self-healing concrete using chemical admixtures,polymers,and bacteria strains are reviewed.This systematic review includes the available experimental tests and methodologies investigating self-healing efficiency over the last decade.Further,this review focussed on self-healing materials,the ideology,and opinions of those in the construction field on the direction of self-healing concrete for future applications.It is yet not possible to predict the most appropriate technique,however,a generalized opinion about the effectiveness of the different approaches has been illustrated. 展开更多
关键词 SELF-healING cracks bio-based healing chemical additives-based healing
下载PDF
Fecal calprotectin and endoscopic scores: The cornerstones in clinical practice for evaluating mucosal healing in inflammatory bowel disease 被引量:1
2
作者 Marcia Henriques de Magalhães Costa Ligia Yukie Sassaki Júlio Maria Fonseca Chebli 《World Journal of Gastroenterology》 SCIE CAS 2024年第24期3022-3035,共14页
Managing inflammatory bowel disease(IBD)is becoming increasingly complex and personalized,considering the advent of new advanced therapies with distinct mechanisms of action.Achieving mucosal healing(MH)is a pivotal t... Managing inflammatory bowel disease(IBD)is becoming increasingly complex and personalized,considering the advent of new advanced therapies with distinct mechanisms of action.Achieving mucosal healing(MH)is a pivotal therapeutic goal in IBD management and can prevent IBD progression and reduce flares,hospitalization,surgery,intestinal damage,and colorectal cancer.Employing proactive disease and therapy assessment is essential to achieve better control of intestinal inflammation,even if subclinical,to alter the natural course of IBD.Periodic monitoring of fecal calprotectin(FC)levels and interval endoscopic evaluations are cornerstones for evaluating response/remission to advanced therapies targeting IBD,assessing MH,and detecting subclinical recurrence.Here,we comment on the article by Ishida et al Moreover,this editorial aimed to review the role of FC and endoscopic scores in predicting MH in patients with IBD.Furthermore,we intend to present some evidence on the role of these markers in future targets,such as histological and transmural healing.Additional prospective multicenter studies with a stricter MH criterion,standardized endoscopic and histopathological analyses,and virtual chromoscopy,potentially including artificial intelligence and other biomarkers,are desired. 展开更多
关键词 Fecal calprotectin Endoscopic scores Mucosal healing Histological healing Ulcerative colitis Inflammatory bowel diseases
下载PDF
Exosomes derived from tendon stem/progenitor cells enhance tendon-bone interface healing after rotator cuff repair in a rat model 被引量:1
3
作者 Yanwei He Shihao Lu +12 位作者 Wenbo Chen Li Yang Fangqi Li Peng Zhou Zan Chen Renwen Wan Zifan Zhang Yaying Sun Jinrong Lin Yisheng Chen Zhiwen Luo Chen Xu Shiyi Chen 《Bioactive Materials》 SCIE CSCD 2024年第10期484-502,共19页
The rate of retear after surgical repair remains high.Mesenchymal stem cells(MSCs)have been extensively employed in regenerative medicine for several decades.However,safety and ethical concerns constrain their clinica... The rate of retear after surgical repair remains high.Mesenchymal stem cells(MSCs)have been extensively employed in regenerative medicine for several decades.However,safety and ethical concerns constrain their clinical application.Tendon Stem/Progenitor Cells(TSPCs)-derived exosomes have emerged as promising cellfree therapeutic agents.Therefore,urgent studies are needed to investigate whether TSPC-Exos could enhance tendon-bone healing and elucidate the underlying mechanisms.In this study,TSPC-Exos were found to promote the proliferation,migration,and expression of fibrogenesis markers in BMSCs.Furthermore,TSPC-Exos demonstrated an ability to suppress the polarization of M1 macrophages while promoting M2 macrophage polarization.In a rat model of rotator cuff repair,TSPC-Exos modulated inflammation and improved the histological structure of the tendon-bone interface,the biomechanical properties of the repaired tendon,and the function of the joint.Mechanistically,TSPC-Exos exhibited high expression of miR-21a-5p,which regulated the expression of PDCD4.The PDCD4/AKT/mTOR axis was implicated in the therapeutic effects of TSPC-Exos on proliferation,migration,and fibrogenesis in BMSCs.This study introduces a novel approach utilizing TSPC-Exos therapy as a promising strategy for cell-free therapies,potentially benefiting patients with rotator cuff tear in the future. 展开更多
关键词 Tendon stem cells EXOSOME Macrophages MicroRNA-21a-5p Rotator cuff tear Tendon-to-bone healing
原文传递
互联网+背景下HEALS助手在胃癌术后出院患者中的应用
4
作者 黄颖 周卫香 彭晓慧 《临床护理杂志》 2024年第2期62-64,共3页
目的探讨互联网+背景下健康教育精准连接系统(HEALS)助手在胃癌术后出院患者中的应用效果。方法选取2022年7月-12月我院收治的胃癌术后出院患者52例设为对照组,实施常规家庭营养健康教育;选取2023年1月-6月我院收治的胃癌术后出院患者5... 目的探讨互联网+背景下健康教育精准连接系统(HEALS)助手在胃癌术后出院患者中的应用效果。方法选取2022年7月-12月我院收治的胃癌术后出院患者52例设为对照组,实施常规家庭营养健康教育;选取2023年1月-6月我院收治的胃癌术后出院患者52例设为试验组,在对照组的基础上实施互联网+背景下HEALS助手构建的家庭营养健康教育干预。两组干预均为6个月,比较两组出院后1、3、6个月营养状况、营养知信行水平。结果试验组出院后1、3、6个月体重指数(BMI)、血红蛋白、血清白蛋白、营养知识知信行评分高于对照组,营养主观指标评分低于对照组(P<0.05)。结论胃癌术后出院患者采用互联网+背景下HEALS助手的家庭营养健康教育可改善营养状况,提高营养知信行水平。 展开更多
关键词 胃肿瘤 胃切除术 互联网+背景 healS助手
下载PDF
ON101 Cream Increases the Wound Healing Rate in Diabetic Patients with Uremia—Cases Report 被引量:1
5
作者 Yu-Hsiu Yen Chi-Ming Pu 《Case Reports in Clinical Medicine》 2024年第5期178-186,共9页
Diabetic patients who underwent long-term dialysis may increase the prevalence of foot ulceration. In addition, diabetic foot ulcer (DFUs) patients with end-stage renal disease (ESRD) do not heal well, and the amputat... Diabetic patients who underwent long-term dialysis may increase the prevalence of foot ulceration. In addition, diabetic foot ulcer (DFUs) patients with end-stage renal disease (ESRD) do not heal well, and the amputation rate is 6.5 - 10 times higher compared to the non-nephropathic diabetic population. Thus, a suitable therapeutic agent was needed. ON101 is a topical cream that promotes diabetic wound healing through a unique macrophage-regulating ability. In this case series, we included 5 diabetes patients (mean age 54.6 ± 8.7 years, 4 mal) with ESRD (mean eGFR 7.4 ± 3.35 mL/min/1.73m<sup>2</sup>) and had experienced dialysis for at least 4.5 years. These patients also have UT (University of Texas) grade 2A DFUs that have existed for at least 1.5 months (mean ulcer duration 8.3 ± 8.97 months). These subjects were applied ON101 twice daily for up to 20 weeks, and wound size was recorded during treatment. Among these subjects, three ulcers (patient No. 1, 2, and 3) completely healed within 10 weeks upon ON101 application, and one ulcer was 99% reduced at 20<sup>th</sup> weeks (patient No. 4). Only one ulcer didn’t show an obvious response that may due to poor compliance in wound care and glucose control. In summary, the overall healing rate was 60%, suggesting ON101 performed equivalence healing efficacy in dialysis patients compared with those who did not have dialysis. 展开更多
关键词 Diabetic Foot Ulcer (DFU) UREMIA DIALYSIS Wound healing
下载PDF
A Skin-Inspired Self-Adaptive System for Temperature Control During Dynamic Wound Healing
6
作者 Yaqi Geng Guoyin Chen +7 位作者 Ran Cao Hongmei Dai Zexu Hu Senlong Yu Le Wang Liping Zhu Hengxue Xiang Meifang Zhu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第8期211-224,共14页
The thermoregulating function of skin that is capable of maintaining body temperature within a thermostatic state is critical.However,patients suffering from skin damage are struggling with the surrounding scene and s... The thermoregulating function of skin that is capable of maintaining body temperature within a thermostatic state is critical.However,patients suffering from skin damage are struggling with the surrounding scene and situational awareness.Here,we report an interactive self-regulation electronic system by mimicking the human thermos-reception system.The skin-inspired self-adaptive system is composed of two highly sensitive thermistors(thermal-response composite materials),and a low-power temperature control unit(Laserinduced graphene array).The biomimetic skin can realize self-adjusting in the range of 35–42℃,which is around physiological temperature.This thermoregulation system also contributed to skin barrier formation and wound healing.Across wound models,the treatment group healed~10%more rapidly compared with the control group,and showed reduced inflammation,thus enhancing skin tissue regeneration.The skin-inspired self-adaptive system holds substantial promise for nextgeneration robotic and medical devices. 展开更多
关键词 Thermo-reception SELF-REGULATION Flexible electronic system Wound healing
下载PDF
Porous nanofibrous dressing enables mesenchymal stem cell spheroid formation and delivery to promote diabetic wound healing
7
作者 Kexin Zhang Wenmin Zhang +4 位作者 Heng An Zhe Huang Yanzhen Wen Xiangyu Jiao Yongqiang Wen 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第4期156-164,共9页
Delayed and nonhealing of diabetic wounds imposes substantial economic burdens and physical pain on patients.Mesenchymal stem cells(MSCs)promote diabetic wound healing.Particularly when MSCs aggregate into multicellul... Delayed and nonhealing of diabetic wounds imposes substantial economic burdens and physical pain on patients.Mesenchymal stem cells(MSCs)promote diabetic wound healing.Particularly when MSCs aggregate into multicellular spheroids,their therapeutic effect is enhanced.However,traditional culture platforms are inadequate for the efficient preparation and delivery of MSC spheroids,resulting in inefficiencies and inconveniences in MSC spheroid therapy.In this study,a three-dimensional porous nanofibrous dressing(NFD)is prepared using a combination of electrospinning and homogeneous freeze-drying.Using thermal crosslinking,the NFD not only achieves satisfactory elasticity but also maintains notable cytocompatibility.Through the design of its structure and chemical composition,the NFD allows MSCs to spontaneously form MSC spheroids with controllable sizes,serving as MSC spheroid delivery systems for diabetic wound sites.Most importantly,MSC spheroids cultured on the NFD exhibit improved secretion of vascular endothelial growth factor,basic fibroblast growth factor,and hepatocyte growth factor,thereby accelerating diabetic wound healing.The NFD provides a competitive strategy for MSC spheroid formation and delivery to promote diabetic wound healing. 展开更多
关键词 Electrospinning Homogenization Biomedical engineering Nanomaterials Stem cell spheroids Diabetic wound healing
下载PDF
Advanced metal-organic frameworks-polymer platforms for accelerated dermal wound healing
8
作者 Fereshte Hassanzadeh-Afruzi Mina Azizi +5 位作者 Iman Zare Ehsan Nazarzadeh Zare Anwarul Hasan Siavash Iravani Pooyan Makvandi Yi Xu 《Chinese Chemical Letters》 SCIE CAS CSCD 2024年第11期57-65,共9页
Skin wound healing is an important aspect of regenerative medicine.Metal-organic frameworks(MOFs)have attracted considerable attention as promising nanomaterials for skin wound healing due to their remarkable versatil... Skin wound healing is an important aspect of regenerative medicine.Metal-organic frameworks(MOFs)have attracted considerable attention as promising nanomaterials for skin wound healing due to their remarkable versatility,tunable pore size,surface area,targeted delivery of various therapeutic agents,and controlled release properties.The combination of these materials with biocompatible and synthetic polymers can help improve their performance in wound regeneration.This review examines the potential of MOF-polymer composites in skin wound healing.Physical and biological chemical properties and methods of making MOFs and their composites have been investigated.In the final section of this review,challenges and future prospects for the development of MOF-polymer composites are stated. 展开更多
关键词 Metal-organic frameworks Dermal wound healing Tissue engineering NANOCOMPOSITE Nanoparticles
原文传递
High-strength antiswelling adhesive achieves both hemostasis and wound healing
9
作者 Xin Zhao Jinlong Luo +7 位作者 Ying Huang Lei Mu Jueying Chen Zhen Liang Zhanhai Yin Dake Chu Yong Han Baolin Guo 《Journal of Pharmaceutical Analysis》 SCIE CAS CSCD 2024年第6期781-784,共4页
Skin is one of the most vulnerable tissues,but there is a lack of injectable bioactive hydrogel dressings,which possess high strength,antiswelling capacity,and wet tissue adhesiveness,but also a rapid gelling process ... Skin is one of the most vulnerable tissues,but there is a lack of injectable bioactive hydrogel dressings,which possess high strength,antiswelling capacity,and wet tissue adhesiveness,but also a rapid gelling process to enable rapid hemostasis,sutureless wound closure,and scarless healing of infected skin wounds[1e5].A new injectable,antibacterial,and multifunctional hydrogel dressings based on poly(citric acid-co-polyethylene glycol)-g-dopamine(PCPD)and amino-terminated Pluronic F127(APF)mi-celles loaded with astragaloside IV(AS)was developed for this pur-pose,as shown in Fig.1A[6]. 展开更多
关键词 healING WOUND STASIS
下载PDF
Antimicrobial,antibiofilm,angiogenesis,anti-inflammatory,and wound healing activities of zinc nanoparticles green synthesized using Ferula macrecolea extract
10
作者 Sultan F.Alnomasy 《Asian Pacific Journal of Tropical Biomedicine》 SCIE CAS 2024年第6期259-268,共10页
Objective:To assess the antimicrobial,antibiofilm,anti-inflammatory,angiogenic,and wound healing activities of zinc nanoparticles(ZNPs)green synthesized using Ferula macrecolea extract.Methods:The green synthesis was ... Objective:To assess the antimicrobial,antibiofilm,anti-inflammatory,angiogenic,and wound healing activities of zinc nanoparticles(ZNPs)green synthesized using Ferula macrecolea extract.Methods:The green synthesis was conducted using the precipitation method.Then,the minimum inhibitory concentration(MIC),minimum bactericidal concentration(MBC),and minimum biofilm inhibition concentration 50%(MBIC50)of ZNPs against Staphylococcus aureus(S.aureus)and Pseudomonas aeruginosa(P.aeruginosa)were evaluated.The effects of ZNPs on the gene expressions of Staphylococcus spp.[intracellular adhesion A(icaA)and D(icaD)]and P.aeruginosa(rhlI and rhlR)were investigated using quantitative real-time PCR.In addition,the effects of ZNPs on wound healing,angiogenesis,and anti-inflammatory markers were assessed.Results:The green-synthesized ZNPs demonstrated significant antimicrobial efficacy against S.aureus and P.aeruginosa.The biofilm formation in S.aureus and P.aeruginosa was also inhibited by ZNPs with MBIC50 values of 3.30μg/mL and 2.08μg/mL,respectively.Additionally,ZNPs downregulated the expression of biofilm-related genes icaA,icaD,rhlI,and rhlR in the tested bacteria.They also demonstrated promising in vitro wound healing effects by promoting fibroblast cell proliferation and wound closure in a dose-dependent manner.A significant increase in the expression of HLA-G5 and VEGF-A genes as well as a marked decrease in the expression of NF-κB,IL-1β,and TNF-αgenes were observed in cells treated with ZNPs compared to the control group(P<0.05).Conclusions:ZNPs display promising antibacterial effects against S.aureus and P.aeruginosa and wound-healing effects by inhibiting biofilm formation,inducing angiogenesis,and reducing inflammation.However,further studies must be conducted to specify the accurate mechanisms of action and toxicity of ZNPs. 展开更多
关键词 Wound healing Antibacterial ANGIOGENESIS NANOMEDICINE Ferula macrecolea Inflammation
下载PDF
Age-related secretion of grancalcin by macrophages induces skeletal stem/progenitor cell senescence during fracture healing
11
作者 Nan-Yu Zou Ran Liu +18 位作者 Mei Huang Yu-Rui Jiao Jie Wei Yangzi Jiang Wen-Zhen He Min Huang Yi-Li Xu Ling Liu Yu-Chen Sun Mi Yang Qi Guo Yan Huang Tian Su Ye Xiao Wei-Shan Wang Chao Zeng Guang-Hua Lei Xiang-Hang Luo Chang-Jun Li 《Bone Research》 SCIE CAS CSCD 2024年第1期122-136,共15页
Skeletal stem/progenitor cell(SSPC)senescence is a major cause of decreased bone regenerative potential with aging,but the causes of SSPC senescence remain unclear.In this study,we revealed that macrophages in calluse... Skeletal stem/progenitor cell(SSPC)senescence is a major cause of decreased bone regenerative potential with aging,but the causes of SSPC senescence remain unclear.In this study,we revealed that macrophages in calluses secrete prosenescent factors,including grancalcin(GCA),during aging,which triggers SSPC senescence and impairs fracture healing.Local injection of human rGCA in young mice induced SSPC senescence and delayed fracture repair.Genetic deletion of Gca in monocytes/macrophages was sufficient to rejuvenate fracture repair in aged mice and alleviate SSPC senescence.Mechanistically,GCA binds to the plexin-B2 receptor and activates Arg2-mediated mitochondrial dysfunction,resulting in cellular senescence.Depletion of Plxnb2 in SSPCs impaired fracture healing.Administration of GCA-neutralizing antibody enhanced fracture healing in aged mice.Thus,our study revealed that senescent macrophages within calluses secrete GCA to trigger SSPC secondary senescence,and GCA neutralization represents a promising therapy for nonunion or delayed union in elderly individuals. 展开更多
关键词 healing UNION SENESCENCE
下载PDF
Smart responsive staple for dynamic promotion of anastomotic stoma healing
12
作者 Qi Sun Zifeng Yang +4 位作者 Ruijun Xu Renjie Li Yang Li Feng Wang Yong Li 《Bioactive Materials》 SCIE CSCD 2024年第9期630-642,共13页
The precise combination of conflicting biological properties through sophisticated structural and functional design to meet all the requirements of anastomotic healing is of great demand but remains challenging.Here,w... The precise combination of conflicting biological properties through sophisticated structural and functional design to meet all the requirements of anastomotic healing is of great demand but remains challenging.Here,we develop a smart responsive anastomotic staple(Ti–OH-MC)by integrating porous titanium anastomotic staple with multifunctional polytannic acid/tannic acid coating.This design achieves dynamic sequential regulation of antibacterial,anti-inflammatory,and cell proliferation properties.During the inflammatory phase of the anastomotic stoma,our Ti–OH-MC can release tannic acid to provide antibacterial and anti-inflammatory properties,together with immune microenvironment regulation function.At the same time,as the healing progresses,the multifunctional coating gradually falls off to expose the porous structure of the titanium anastomotic staple,which promotes cell adhesion and proliferation during the later proliferative and remodeling phases.As a result,our Ti–OH-MC exceeds the properties of clinically used titanium anastomotic staple,and can effectively promote the healing.The staple’s preparation strategy is simple and biocompatible,promising for industrialisation and clinical application.This work provides an effective anastomotic staple for anastomotic stoma healing and serve as a reference for the functional design and preparation of other types of titanium-based tissue repair materials. 展开更多
关键词 Anastomotic staple Smart responsive Coating Tannic acid Anastomotic stoma healing
原文传递
Netrin-1 co-cross-linked hydrogel accelerates diabetic wound healing in situ by modulating macrophage heterogeneity and promoting angiogenesis
13
作者 Futing Shu Hongchao Huang +2 位作者 Shichu Xiao Zhaofan Xia Yongjun Zheng 《Bioactive Materials》 SCIE CSCD 2024年第9期302-316,共15页
Diabetic wounds,characterized by prolonged inflammation and impaired vascularization,are a serious complication of diabetes.This study aimed to design a gelatin methacrylate(GelMA)hydrogel for the sustained release of... Diabetic wounds,characterized by prolonged inflammation and impaired vascularization,are a serious complication of diabetes.This study aimed to design a gelatin methacrylate(GelMA)hydrogel for the sustained release of netrin-1 and evaluate its potential as a scaffold to promote diabetic wound healing.The results showed that netrin-1 was highly expressed during the inflammation and proliferation phases of normal wounds,whereas it synchronously exhibited aberrantly low expression in diabetic wounds.Neutralization of netrin-1 inhibited normal wound healing,and the topical application of netrin-1 accelerated diabetic wound healing.Mechanistic studies demonstrated that netrin-1 regulated macrophage heterogeneity via the A2bR/STAT/PPARγsignaling pathway and promoted the function of endothelial cells,thus accelerating diabetic wound healing.These data suggest that netrin-1 is a potential therapeutic target for diabetic wounds. 展开更多
关键词 NETRIN-1 GelMA hydrogel Diabetic wound healing ANGIOGENESIS Macrophage heterogeneity
原文传递
αB-crystallin mini-peptides support corneal healing in vitro and in vivo in rabbit model
14
作者 Namrata Maity Aditya Konar Sarbani Hazra 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2024年第10期1772-1779,共8页
AIM:To evaluate if topical use of αB-crystallin minipeptides supports corneal healing following flap surgery.METHODS:Cultured corneal cells were treated with fluorescent taggedαB-crystallin mini-peptides to assess i... AIM:To evaluate if topical use of αB-crystallin minipeptides supports corneal healing following flap surgery.METHODS:Cultured corneal cells were treated with fluorescent taggedαB-crystallin mini-peptides to assess its internalization.Cultured corneal cells pre-treated with or without the mini-peptides were exposed to H_(2)O_(2) and cell viability was examined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide(MTT)assay.Elongation of neurites of cultured trigeminal neurones was examined following treatment either withαB-crystallin mini-peptides or protein.Cultured trigeminal neurones were pre-treated either with αB-crystallin mini-peptides or crystallin protein and exposed to H_(2)O_(2) and presence of beading in the dendrites and axons was assessed.Corneal flap surgery was conducted on rabbit cornea and treated topically either withαB-crystallin peptide(0.5 mg/mL thrice daily for 14d)or phosphate-buffered saline(PBS).Corneal healing was evaluated under slit-lamp biomicroscope,mRNA expression of inflammatory cytokines were assessed and the corneas were evaluated by histopathology.RESULTS:Internalization ofαB-crystallin mini-peptides was ascertained by the detection of fluorescence within the corneal cells.The MTT assay revealed that treatment withαB-crystallin mini-peptide reduced cell death induced by H_(2)O_(2) treatment.The mini-peptides did not influence the elongation of trigeminal neurites,but significantly(P<0.05)reduced beading in the neurites.In rabbit eye,the treated corneas showed reduced hyper-reflective zones(P<0.05)and suppression in the expression of inflammatory cytokines.Histopathological examination also revealed reduction of inflammatory response in treated corneas.CONCLUSION:TheαB-crystallin mini-peptides restrict the damage to corneal cells and neurons and aids in corneal healing. 展开更多
关键词 corneal healing αB-crystallin CYTOPROTECTION NEUROPROTECTION
下载PDF
Regulatory T cells in skin regeneration and wound healing
15
作者 Samuel Knoedler Leonard Knoedler +7 位作者 Martin Kauke-Navarro Yuval Rinkevich Gabriel Hundeshagen Leila Harhaus Ulrich Kneser Bohdan Pomahac Dennis P.Orgill Adriana C.Panayi 《Military Medical Research》 SCIE CAS CSCD 2024年第5期663-685,共23页
As the body’s integumentary system,the skin is vulnerable to injuries.The subsequent wound healing processes aim to restore dermal and epidermal integrity and functionality.To this end,multiple tissue-resident cells ... As the body’s integumentary system,the skin is vulnerable to injuries.The subsequent wound healing processes aim to restore dermal and epidermal integrity and functionality.To this end,multiple tissue-resident cells and recruited immune cells cooperate to efficiently repair the injured tissue.Such temporally-and spatially-coordinated interplay necessitates tight regulation to prevent collateral damage such as overshooting immune responses and excessive inflammation.In this context,regulatory T cells(Tregs)hold a key role in balancing immune homeostasis and mediating cutaneous wound healing.A comprehensive understanding of Tregs’multifaceted field of activity may help decipher wound pathologies and,ultimately,establish new treatment modalities.Herein,we review the role of Tregs in orchestrating the regeneration of skin adnexa and catalyzing healthy wound repair.Further,we discuss how Tregs operate during fibrosis,keloidosis,and scarring. 展开更多
关键词 Regulatory T cells(Tregs) Wound healing Wound repair Skin injury Skin regeneration
下载PDF
Spatio-temporal dynamics of phytohormones in the tomato graft healing process
16
作者 Yundan Duan Feng Zhang +1 位作者 Xianmin Meng Qingmao Shang 《Horticultural Plant Journal》 SCIE CAS CSCD 2024年第6期1362-1370,共9页
Graft healing involves a series of cytological and molecular events including wound responses, callus formation and vascular bundle remodelling. Hormones are important signalling molecules regulating plant development... Graft healing involves a series of cytological and molecular events including wound responses, callus formation and vascular bundle remodelling. Hormones are important signalling molecules regulating plant development and responses to environmental stimuli. However,the detailed dynamics of phytohormones in graft healing remain elusive. In this research, internodes above and below the graft site were harvested from 0 to 168 h after grafting(HAG), and liquid chromatography tandem mass spectrometry(LC-MS/MS) was used to determinate jasmonic acid, auxin, cytokinin, ethylene, salicylic acid, abscisic acid and gibberellin levels during the graft healing process. Uniform manifold approximation and projection(UMAP) and k-means analyses were performed to explore hormone spatio-temporal dynamics. We found the stage-specific and asymmetric accumulation of phytohormones in the tomato graft healing process. At the early healing stage(before vascular bundle reconnection), IAA, cZ, ABA, JA and SA mainly accumulated above the graft site, while tZ and ACC mainly accumulated below the graft site. MEIAA, ICAld and IP mainly accumulated at the later stage. Comminated with the healing process, we suggested that JA is mainly involved in wound responses, IAA is beneficial to the formation of callus and vascular cell development, tZ promotes cell division, and IP is linked to vascular bundle remodelling. In addition, expression of JA-related genes SlMYC2 and SlJAZ2, IAA-related gene SlIAA1, tZ-related genes SlHP2 and SlRR8, and IP-related gene SlRR9 correlated with hormone accumulation. The findings provide important information about the hormones and genes involved in the tomato graft healing process. 展开更多
关键词 TOMATO Graft healing PHYTOHORMONE Gene Uniform manifold approximation and projection
下载PDF
Self-Healable and Stretchable PAAc/XG/Bi_(2)Se_(0.3)Te_(2.7) Hybrid Hydrogel Thermoelectric Materials
17
作者 Jinmeng Li Tian Xu +7 位作者 Zheng Ma Wang Li Yongxin Qian Yang Tao Yinchao Wei Qinghui Jiang Yubo Luo Junyou Yang 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第2期180-186,共7页
Thermoelectric power generators have attracted increasing interest in recent years owing to their great potential in wearable electronics power supply.It is noted that thermoelectric power generators are easy to damag... Thermoelectric power generators have attracted increasing interest in recent years owing to their great potential in wearable electronics power supply.It is noted that thermoelectric power generators are easy to damage in the dynamic service process,resulting in the formation of microcracks and performance degradation.Herein,we prepare a new hybrid hydrogel thermoelectric material PAAc/XG/Bi_(2)Se_(0.3)Te_(2.7)by an in situ polymerization method,which shows a high stretchable and self-healable performance,as well as a good thermoelectric performance.For the sample with Bi_(2)Se_(0.3)Te_(2.7)content of 1.5 wt%(i.e.,PAAc/XG/Bi2Se0.3Te27(1.5 wt%)),which has a room temperature Seebeck coefficient of-0.45 mV K^(-1),and exhibits an open-circuit voltage of-17.91 mV and output power of 38.1 nW at a temperature difference of 40 K.After being completely cut off,the hybrid thermoelectric hydrogel automatically recovers its electrical characteristics within a response time of 2.0 s,and the healed hydrogel remains more than 99%of its initial power output.Such stretchable and self-healable hybrid hydrogel thermoelectric materials show promising potential for application in dynamic service conditions,such as wearable electronics. 展开更多
关键词 bismuth telluride self healing thermoelectric material
下载PDF
Thermosensitive and Wound-Healing Gelatin-Alginate Biopolymer Hydrogels Modified with Humic Acids
18
作者 Denis Miroshnichenko Vladimir Lebedev +7 位作者 Katerina Lebedeva Аnna Cherkashina Sergey Petrushenko Olena Bogoyavlenska Аnzhela Olkhovska Ihor Hrubnyk Liudmyla Maloshtan Natalja Klochko 《Journal of Renewable Materials》 EI CAS 2024年第10期1691-1713,共23页
The main goal of the article is the creation and study of thermosensitive and wound-healing gelatin-alginate bio-polymer hydrogels modified with humic acids.Their rheological properties,swelling and contraction behavio... The main goal of the article is the creation and study of thermosensitive and wound-healing gelatin-alginate bio-polymer hydrogels modified with humic acids.Their rheological properties,swelling and contraction behavior were experimentally investigated,elucidated using Fourier transform infrared spectroscopy and used to achieve the physiological melting point,which is necessary for successful drug delivery.It has been shown that in the gelatin-alginate-humic acid biopolymer hydrogels systems,it is possible to obtain a gel-sol transition temperature close to the physiological temperature of 37°C,which is important for drug delivery in the treatment of wounds.By changing the type and concentration of humic acids in the gelatin-alginate hydrogel,it turned out to be achiev-able to regulate the softening time of the gel on the human body in the range from 6 to 20 min,which provides the possibility of controlled prolonged delivery of drugs.Based on the study of the influence of calcium ions on the properties of humic acids and ion exchange,as well as the interaction of humic acids,sodium alginate and gelatin with the formation of tighter gel networks,approaches to regulate the rate of softening of hydrogels at physiological temperature and their swelling,which simulates the absorption of exudate,were proposed and implemented.In addition,low shrinkage of the hydrogel surface due to cross-linking of gelatin-alginate networks when modified with humic acids was experimentally confirmed,which is important for avoiding problems of wound contracture and contour deformations when using dressings for wound healing.Thus,the developed opti-mized innovative biopolymer hydrogels synergistically combine the outstanding properties of natural molecular polymers and humic acids and are promising for the creation of effective medicines for wound healing. 展开更多
关键词 Gelatin-alginate hydrogel humic acids wound healing rheological properties swelling THERMOSENSITIVITY contraction
下载PDF
Single-cell sequencing technology in diabetic wound healing:New insights into the progenitors-based repair strategies
19
作者 Zhen Xiang Rui-Peng Cai +1 位作者 Yang Xiao Yong-Can Huang 《World Journal of Stem Cells》 SCIE 2024年第5期462-466,共5页
Diabetes mellitus(DM),an increasingly prevalent chronic metabolic disease,is characterised by prolonged hyperglycaemia,which leads to long-term health consequences.Although much effort has been put into understanding ... Diabetes mellitus(DM),an increasingly prevalent chronic metabolic disease,is characterised by prolonged hyperglycaemia,which leads to long-term health consequences.Although much effort has been put into understanding the pathogenesis of diabetic wounds,the underlying mechanisms remain unclear.The advent of single-cell RNA sequencing(scRNAseq)has revolutionised biological research by enabling the identification of novel cell types,the discovery of cellular markers,the analysis of gene expression patterns and the prediction of develop-mental trajectories.This powerful tool allows for an in-depth exploration of pathogenesis at the cellular and molecular levels.In this editorial,we focus on progenitor-based repair strategies for diabetic wound healing as revealed by scRNAseq and highlight the biological behaviour of various healing-related cells and the alteration of signalling pathways in the process of diabetic wound healing.ScRNAseq could not only deepen our understanding of the complex biology of diabetic wounds but also identify and validate new targets for inter-vention,offering hope for improved patient outcomes in the management of this challenging complication of DM. 展开更多
关键词 Single-cell sequencing Diabetic wound healing Cell subpopulations Heterogeneity PATHOGENESIS Progenitor cells
下载PDF
Mesenchymal stem cells in wound healing:A bibliometric analysis as a powerful research tool
20
作者 Vera V Voinova Daria V Vasina Anton P Bonartsev 《World Journal of Stem Cells》 SCIE 2024年第9期827-831,共5页
Bibliographic analysis is still very rarely used in experimental basic study papers.The comprehensive bibliometric analysis of scientific literature on research progress and challenges in stem cell therapy for diabeti... Bibliographic analysis is still very rarely used in experimental basic study papers.The comprehensive bibliometric analysis of scientific literature on research progress and challenges in stem cell therapy for diabetic chronic wounds,which was conducted in the work of Shi et al can be a case study and a source of valuable information for writing reviews and experimental papers in this field.Basic experimental studies on a role of mesenchymal stem cells(MSCs)in wound healing that are published in 2023-2024,such as Zhang et al in 2023,Hu et al in 2023,Wang et al in 2023 are certainly also subjects for applying this powerful tool to analyze current research,challenges and perspectives in this field.This is due to the fact that these studies have addressed a great variety of aspects of the application of MSCs for the treatment of chronic wounds,such as using both the cells themselves and their various products:Sponges,hydrogels,exosomes,and genetic constructions.Such a wide variety of directions in the field of study and biomedical application of MSCs requires a deep understanding of the current state of research in this area,which can be provided by bibliometric analysis.Thus,the use of such elements of bibliographic analysis as publication count by year and analysis of top-10 keywords calculated independently or cited from bibliometric analysis studies can be safely recommended for every basic study manuscripts,primarily for the“Introduction”section,and review. 展开更多
关键词 Bibliometric analysis Mesenchymal stem cells Wound healing Tissue engineering DRESSING HYDROGELS Matrix EXOSOMES
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部