期刊文献+
共找到40篇文章
< 1 2 >
每页显示 20 50 100
Optimization and Control of Extractive Distillation with Heat Integration for Separating Benzene/Cyclohexane Mixtures 被引量:3
1
作者 Li Lumin Tu Yangqin +2 位作者 Guo Lianjie Sun Lanyi Tian Yuanyu 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2016年第4期117-127,共11页
In this work, the extractive distillation with heat integration process is extended to separate the pressure-insensitive benzene-cyclohexane azeotrope by using furfural as the entrainer. The optimal design of extracti... In this work, the extractive distillation with heat integration process is extended to separate the pressure-insensitive benzene-cyclohexane azeotrope by using furfural as the entrainer. The optimal design of extractive distillation process is established to achieve minimum energy requirement using the multi-objective genetic algorithm, and the results show that energy saving for this heat integration process is 15.7%. Finally, the control design is performed to investigate the system's dynamic performance, and three control structures are studied. The pressure-compensated temperature control scheme is proposed based on the first two control structures, and the dynamic responses reveal that the feed disturbances in both flow rate and benzene composition can be mitigated well. 展开更多
关键词 extractive distillation heat integration optimization genetic algorithm dynamic simulation
下载PDF
Case Studies of Heat Integration of Evaporation Systems
2
作者 冯霄 RobinSmith 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2001年第2期224-227,共4页
In this paper, through two case studies, evaporation systems are considered in the context of overall process, and then are optimized to obtain energy-saving effect. The possible evaporation schemes are given when int... In this paper, through two case studies, evaporation systems are considered in the context of overall process, and then are optimized to obtain energy-saving effect. The possible evaporation schemes are given when integrated with the background process and how to optimize the evaporator is shown. From the case studies, it can be seen that sometimes incomplete integration and heat pump evaporation are better than complete integration so should be considered as candidate retrofit schemes. 展开更多
关键词 EVAPORATION heat integration grand composite curve multi-effect evaporation vapour recompression evaporator
下载PDF
Heat Integration for Different Separation Processes
3
作者 崔明珠 冯霄 张早校 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 1999年第2期126-131,共6页
The distribution of heat duties among individual separation subsystems and other aspects of heat integration in such systems are reviewed. Heat integration for different separation processes is investigated, using the... The distribution of heat duties among individual separation subsystems and other aspects of heat integration in such systems are reviewed. Heat integration for different separation processes is investigated, using the pinch point method. Such a study will provide theoretical guide lines for the proper choice of a desirable separation process. 展开更多
关键词 SEPARATION heat duty pinch analysis heat integration
下载PDF
A game theory based method for inter-plant heat integration considering cost allocation
4
作者 Yufei Wang Zehuan Wan +1 位作者 Chenglin Chang Xiao Feng 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2020年第6期1652-1660,共9页
Inter-plant heat integration is an effective way for energy recovery in process industry. Although inter-plant heat integration can significantly reduce energy consumption, it is not widely applied in the multiple sta... Inter-plant heat integration is an effective way for energy recovery in process industry. Although inter-plant heat integration can significantly reduce energy consumption, it is not widely applied in the multiple stakeholders’ situation due to profit or cost distribution problems. Therefore, this work considers both the technique aspects of heat integration and its business aspects between stakeholders simultaneously. The new proposed methodology consists of three steps. Firstly the optimal matching of heat integration between plants is obtained through mathematical programming. Then the cost distribution is decided through game theory. Finally the cost distribution obtained previous is corrected by an ideal expert model. A case study is used to illustrate the effectiveness of the method in the end of the work. 展开更多
关键词 heat integration Inter-plant Game theory Cost distribution
下载PDF
Enzymatic Hydrolysis of Sugarcane Biomass and Heat Integration as Enhancers of Ethanol Production
5
作者 Reynaldo Palacios-Bereche Adriano Ensinas +1 位作者 Marcelo Modesto Silvia Nebra 《Journal of Renewable Materials》 SCIE 2018年第2期183-194,共12页
The aim of this study is to assess the possibility of increasing ethanol production by introducing the bagasse hydrolysis process into conventional distilleries.Simulations were performed for mass and energy balances ... The aim of this study is to assess the possibility of increasing ethanol production by introducing the bagasse hydrolysis process into conventional distilleries.Simulations were performed for mass and energy balances using Aspen Plus?software.It was assumed that sugarcane trash and lignin cake—hydrolysis process residues—are available as supplementary fuel.Several cases were evaluated,including:(a)conventional ethanol distillery,(b)conventional plant combined with a hydrolysis process without heat integration,with different solid contents in the hydrolysis reactor,and(c)conventional plant combined with the hydrolysis process applying heat integration by pinch analysis.The highest ethanol yield was achieved in the case of heat integration and concentration of cellulose hydrolysate by the membrane system with a solid content of 5%in the hydrolysis reactor.This represents an increase of 22%over conventional distilleries currently found in the industry. 展开更多
关键词 ETHANOL SUGARCANE enzymatic hydrolysis heat integration
下载PDF
Interpreting the dynamic effect of internal heat integration on reactive distillation columns
6
作者 Yang Yuan Liang Zhang +3 位作者 Haisheng Chen Shaofeng Wang Kejin Huang Huan Shao 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2017年第1期89-102,共14页
In this work,the impact of internal heat integration upon process dynamics and controllability by superposing reactive section onto stripping section,relocating feed locations,and redistributing catalyst within the re... In this work,the impact of internal heat integration upon process dynamics and controllability by superposing reactive section onto stripping section,relocating feed locations,and redistributing catalyst within the reactive section is explored based on a hypothetical ideal reactive distillation system containing an exothermic reaction:A + BC + D.Steady state operation analysis and closed-loop controllability evaluation are carried out by comparing the process designs with and without the consideration of internal heat integration.For superposing reactive section onto stripping section,favorable effect is aroused due to its low sensitivities to the changes in operating condition.For ascending the lower feed stage,somewhat detrimental effect occurs because of the accompanied adverse internal heat integration and strong sensitivity to the changes in operating condition.For descending the upper feed stage,serious detrimental effect happens because of the introduced adverse internal heat integration and strong sensitivity to the changes in operating condition.For redistributing catalyst in the reactive section,fairly small negative influence is aroused by the sensitivity to the changes in operating condition.When reinforcing internal heat integration with a combinatorial use of these three strategies,the decent of the upper feed stage should be avoided in process development.Although the conclusions are derived based on the hypothetical ideal reactive distillation column studied,they are considered to be of general significance to the design and operation of other reactive distillation columns. 展开更多
关键词 Reactive distillation column Internal heat integration Process design Process dynamics Process control
下载PDF
Optimization and simultaneous heat integration design of a coal-based ethylene glycol refining process by a parallel differential evolution algorithm 被引量:1
7
作者 Jiahao Wang Hao Lyu +2 位作者 Daoyan Liu Chengtian Cui Jinsheng Sun 《Frontiers of Chemical Science and Engineering》 SCIE EI CSCD 2023年第9期1280-1288,共9页
Coal to ethylene glycol still lacks algorithm optimization achievements for distillation sequencing due to high-dimension and strong nonconvexity characteristics,although there are numerous reports on horizontal compa... Coal to ethylene glycol still lacks algorithm optimization achievements for distillation sequencing due to high-dimension and strong nonconvexity characteristics,although there are numerous reports on horizontal comparisons and process revamping.This scenario triggers the navigation in this paper into the simultaneous optimization of parameters and heat integration of the coal to ethylene glycol distillation scheme and double-effect superstructure by the self-adapting dynamic differential evolution algorithm.To mitigate the influence of the strong nonconvexity,a redistribution strategy is adopted that forcibly expands the population search domain by exerting external influence and then shrinks it again to judge the global optimal solution.After two redistributive operations under the parallel framework,the total annual cost and CO_(2) emissions are 0.61%/1.85%better for the optimized process and 3.74%/14.84%better for the superstructure than the sequential optimization.However,the thermodynamic efficiency of sequential optimization is 11.63%and 10.34%higher than that of simultaneous optimization.This study discloses the unexpected great energy-saving potential for the coal to ethylene glycol process that has long been unknown,as well as the strong ability of the self-adapting dynamic differential evolution algorithm to optimize processes described by the high-dimensional mathematical model. 展开更多
关键词 ethylene glycol REDISTRIBUTION heat integration OPTIMIZATION parallel framework
原文传递
Optimal synthesis of heat-integrated distillation configurations using the two-column superstructure 被引量:1
8
作者 Xiaodong Zhang Lu Jin Jinsheng Sun 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第2期238-249,共12页
In the realm of the synthesis of heat-integrated distillation configurations,the conventional approach for exploring more heat integration possibilities typically entails the splitting of a single column into a twocol... In the realm of the synthesis of heat-integrated distillation configurations,the conventional approach for exploring more heat integration possibilities typically entails the splitting of a single column into a twocolumn configuration.However,this approach frequently necessitates tedious enumeration procedures,resulting in a considerable computational burden.To surmount this formidable challenge,the present study introduces an innovative remedy:The proposition of a superstructure that encompasses both single-column and multiple two-column configurations.Additionally,a simultaneous optimization algorithm is applied to optimize both the process parameters and heat integration structures of the twocolumn configurations.The effectiveness of this approach is demonstrated through a case study focusing on industrial organosilicon separation.The results underscore that the superstructure methodology not only substantially mitigates computational time compared to exhaustive enumeration but also furnishes solutions that exhibit comparable performance. 展开更多
关键词 SUPERSTRUCTURE Process synthesis heat integration Simulation-based optimization Industrial organosilicon separation
下载PDF
Simulation and Analysis of Cascading Faults in Integrated Heat and Electricity Systems Considering Degradation Characteristics
9
作者 Hang Cui Hongbo Ren +3 位作者 Qiong Wu Hang Lv Qifen Li Weisheng Zhou 《Energy Engineering》 EI 2024年第3期581-601,共21页
Cascading faults have been identified as the primary cause of multiple power outages in recent years.With the emergence of integrated energy systems(IES),the conventional approach to analyzing power grid cascading fau... Cascading faults have been identified as the primary cause of multiple power outages in recent years.With the emergence of integrated energy systems(IES),the conventional approach to analyzing power grid cascading faults is no longer appropriate.A cascading fault analysis method considering multi-energy coupling characteristics is of vital importance.In this study,an innovative analysis method for cascading faults in integrated heat and electricity systems(IHES)is proposed.It considers the degradation characteristics of transmission and energy supply com-ponents in the system to address the impact of component aging on cascading faults.Firstly,degradation models for the current carrying capacity of transmission lines,the water carrying capacity and insulation performance of thermal pipelines,as well as the performance of energy supply equipment during aging,are developed.Secondly,a simulation process for cascading faults in the IHES is proposed.It utilizes an overload-dominated development model to predict the propagation path of cascading faults while also considering network islanding,electric-heating rescheduling,and load shedding.The propagation of cascading faults is reflected in the form of fault chains.Finally,the results of cascading faults under different aging levels are analyzed through numerical examples,thereby verifying the effectiveness and rationality of the proposed model and method. 展开更多
关键词 Cascading fault degradation characteristics integrated heat and electricity system multi-energy flow
下载PDF
Heat Integration retrofit analysis --an oil refinery case study by Retrofit Tracing Grid Diagram 被引量:1
10
作者 Andreja NEMET Jiri Jaromir KLEMES +1 位作者 Petar Sabev VARBANOV Valter MANTELLI 《Frontiers of Chemical Science and Engineering》 SCIE EI CAS CSCD 2015年第2期163-182,共20页
Heat Integration has been established over the last decades as a proven chemical engineering methodol- ogy. Two design implementations are often used in the industry: grassroots and retrofit. Although various methods... Heat Integration has been established over the last decades as a proven chemical engineering methodol- ogy. Two design implementations are often used in the industry: grassroots and retrofit. Although various methods have been developed for retrofit, it still needs more development to ensure simultaneously thermodynamic feasibility and economic viability. In this paper, a novel graphical approach has been developed to facilitate the understanding of the current situation and scope of improvement. The Retrofit Tracing Grid Diagram presents all streams and heat exchangers in temperature scale and the heat exchangers are clearly separated from each other, enabling clear visualisation of the current state. The tool incorporates the previously developed Cross-Pinch Analysis as well as path approach for retrofit. Additionally, the non-vertical heat transfer can be evaluated. The application of the developed tool has been validated on an oil refinery case study. The applicability of the tool is evident as it can reveal additional options for modification that none of the previous methods considered. 展开更多
关键词 heat integration RETROFIT Pinch Analysis thermodynamic approach oil refinery
原文传递
A simultaneous approach for integration of thermal energy storages in industrial processes using multiperiod heat integration
11
作者 Simon Möhren Christian Schäfer +1 位作者 Jörg Meyer Hartmut Krause 《Energy Storage and Saving》 2022年第2期117-128,共12页
In times of increasing global warming,enormous efforts are required to rapidly reduce greenhouse gas(GHG)emissions.Due to the EU’s target of climate neutrality by 2050 and the even more ambitious goal of becoming cli... In times of increasing global warming,enormous efforts are required to rapidly reduce greenhouse gas(GHG)emissions.Due to the EU’s target of climate neutrality by 2050 and the even more ambitious goal of becoming climate-neutral in Germany by 2045,it is necessary to systematically increase energy efficiency and decarbonize the industrial heat sector.The methods of heat integration can be used to exploit existing potentials for waste heat utilization and to integrate renewable technologies for heating and cooling.By using a non-stationary,multiperiod approach,additional energy savings can be achieved by integrating a thermal energy storage(TES)that enables heat transportation over time.This paper presents a simultaneous approach for thermal energy storage integration into multiperiod heat integration problems.The approach can be used to minimize energy demand,costs and CO 2 emissions and is demonstrated in two case studies.In case study 1,it is shown that the presented approach is capable of integrating a TES properly into a simple multiperiod heat integration problem with two periods.In case study 2,a simplified example from a cosmetics manufactory is investigated.The total utility demand can be reduced by up to 44.3%due to TES integration and the energetic optimal storage size can be determined as 125 m 3.The savings are strongly dependent on the constellation of heat flows between the periods,on the temperature levels and on the storage size.Significant reductions of energy demand,costs and CO 2 emissions can be achieved with TES being properly integrated into a suitable operating environment. 展开更多
关键词 Multiperiod heat integration Thermal energy storage Waste heat utilization heat exchanger network Energy efficiency
原文传递
Synthesis of Heat Integrated Complex Distillation Systems via Stochastic Optimization Approaches 被引量:8
12
作者 袁希钢 安维中 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2002年第5期495-507,共13页
This paper addresses the application of stochastic optimization approaches to the synthesis of heatintegrated complex distillation system, which is characterized by large-scale combinatorial feature. Conventionaland c... This paper addresses the application of stochastic optimization approaches to the synthesis of heatintegrated complex distillation system, which is characterized by large-scale combinatorial feature. Conventionaland complex columns, thermally coupled (linked) side strippers and side rectifiers as well as heat integration betweenthe different columns are simultaneously considered. The problem is formulated as an MINLP (mixed-integernonlinear programming) problem. A simulated annealing algorithm is proposed to deal with the MINLP problemand a shortcut method is applied to evaluate all required design parameters as well as the total cost function. Twoillustrating examples are presented. 展开更多
关键词 distillation system synthesis complex column heat integration ENCODING
下载PDF
Design and control of methyl acetate-methanol separation via heat-integrated pressure-swing distillation 被引量:13
13
作者 Zhishan Zhang Qingjun Zhang +2 位作者 Guijie Li Meiling Liu Jun Gao 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2016年第11期1584-1599,共16页
Design and control of pressure-swing distillation(PSD) with different heat integration modes for the separation of methyl acetate/methanol azeotrope are explored using Aspen Plus and Aspen Dynamics. First, an optimum ... Design and control of pressure-swing distillation(PSD) with different heat integration modes for the separation of methyl acetate/methanol azeotrope are explored using Aspen Plus and Aspen Dynamics. First, an optimum steady-state separation configuration conditions are obtained via taking the total annual cost(TAC) or total reboiler heat duty as the objective functions. The results show that about 27.68% and 25.40% saving in TAC can be achieved by the PSD with full and partial heat integration compared to PSD without heat integration. Second,temperature control tray locations are obtained according to the sensitivity criterion and singular value decomposition(SVD) analysis and the single-end control structure is effective based on the feed composition sensitivity analysis. Finally, the comparison of dynamic controllability is made among various control structures for PSD with partial and full heat integration. It is shown that both control structures of composition/temperature cascade and pressure-compensated temperature have a good dynamic response performance for PSD with heat integration facing feed flowrate and composition disturbances. However, PSD with full heat integration performs the poor controllability despite of a little bit of economy. 展开更多
关键词 Pressure-swing distillation Azeotrope heat integration Dynamic control Methyl acetate/methanol
下载PDF
Simulation and design of a heat-integrated double-effect reactive distillation process for propylene glycol methyl ether production 被引量:1
14
作者 Ran An Shengxin Chen +5 位作者 Shun Hou Yuting Zhu Chunhu Li Xinbao Zhu Ruixia Liu Weizhong An 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2022年第12期103-114,共12页
A double-effect reactive distillation(DERD)process was proposed for the production of propylene glycol methyl ether from propylene oxide and methanol to overcome the shortcoming of low selectivity and high-energy cons... A double-effect reactive distillation(DERD)process was proposed for the production of propylene glycol methyl ether from propylene oxide and methanol to overcome the shortcoming of low selectivity and high-energy consumption in the tubular plug-flow reactor.A single-column reactive distillation(RD)process was conducted under optimized operating conditions based on sensitivity analysis as a reference.The results demonstrated that the proposed DERD process is able to achieve more than 95%selectivity of the desired product.After that,a design approach of the DERD process with an objective of the minimum operating cost was proposed to achieve further energy savings in the RD process.The proposed DERD configuration can provide a large energy-savings by totally utilization of the overhead vapor steam in the high-pressure RD column.A comparison of the single-column RD process revealed that the proposed DERD process can reduce the operating cost and the total annual cost of 25.3%and 30.7%,respectively,even though the total capital cost of DERD process is larger than that of the RD process. 展开更多
关键词 Propylene oxide Reactive distillation heat integration Propylene glycol monomethyl ether Process simulation
下载PDF
Modeling and Analysis of Internal Heat Integrated Distillation Columns
15
作者 黄克谨 战德志 +2 位作者 中岩勝 中根尧 高松武一郎 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 1999年第1期67-76,共10页
A generalized steady-state model is being developed for an internal heat integrated distillation column (IHIDiC). A procedure incorporating the Newton-Raphson method is devised for solving the model equations. Separat... A generalized steady-state model is being developed for an internal heat integrated distillation column (IHIDiC). A procedure incorporating the Newton-Raphson method is devised for solving the model equations. Separation of an ethanol-water binary mixture is simulated and analyzed with the model. Two pinch points are found within the process, making the separation extremely difficult and expensive. Two sharp fronts in the temperature and the composition profiles are being observed. With the introduction of heat integration, satisfactory separation may be obtained in a limited number of stages with lower reflux ratios. Increasing the pressure difference between the rectifying and the stripping sections, however, would bring about a reduced relative volatility between the two components involved, creating adverse separation performances. It is obvious that optimization of the IHIDiC is of prime importance. 展开更多
关键词 DISTILLATION heat integration energy conservation pinch point process modeling static simulation
下载PDF
Development and Application of Heat-integrated Aromatics Fractionation Process
16
作者 Yang Weisheng Kong Dejin Tan Yongzhong 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2009年第2期21-26,共6页
The PRO/Ⅱ process simulation software was applied to carry out simulated calculation of the aromatics fractionation unit and the heat integrated rectification process was proposed for the aromatics fractionation sect... The PRO/Ⅱ process simulation software was applied to carry out simulated calculation of the aromatics fractionation unit and the heat integrated rectification process was proposed for the aromatics fractionation section of the 1.0 Mt/a toluene disproportionation unit at the Zhenhai Refining and Chemical Company. The optimized operating parameters were obtained through the energy utilization analysis,process simulation,heat exchanger calculations and comparisons of utility consumption. The operation of commercialized unit has revealed that the design parameters of each rectification column were consistent with the operation results,and the utility consumption was about 47% lower than the traditional heat integrated process. 展开更多
关键词 aromatics fractionation heat integration energy conservation
下载PDF
Optimal Operation of Integrated Heat and Electricity Systems:A Tightening McCormick Approach 被引量:6
17
作者 Lirong Deng Hongbin Sun +3 位作者 Baoju Li Yong Sun Tianshu Yang Xuan Zhang 《Engineering》 SCIE EI 2021年第8期1076-1086,共11页
Combined heat and electricity operation with variable mass flow rates promotes flexibility,economy,and sustainability through synergies between electric power systems(EPSs)and district heating systems(DHSs).Such combi... Combined heat and electricity operation with variable mass flow rates promotes flexibility,economy,and sustainability through synergies between electric power systems(EPSs)and district heating systems(DHSs).Such combined operation presents a highly nonlinear and nonconvex optimization problem,mainly due to the bilinear terms in the heat flow model—that is,the product of the mass flow rate and the nodal temperature.Existing methods,such as nonlinear optimization,generalized Benders decomposition,and convex relaxation,still present challenges in achieving a satisfactory performance in terms of solution quality and computational efficiency.To resolve this problem,we herein first reformulate the district heating network model through an equivalent transformation and variable substitution.The reformulated model has only one set of nonconvex constraints with reduced bilinear terms,and the remaining constraints are linear.Such a reformulation not only ensures optimality,but also accelerates the solving process.To relax the remaining bilinear constraints,we then apply McCormick envelopes and obtain an objective lower bound of the reformulated model.To improve the quality of the McCormick relaxation,we employ a piecewise McCormick technique that partitions the domain of one of the variables of the bilinear terms into several disjoint regions in order to derive strengthened lower and upper bounds of the partitioned variables.We propose a heuristic tightening method to further constrict the strengthened bounds derived from the piecewise McCormick technique and recover a nearby feasible solution.Case studies show that,compared with the interior point method and the method implemented in a global bilinear solver,the proposed tightening McCormick method quickly solves the heat–electricity operation problem with an acceptable feasibility check and optimality. 展开更多
关键词 Integrated heat and electricity system Convex relaxation Operation McCormick envelopes
下载PDF
Heat Transfer Investigation and Modeling of Heat Integrated Distillation Column 被引量:1
18
作者 Fang Jing Wang Yijing +2 位作者 Su Weiyi Xuan Bihan Li Chunli 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2018年第3期96-105,共10页
The high degree of reversibility of heat integrated distillation column(HIDiC) has been thermodynamically interpreted by the entropy method. In this paper, a heat transfer model and a more universal method were propos... The high degree of reversibility of heat integrated distillation column(HIDiC) has been thermodynamically interpreted by the entropy method. In this paper, a heat transfer model and a more universal method were proposed, through which the overall heat transfer coefficient at different height of column under different operating conditions could be obtained before the experiment. Then the separation of a binary ethanol-water system was carried out experimentally as a case study to verify the heat transfer model and the aforementioned calculation method. The close results between the calculation, the simulation, and the experiments suggested that the proposed model and the calculation method in this paper were accurate and applicable. Meanwhile, it was demonstrated that the HIDiC shows obvious effect of reducing entropy increase and improving thermodynamic efficiency as compared to conventional distillation column. 展开更多
关键词 heat integrated distillation column heat transfer model separation process
下载PDF
Recent Progresses on Optimal Design of Heat Integrated Water Allocation Network
19
作者 Zhang Chijin Ren Congjing +3 位作者 Liao Zuwei Sun Jingyuan Wang Jingdai Yang Yongrong 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2021年第3期69-75,共7页
Energy integration and mass integration are important approaches to achieve energy saving and emission reduction in the process industry.Generally,the methods can be classified into two groups,viz.:conceptual design m... Energy integration and mass integration are important approaches to achieve energy saving and emission reduction in the process industry.Generally,the methods can be classified into two groups,viz.:conceptual design methods and mathematical programming methods.The former includes mainly graphical methods based on pinch technology that is operated easily.A feasible solution can be quickly obtained.Conceptual design methods are sequential in nature including two steps,namely:targeting and designing.The latter is based on superstructure optimization,and corresponding algorithm is adopted to solve the model.The trade-offs and connections among the entire network can be established and explored.Multiple factors can be considered and optimized simultaneously by mathematical programming methods.This paper describes the synthesis of heat integrated water allocation networks(HIWAN)based on both conceptual design methods and mathematical programming methods systematically.In addition,the characteristics and shortcomings of the existing research methods are summarized,and the future research direction is prospected. 展开更多
关键词 heat integrated water allocation network conceptual design mathematical programming
下载PDF
Techno-economic assessment of a chemical looping splitting system for H2 and CO Co-generation 被引量:3
20
作者 Hao Peng Zichen Di +2 位作者 Pan Gong Fengling Yang Fangqin Cheng 《Green Energy & Environment》 SCIE EI CSCD 2023年第1期338-350,共13页
The natural gas(NG)reforming is currently one of the low-cost methods for hydrogen production.However,the mixture of H2 and CO_(2) in the produced gas inevitably includes CO_(2) and necessitates the costly CO_(2) sepa... The natural gas(NG)reforming is currently one of the low-cost methods for hydrogen production.However,the mixture of H2 and CO_(2) in the produced gas inevitably includes CO_(2) and necessitates the costly CO_(2) separation.In this work,a novel double chemical looping involving both combustion(CLC)and sorption-enhanced reforming(SE-CLR)was proposed towards the co-production of H2 and CO(CLC-SECLRHC)in two separated streams.CLC provides reactant CO_(2) and energy to feed SECLRHC,which generates hydrogen in a higher purity,as well as the calcium cycle to generate CO in a higher purity.Techno-economic assessment of the proposed system was conducted to evaluate its efficiency and economic competitiveness.Studies revealed that the optimal molar ratios of oxygen carrier(OC)/NG and steam/NG for reforming were recommended to be 1.7 and 1.0,respectively.The heat integration within CLC and SECLRHC units can be achieved by circulating hot OCs.The desired temperatures of fuel reactor(FR)and reforming reactor(RR)should be 850C and 600C,respectively.The heat coupling between CLC and SECLRHC units can be realized via a jacket-type reactor,and the NG split ratio for reforming and combustion was 0.53:0.47.Under the optimal conditions,the H2 purity,the H2 yield and the CH4 conversion efficiency were 98.76%,2.31 mol mol-1 and 97.96%,respectively.The carbon and hydrogen utilization efficiency respectively were 58.60% and 72.45%in terms of the total hydrogen in both steam and NG.The exergy efficiency of the overall process reached 70.28%.In terms of the conventional plant capacity(75 × 103 t y^(-1))and current raw materials price(2500$t^(-1)),the payback period can be 6.2 years and the IRR would be 11.5,demonstrating an economically feasible and risk resistant capability. 展开更多
关键词 Natural gas reforming Chemical looping heat integration coupling Techno-economic assessment HYDROGEN
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部