We present in situ measurements of spectrally resolved X-ray scattering and X-ray diffraction from monocrystalline diamond samples heatedwith an intense pulse of heavy ions.In this way,we determine the samples’heatin...We present in situ measurements of spectrally resolved X-ray scattering and X-ray diffraction from monocrystalline diamond samples heatedwith an intense pulse of heavy ions.In this way,we determine the samples’heating dynamics and their microscopic and macroscopic structuralintegrity over a timespan of several microseconds.Connecting the ratio of elastic to inelastic scattering with state-of-the-art density functionaltheory molecular dynamics simulations allows the inference of average temperatures around 1300 K,in agreement with predictions fromstopping power calculations.The simultaneous diffraction measurements show no hints of any volumetric graphitization of the material,butdo indicate the onset of fracture in the diamond sample.Our experiments pave the way for future studies at the Facility for Antiproton andIon Research,where a substantially increased intensity of the heavy ion beam will be available.展开更多
Anomalous ion heat transport is analyzed in the T-10 tokamak plasma heated with electron cyclotron resonance heating(ECRH) in second-harmonic extra-ordinary mode. Predictive modeling with empirical scaling for Ohmical...Anomalous ion heat transport is analyzed in the T-10 tokamak plasma heated with electron cyclotron resonance heating(ECRH) in second-harmonic extra-ordinary mode. Predictive modeling with empirical scaling for Ohmical heat conductivity shows that in ECRH plasmas the calculated ion temperature could be overestimated, so an increase of anomalous ion heat transport is required. To study this effect two scans are presented: over the EC resonance position and over the ECRH power. The EC resonance position varies from the high-field side to the low-field side by variation of the toroidal magnetic field. The scan over the heating power is presented with on-axis and mixed ECRH regimes. Discharges with high anomalous ion heat transport are obtained in all considered regimes. In these discharges the power balance ion heat conductivity exceeds the neoclassical level by up to 10 times. The high ion heat transport regimes are distinguished by three parameters: the ratio Te/Ti, the normalized electron density gradient R/■, and the ion–ion collisionality νii~*. The combination of high Te/Ti, high νii~*, and R/■=6-10 results in values of normalized anomalous ion heat fluxes up to 10 times higher than in the low transport scenario.展开更多
In this paper,experimental and numerical studies of heat transfer in a test local of side H=0.8 m heated from below are presented and compared.All the walls,the rest of the floor and the ceiling are made from plywood ...In this paper,experimental and numerical studies of heat transfer in a test local of side H=0.8 m heated from below are presented and compared.All the walls,the rest of the floor and the ceiling are made from plywood and polystyrene in sandwich form(3 mmplywood-3 cm polystyrene-3 mmplywood)just on one of the vertical walls contained a glazed door(2 H/3×0.15 m).This local is heated during two heating cycles by a square plate of iron the width L=0.6 H,which represents the heat source,its temperature Th is controlled.The plate is heated for two cycles by an adjustable set-point heat source placed just down the center of it.For each cycle,the heat source is switched“on”for 6 h and switched“off”for 6 h.The outdoor air temperature is kept constant at a low temperature Tc<Th.All measurements are carried out with k-type thermocouples and with flux meters.Results will be qualitatively presented for two cycles of heating in terms of temperatures and heat flux densitiesϕfor various positions of the test local.The temperature evolution of the center and the profile of the temperature along the vertical centerline are compared by two dimensions simulation using the lattice Boltzmann method.The comparison shows a good agreement with a difference that does not exceed±1℃.展开更多
This paper proposes a mathematical modeling approach to examine the two-dimensional flow stagnates at x=0 over a heated stretchable sheet in a porous medium influenced by nonlinear thermal radiation,variable viscosity...This paper proposes a mathematical modeling approach to examine the two-dimensional flow stagnates at x=0 over a heated stretchable sheet in a porous medium influenced by nonlinear thermal radiation,variable viscosity,and MHD.This study’s main purpose is to examine how thermal radiation and varying viscosity affect fluid flow motion.Additionally,we consider the convective boundary conditions and incorporate the gyrotactic microorganisms equation,which describes microorganism behavior in response to fluid flow.The partial differential equations(PDEs)that represent the conservation equations for mass,momentum,energy,and microorganisms are then converted into a system of coupled ordinary differential equations(ODEs)through the inclusion of nonsimilarity variables.Using MATLAB’s built-in solver bvp4c,the resulting ODEs are numerically solved.The model’s complexity is assessed by plotting two-dimensional graphics of the solution profiles at various physical parameter values.The physical parameters considered in this study include skin friction coefficient,local Nusselt number,local Sherwood number,and density of motile microorganisms.These parameters measure,respectively,the roughness of the sheet,the transformation rate of heat,the rate at which mass is transferred to it,and the rate at which microorganisms are transferred to it.Our study shows that,depending on the magnetic parameter M,the presence of a porous medium causes a significant increase in fluid velocity,ranging from about 25%to 45%.Furthermore,with an increase in the Prandtl number Pr,we have seen a notable improvement of about 6%in fluid thermal conductivity.Additionally,our latest findings are in good agreement with published research for particular values.This study provides valuable insights into the behavior of fluid flow under various physical conditions and can be useful in designing and optimizing industrial processes.展开更多
Distributed temperature sensing(DTS)using heated cables has been recently developed for distributed monitoring of in-situ soil moisture content.In this method,the thermal and electrical properties of heated cables hav...Distributed temperature sensing(DTS)using heated cables has been recently developed for distributed monitoring of in-situ soil moisture content.In this method,the thermal and electrical properties of heated cables have a significant influence on the measurement accuracy of soil moisture content.In this paper,the performances of two heated cables,i.e.the carbon-fiber heated cable(CFHC)and the metalnet heated cable(MNHC),are studied in the laboratory.Their structures,uniformity in the axial direction,measurement accuracy and suitability are evaluated.The test results indicate that the MNHC has a better uniformity in the axial direction than CFHC.Both CFHC and MNHC have high measurement accuracy.The CFHC is more suitable for short-distance measurement(500 m),while the MNHC can be used for longdistance measurement(>500 m).展开更多
Moisture content is a fundamental physical index that quantifies soil property and is closely associatedwith the hydrological, ecological and engineering behaviors of soil. To measure in-situ soil moisturecontents, a ...Moisture content is a fundamental physical index that quantifies soil property and is closely associatedwith the hydrological, ecological and engineering behaviors of soil. To measure in-situ soil moisturecontents, a distributed measurement system for in-situ soil moisture content (SM-DTS) is introduced.The system is based on carbon-fiber heated cable (CFHC) technology that has been developed to enhancethe measuring accuracy of in-situ soil moisture content. Using CFHC technique, a temperature characteristicvalue (Tt) can be defined from temperatureetime curves. A relationship among Tt, soil thermalimpedance coefficient and soil moisture content is then established in laboratory. The feasibility of theSM-DTS technology to provide distributed measurements of in-situ soil moisture content is verifiedthrough field tests. The research reported herein indicates that the proposed SM-DTS is capable ofmeasuring in-situ soil moisture content over long distances and large areas.展开更多
A rapid and continuous method for production of LiFePO4/C nanoparticles in super heated water is described, wherein soluble starch was used as carbon precursor. The effects of pH, flow rate, temperature, and pressure ...A rapid and continuous method for production of LiFePO4/C nanoparticles in super heated water is described, wherein soluble starch was used as carbon precursor. The effects of pH, flow rate, temperature, and pressure on the formation of LiFePO4/C particles were investigated. Results showed that the pH value was the key factot on the formation of phase pure LiFePO4, which only formed at pH = 7; the LiFePO4/C-occurred as particles with about 70-200 nm size and LiFePO4 was covered by a thin carbon layer; higher flow rate, higher pressure, and lower temperature led to smaller particles of LiFePO4/C.展开更多
The new technology of continuous casting by heated mold was used to produce directional solidification ZA alloy lines to eliminate the inter defects of these lines and increase their mechanical properties. The results...The new technology of continuous casting by heated mold was used to produce directional solidification ZA alloy lines to eliminate the inter defects of these lines and increase their mechanical properties. The results are as follows: (1) The microstruc-ture of the ZA alloy lines is the parallel directional dendritic columnar crystal. Every dendritic crystal of eutectic alloy ZA5 was composed of many layer eutectic β and η phases. The micro structure of hypereutectic ZA alloys is primary dendritic crystal and interdendritic eutectic structure. The primary phase of ZA8 and ZA12 is β, among them, but the primary phase of ZA22 and ZA27 is a. (2) Through the test to the as-cast ZA alloy lines made in continuous casting by heated mold, it is found that the tensile strength and hardness increase greatly, but the elongation decreases. With the increase of aluminum amount from ZA 5 to ZA 12, ZA22 and ZA27, the tensile strength increases gradually. ZA27 has the best comprehensive mechanical properties in these four kinds of ZA alloys. (3) Heat treatment can decrease the dendritic segregation and improve the elongation of ZA alloy, but make their strength decrease slightly.展开更多
Soil water content measurement is critical in practical engineering.The actively heated fiber Bragg grating optic sensor(FBGS)has great potential of multi-point measurement for soil water content measurement in field....Soil water content measurement is critical in practical engineering.The actively heated fiber Bragg grating optic sensor(FBGS)has great potential of multi-point measurement for soil water content measurement in field.In this study,the effect of heating time on the measurement accuracy is discussed,and modifications are made for actively heated fiber optic(AHFO)sensors.The results demonstrate that if an integration data analysis method is used,the accuracy and reliability of soil water content measurement with AHFO sensors will be improved.Both a short fiber length and a short-term heating pattern are effective and can help to reduce soil disturbance.With the proposed integration method,a short heating time is guaranteed for measuring the soil water content.Such improvements will reduce the thermal disturbance to soil sample and improve the reliability of measurement.展开更多
Thermal conductivity(k)of iron is measured up to about 134 GPa.The measurements are carried out using the single sided laser heated diamond anvil cell,where the power absorbed by a Fe metal foil at hotspot is calculat...Thermal conductivity(k)of iron is measured up to about 134 GPa.The measurements are carried out using the single sided laser heated diamond anvil cell,where the power absorbed by a Fe metal foil at hotspot is calculated using a novel thermodynamical method.Thermal conductivity of fee(γ)-Fe increases up to a pressure of about46 GPa.We find thermal conductivity values in the range of 70-80 Wm-1K-1(with an uncertainty of 40%),almost constant with pressure,in the hcp(e)phase of Fe.We attribute the pressure independent k above 46 GPa to the strong electronic correlation effects driven by the electronic topological transition(ETT).We predict a value of thermal conductivity ofε-Fe of about 40±16 Wm-1K-1 at the outer core of Earth.展开更多
High-resolution transmission spectra of radiatively-heated low-z C10H16O6 plasma have been measured on‘Xingguang II’laser facility by using flat field grating spectrometer.Absorption lines of oxygen and carbon ions ...High-resolution transmission spectra of radiatively-heated low-z C10H16O6 plasma have been measured on‘Xingguang II’laser facility by using flat field grating spectrometer.Absorption lines of oxygen and carbon ions in the region of 1.6 to 5.0 nm have been observed clearly and identified.Using the unresolved transition array model,we also calculated the transmission spectra of C10H16O6 plasma.The measured transmission spectrum has been compared with the calculated ones.展开更多
In kiln drying of softwood timber, external heat and moisture mass transfercoefficients are important in defining boundary temperature and moisture content at the woodsurface. In addition, superheated steam drying of ...In kiln drying of softwood timber, external heat and moisture mass transfercoefficients are important in defining boundary temperature and moisture content at the woodsurface. In addition, superheated steam drying of wood is a promising technology but this has notbeen widely accepted commercially, partially due to the lack of understanding of the dryingphenomena occurred during drying. In this work, experimental investigation was performed to quantifythe heat transfer between wood surface and surrounding moist air or superheated steam. In theexperiment, saturated radiata pine sapwood samples were dried using dry-bulb/wet-bulb temperaturesof 60℃/50℃, 90℃/60℃, 120℃/70℃, 140℃/90℃, 160℃/90℃, 140℃/100℃ and 160℃/100℃. The lasttwo schedules were for superheated steam drying as the wet-bulb temperature was set at 100℃. Thecirculation velocity over the board surface was controlled at 4.2m·s^(-1). Two additional runs(90℃/60℃) using air velocities of 2.4 m·s^(-1) and 4.8 m·s^(-1) were performed to check theeffect of the circulation velocity. During drying, sample weight and temperatures at wood surfaceand different depths were continuously measured. Prom these measurements, changes in woodtemperature and moisture content were calculated and external heat-transfer coefficient wasdetermined for both the moist air and the superheated steam drying.展开更多
Sawtooth activity on HT-7 tokamak has been investigated experimentally mainly by using soft x-ray diode array and magnetic probes. Their behaviors and occurrences are correlated closely to the discharge conditions: th...Sawtooth activity on HT-7 tokamak has been investigated experimentally mainly by using soft x-ray diode array and magnetic probes. Their behaviors and occurrences are correlated closely to the discharge conditions: the electron density Ne, the electron temperature Te, the safety factor qa on plasma boundary and wall condition etc. When central line-averaged electron density Ne(0) is over 2.0×1013cm-3 , major sawtooth activity emerges with a period of up to 6.5 ms and a fluctuation amplitude of up to 2-30 % of SXR radiation signal. In some cases such as the safety factor between 4.2-4.7 and Zeff=3.0-6.0, a monster sawtooth activity often emerges without apparent deterioration of plasma confinement and without major disruption. During these events, abundant MHD phenomena are observed including partial sawtooth oscillations. In this paper, the observed sawtooth behaviors and their dependence on the and their dependence density Ne and wall condition in ohmically heated plasma are introduced, the results are discussed and presented.展开更多
Under the spirit of sustainable development, ‘lightweight’ has been gradually included into the vehicle design criterion by many manufacturers and used in automobile production. Following this trend, domestic wheel ...Under the spirit of sustainable development, ‘lightweight’ has been gradually included into the vehicle design criterion by many manufacturers and used in automobile production. Following this trend, domestic wheel suppliers also begin to study the technology of lightweight wheel. One way to achieve this goal is improving strength grade of the steel and optimizing the structure design in the field of steel wheels. But there are a few problems in flash butt welding process in the application of high strength steel, leading to high rejection rates. SW400 steel is a special high strength wheel steel developed by Benxi Steel. Taking SW400 steel as the research material, this article studys the feasibility of improving the properties of rim flash butt welded joints by adding preheating process.展开更多
The relationships between the surface quality of a single crystal copper ingot and the process parameters of heated mould continuous casting method were studied experimentally using our own design of horizontal heated...The relationships between the surface quality of a single crystal copper ingot and the process parameters of heated mould continuous casting method were studied experimentally using our own design of horizontal heated mould continuous casting apparatus, and the mechanism by which process parameters affect the surface quality of a single crystal copper ingot is analyzed in the present paper. The results show that the process parameters affect the surface quality of a pure copper ingot by affecting the position of the liquid-solid interface in the mould. The position of the liquid-solid interface in the mould must be controlled carefully within an appropriate range, which is determined through a series of experiments, in order to gain a single crystal copper ingot with good surface quality.展开更多
In this article,the rheology of Ferro-fluid over an axisymmetric heated disc with a variable magnetic field by considering the dispersion of hybrid nanoparticles is considered.The flow is assumed to be produced by the...In this article,the rheology of Ferro-fluid over an axisymmetric heated disc with a variable magnetic field by considering the dispersion of hybrid nanoparticles is considered.The flow is assumed to be produced by the stretching of a rotating heated disc.The contribution of variable thermophysical properties is taken to explore themomentum,mass and thermal transportation.The concept of boundary layermechanismis engaged to reduce the complex problem into a simpler one in the form of coupled partial differential equations system.The complex coupled PDEs are converted into highly nonlinear coupled ordinary differential equations system(ODEs)and the resulting nonlinear flow problem is handled numerically.The solution is obtained via finite element procedure(FEP)and convergence is established by conducting the grid-independent survey.The solution of converted dimensionless problem containing fluid velocity,temperature and concentration field is plotted against numerous involved emerging parameters and their impact is noted.From the obtained solution,it is monitored that higher values of magnetic parameter retard the fluid flow and escalating values of Eckert number results in to enhance temperature profile.Ferro-fluid flow and heat energy for the case of the Yamada Ota hybrid model are higher than for the case of the Hamilton Crosser hybrid model.Developing a model is applicable to the printing process,electronic devices,temperature measurements,engineering process and food-making process.The amount of mass species is reduced vs.incline impacts of chemical reaction and Schmidt parameter.展开更多
This work illustrates the steady state, two dimensional natural convective flow and heat transfer features in square enclosure containing heated hexagonal block maintained either at constant wall temperature(CWT) or u...This work illustrates the steady state, two dimensional natural convective flow and heat transfer features in square enclosure containing heated hexagonal block maintained either at constant wall temperature(CWT) or uniform heat flux(UHF) thermal conditions. Governing equations(mass, momentum and energy) are solved by using finite volume method(FVM) with 3rd order accurate QUICK discretization scheme and SIMPLE algorithm for range of field pertinent parameters such as, Grashof number(10~3≤ Gr ≤ 10~6), Prandtl number(1 ≤ Pr ≤ 100) and power law index(0.5 ≤ n ≤ 1.5). The analysis of momentum and heat transfer characteristics are delineated by evolution of streamlines, isotherms, variation of average Nusselt number value and Colburn factor for natural convection(j_(nH)). A remarkable change is observed on fluid flow and thermal distribution pattern in cavity for both thermal conditions. Nusselt number shows linear variation with Grashof and Prandtl numbers; while rate of heat transfer by convection decreases for power law index value. Higher heat transfer rate can be achieved by using uniform heat flux condition. A Nusselt number correlation is developed for possible utilization in engineering/scientific design purpose.展开更多
This paper presents the effect of magnetic field, indicated by Hartmann number (Ha), on the free convective flow of Magneto-hydro-dynamic (MHD) fluid in a square cavity with a heated cone of different orientation. Alt...This paper presents the effect of magnetic field, indicated by Hartmann number (Ha), on the free convective flow of Magneto-hydro-dynamic (MHD) fluid in a square cavity with a heated cone of different orientation. Although similar studies abound, the novelty of this work lies in the presence of the heated cone, whose orientation is varied at different angles. The mathematical model includes the system of governing mass, momentum and energy equations. The system is solved by finite element method. The calculations are performed for Prandtl number Pr = 0.71;the Rayleigh number Ra = 10, 1000, 100,000;and for Hartmann number Ha = 0, 20, 50, 100. The results are illustrated with streamlines, velocity profiles and isotherms. From the results, it is found that for the present configuration, magnetic field (Hartmann number) has no effect on the shape of the streamlines for low Rayleigh numbers. However, for high values of Ra, the effect of Ha becomes quite visible. Magnetic field affects the flow by retarding the fluid movement, and thus affects convective heat transfer. At low Ra, the fluid movement and heat transfer rate are already slowing, thus impressing a magnetic field does not produce much effect. At high Ra, fluid particles move at high velocity and change the stream lines, in absence of any magnetic force. Impressing magnetic field in this situation produced noticeable effect by slowing down the fluid movement and changing the streamlines back to low Ra situations. It is noted that a combination of low Ra with zero or low Ha produces similar effects with the combination of high Ra and high Ha. It can be concluded that with increasing Ha, heat transfer mode in MHD fluid gradually changes toward conduction from convection. It can be surmised that sufficiently large Ha can potentially stop the fluid movement altogether. In that case, heat transfer would be fully by conduction.展开更多
Few studies jointly investigate thermal and turbulent effects. In general, these subjects are treated separately. The purpose of this paper is to use the Immersed Boundary Method (IBM) coupled with the Virtual Physica...Few studies jointly investigate thermal and turbulent effects. In general, these subjects are treated separately. The purpose of this paper is to use the Immersed Boundary Method (IBM) coupled with the Virtual Physical Model (VPM) to investigate incompressible two-dimensional Newtonian flow around a heated square cylinder at constant temperature on its surface with forced convection and turbulence. The VPM model dynamically evaluates the force that the fluid exerts on the immersed surface and the thermal exchange between both in the Reynolds numbers (Re) window 40 ≤ Re ≤ 5×103 . For simulations of turbulence the Smagorinsky and Spalart-Allmaras models are used. The first model uses the Large Eddy Simulation (LES) methodology and is based on the local equilibrium hypothesis for small scales associated with the Boussinesq hypothesis, such that the energy injected into the spectrum of the turbulence balances the energy dissipated by convective effects. The second model uses the concept Unsteady Reynolds Averaged Navier-Stokes Equations (URANS), with only one transport equation for turbulent viscosity, being calibrated in pressure gradient layers. The goal of this work is to analyse the combination of the heat-transfer phenomena with the turbulence for the thermo-fluid-structure interaction in a square cylinder. For this, it was developed a C/C++ code that requires low computational costs in regards to memory and computer facilities. It is observed that, with the increase of the Reynolds number, an increase of the drag coefficient occurs, as well as reinforces the influence of the pressure distribution downstream of the cylinder, which is strongly influenced by the formation and detachment of vortices on the upper and lower sides of the square cylinder.展开更多
Heat transfer characteristics of a small heated device have been investigated in a liquid bath with gas jetimpingement as function of gas flow rate,coolant temperature,liquid phsicochemical properties,heat flux,heat s...Heat transfer characteristics of a small heated device have been investigated in a liquid bath with gas jetimpingement as function of gas flow rate,coolant temperature,liquid phsicochemical properties,heat flux,heat source size,ambient pressure and the distance between jet and heated wall.The experimental results show that the agitation of liquid caused by gas jet bubbles increases greatly therate of heat transfer,and the evaporation of coolant near the wall,which was due to the concentration differencebetween gas-liquid interface and bulk gas phase,gives additional enhancement of heat transfer.The rate ofevaporation related to the bubble growth was mathematically formulated.By using the simultaneous heat and mass transfer model,the convective heat transfer coefficient and masstransfer coefficient can be deduced from the experimental results.In addition,the local heat transfer coefficient and the distribution of evaporation heat flux on the smallheated surface are investigated mathematically and experimentally.展开更多
基金support by the Federal Ministry of Education and Research(BMBF)under Grant No.05P21RFFA2supported by the Helmholtz Association under Grant No.ERC-RA-0041.
文摘We present in situ measurements of spectrally resolved X-ray scattering and X-ray diffraction from monocrystalline diamond samples heatedwith an intense pulse of heavy ions.In this way,we determine the samples’heating dynamics and their microscopic and macroscopic structuralintegrity over a timespan of several microseconds.Connecting the ratio of elastic to inelastic scattering with state-of-the-art density functionaltheory molecular dynamics simulations allows the inference of average temperatures around 1300 K,in agreement with predictions fromstopping power calculations.The simultaneous diffraction measurements show no hints of any volumetric graphitization of the material,butdo indicate the onset of fracture in the diamond sample.Our experiments pave the way for future studies at the Facility for Antiproton andIon Research,where a substantially increased intensity of the heavy ion beam will be available.
文摘Anomalous ion heat transport is analyzed in the T-10 tokamak plasma heated with electron cyclotron resonance heating(ECRH) in second-harmonic extra-ordinary mode. Predictive modeling with empirical scaling for Ohmical heat conductivity shows that in ECRH plasmas the calculated ion temperature could be overestimated, so an increase of anomalous ion heat transport is required. To study this effect two scans are presented: over the EC resonance position and over the ECRH power. The EC resonance position varies from the high-field side to the low-field side by variation of the toroidal magnetic field. The scan over the heating power is presented with on-axis and mixed ECRH regimes. Discharges with high anomalous ion heat transport are obtained in all considered regimes. In these discharges the power balance ion heat conductivity exceeds the neoclassical level by up to 10 times. The high ion heat transport regimes are distinguished by three parameters: the ratio Te/Ti, the normalized electron density gradient R/■, and the ion–ion collisionality νii~*. The combination of high Te/Ti, high νii~*, and R/■=6-10 results in values of normalized anomalous ion heat fluxes up to 10 times higher than in the low transport scenario.
文摘In this paper,experimental and numerical studies of heat transfer in a test local of side H=0.8 m heated from below are presented and compared.All the walls,the rest of the floor and the ceiling are made from plywood and polystyrene in sandwich form(3 mmplywood-3 cm polystyrene-3 mmplywood)just on one of the vertical walls contained a glazed door(2 H/3×0.15 m).This local is heated during two heating cycles by a square plate of iron the width L=0.6 H,which represents the heat source,its temperature Th is controlled.The plate is heated for two cycles by an adjustable set-point heat source placed just down the center of it.For each cycle,the heat source is switched“on”for 6 h and switched“off”for 6 h.The outdoor air temperature is kept constant at a low temperature Tc<Th.All measurements are carried out with k-type thermocouples and with flux meters.Results will be qualitatively presented for two cycles of heating in terms of temperatures and heat flux densitiesϕfor various positions of the test local.The temperature evolution of the center and the profile of the temperature along the vertical centerline are compared by two dimensions simulation using the lattice Boltzmann method.The comparison shows a good agreement with a difference that does not exceed±1℃.
文摘This paper proposes a mathematical modeling approach to examine the two-dimensional flow stagnates at x=0 over a heated stretchable sheet in a porous medium influenced by nonlinear thermal radiation,variable viscosity,and MHD.This study’s main purpose is to examine how thermal radiation and varying viscosity affect fluid flow motion.Additionally,we consider the convective boundary conditions and incorporate the gyrotactic microorganisms equation,which describes microorganism behavior in response to fluid flow.The partial differential equations(PDEs)that represent the conservation equations for mass,momentum,energy,and microorganisms are then converted into a system of coupled ordinary differential equations(ODEs)through the inclusion of nonsimilarity variables.Using MATLAB’s built-in solver bvp4c,the resulting ODEs are numerically solved.The model’s complexity is assessed by plotting two-dimensional graphics of the solution profiles at various physical parameter values.The physical parameters considered in this study include skin friction coefficient,local Nusselt number,local Sherwood number,and density of motile microorganisms.These parameters measure,respectively,the roughness of the sheet,the transformation rate of heat,the rate at which mass is transferred to it,and the rate at which microorganisms are transferred to it.Our study shows that,depending on the magnetic parameter M,the presence of a porous medium causes a significant increase in fluid velocity,ranging from about 25%to 45%.Furthermore,with an increase in the Prandtl number Pr,we have seen a notable improvement of about 6%in fluid thermal conductivity.Additionally,our latest findings are in good agreement with published research for particular values.This study provides valuable insights into the behavior of fluid flow under various physical conditions and can be useful in designing and optimizing industrial processes.
基金The financial supports provided by the National Natural Science Foundation of China(Grant Nos.41230636,41372265,41427801)National Basic Research Program of China(973 Project)(Grant No.2011CB710605)
文摘Distributed temperature sensing(DTS)using heated cables has been recently developed for distributed monitoring of in-situ soil moisture content.In this method,the thermal and electrical properties of heated cables have a significant influence on the measurement accuracy of soil moisture content.In this paper,the performances of two heated cables,i.e.the carbon-fiber heated cable(CFHC)and the metalnet heated cable(MNHC),are studied in the laboratory.Their structures,uniformity in the axial direction,measurement accuracy and suitability are evaluated.The test results indicate that the MNHC has a better uniformity in the axial direction than CFHC.Both CFHC and MNHC have high measurement accuracy.The CFHC is more suitable for short-distance measurement(500 m),while the MNHC can be used for longdistance measurement(>500 m).
基金The financial supports provided by the National Natural Science Foundation of China(Grant Nos.41230636,41372265,41427801)National Basic Research Program of China(973 Project)(Grant No.2011CB710605)
文摘Moisture content is a fundamental physical index that quantifies soil property and is closely associatedwith the hydrological, ecological and engineering behaviors of soil. To measure in-situ soil moisturecontents, a distributed measurement system for in-situ soil moisture content (SM-DTS) is introduced.The system is based on carbon-fiber heated cable (CFHC) technology that has been developed to enhancethe measuring accuracy of in-situ soil moisture content. Using CFHC technique, a temperature characteristicvalue (Tt) can be defined from temperatureetime curves. A relationship among Tt, soil thermalimpedance coefficient and soil moisture content is then established in laboratory. The feasibility of theSM-DTS technology to provide distributed measurements of in-situ soil moisture content is verifiedthrough field tests. The research reported herein indicates that the proposed SM-DTS is capable ofmeasuring in-situ soil moisture content over long distances and large areas.
基金Supported by Shanghai Special Foundation on Nanomaterials (0243nm305)
文摘A rapid and continuous method for production of LiFePO4/C nanoparticles in super heated water is described, wherein soluble starch was used as carbon precursor. The effects of pH, flow rate, temperature, and pressure on the formation of LiFePO4/C particles were investigated. Results showed that the pH value was the key factot on the formation of phase pure LiFePO4, which only formed at pH = 7; the LiFePO4/C-occurred as particles with about 70-200 nm size and LiFePO4 was covered by a thin carbon layer; higher flow rate, higher pressure, and lower temperature led to smaller particles of LiFePO4/C.
文摘The new technology of continuous casting by heated mold was used to produce directional solidification ZA alloy lines to eliminate the inter defects of these lines and increase their mechanical properties. The results are as follows: (1) The microstruc-ture of the ZA alloy lines is the parallel directional dendritic columnar crystal. Every dendritic crystal of eutectic alloy ZA5 was composed of many layer eutectic β and η phases. The micro structure of hypereutectic ZA alloys is primary dendritic crystal and interdendritic eutectic structure. The primary phase of ZA8 and ZA12 is β, among them, but the primary phase of ZA22 and ZA27 is a. (2) Through the test to the as-cast ZA alloy lines made in continuous casting by heated mold, it is found that the tensile strength and hardness increase greatly, but the elongation decreases. With the increase of aluminum amount from ZA 5 to ZA 12, ZA22 and ZA27, the tensile strength increases gradually. ZA27 has the best comprehensive mechanical properties in these four kinds of ZA alloys. (3) Heat treatment can decrease the dendritic segregation and improve the elongation of ZA alloy, but make their strength decrease slightly.
基金supported by the National Natural Science Foundation of China(Grant No.51979002).
文摘Soil water content measurement is critical in practical engineering.The actively heated fiber Bragg grating optic sensor(FBGS)has great potential of multi-point measurement for soil water content measurement in field.In this study,the effect of heating time on the measurement accuracy is discussed,and modifications are made for actively heated fiber optic(AHFO)sensors.The results demonstrate that if an integration data analysis method is used,the accuracy and reliability of soil water content measurement with AHFO sensors will be improved.Both a short fiber length and a short-term heating pattern are effective and can help to reduce soil disturbance.With the proposed integration method,a short heating time is guaranteed for measuring the soil water content.Such improvements will reduce the thermal disturbance to soil sample and improve the reliability of measurement.
基金Ministry of Earth Sciences,Government of India for financial support under the project grant no.MoES/16/25/10-RDEASDST,INSPIRE program by Department of Science and Technology,Government of India for financial support。
文摘Thermal conductivity(k)of iron is measured up to about 134 GPa.The measurements are carried out using the single sided laser heated diamond anvil cell,where the power absorbed by a Fe metal foil at hotspot is calculated using a novel thermodynamical method.Thermal conductivity of fee(γ)-Fe increases up to a pressure of about46 GPa.We find thermal conductivity values in the range of 70-80 Wm-1K-1(with an uncertainty of 40%),almost constant with pressure,in the hcp(e)phase of Fe.We attribute the pressure independent k above 46 GPa to the strong electronic correlation effects driven by the electronic topological transition(ETT).We predict a value of thermal conductivity ofε-Fe of about 40±16 Wm-1K-1 at the outer core of Earth.
基金Supported in part by the National Natural Science Foundation of China under Grant No.19975042.
文摘High-resolution transmission spectra of radiatively-heated low-z C10H16O6 plasma have been measured on‘Xingguang II’laser facility by using flat field grating spectrometer.Absorption lines of oxygen and carbon ions in the region of 1.6 to 5.0 nm have been observed clearly and identified.Using the unresolved transition array model,we also calculated the transmission spectra of C10H16O6 plasma.The measured transmission spectrum has been compared with the calculated ones.
文摘In kiln drying of softwood timber, external heat and moisture mass transfercoefficients are important in defining boundary temperature and moisture content at the woodsurface. In addition, superheated steam drying of wood is a promising technology but this has notbeen widely accepted commercially, partially due to the lack of understanding of the dryingphenomena occurred during drying. In this work, experimental investigation was performed to quantifythe heat transfer between wood surface and surrounding moist air or superheated steam. In theexperiment, saturated radiata pine sapwood samples were dried using dry-bulb/wet-bulb temperaturesof 60℃/50℃, 90℃/60℃, 120℃/70℃, 140℃/90℃, 160℃/90℃, 140℃/100℃ and 160℃/100℃. The lasttwo schedules were for superheated steam drying as the wet-bulb temperature was set at 100℃. Thecirculation velocity over the board surface was controlled at 4.2m·s^(-1). Two additional runs(90℃/60℃) using air velocities of 2.4 m·s^(-1) and 4.8 m·s^(-1) were performed to check theeffect of the circulation velocity. During drying, sample weight and temperatures at wood surfaceand different depths were continuously measured. Prom these measurements, changes in woodtemperature and moisture content were calculated and external heat-transfer coefficient wasdetermined for both the moist air and the superheated steam drying.
基金the Chinese Nature Science Funds under contract! number 19789501.
文摘Sawtooth activity on HT-7 tokamak has been investigated experimentally mainly by using soft x-ray diode array and magnetic probes. Their behaviors and occurrences are correlated closely to the discharge conditions: the electron density Ne, the electron temperature Te, the safety factor qa on plasma boundary and wall condition etc. When central line-averaged electron density Ne(0) is over 2.0×1013cm-3 , major sawtooth activity emerges with a period of up to 6.5 ms and a fluctuation amplitude of up to 2-30 % of SXR radiation signal. In some cases such as the safety factor between 4.2-4.7 and Zeff=3.0-6.0, a monster sawtooth activity often emerges without apparent deterioration of plasma confinement and without major disruption. During these events, abundant MHD phenomena are observed including partial sawtooth oscillations. In this paper, the observed sawtooth behaviors and their dependence on the and their dependence density Ne and wall condition in ohmically heated plasma are introduced, the results are discussed and presented.
基金supported by the Key Science and Technology of Jilin Province(Grant No.20140204070GX)
文摘Under the spirit of sustainable development, ‘lightweight’ has been gradually included into the vehicle design criterion by many manufacturers and used in automobile production. Following this trend, domestic wheel suppliers also begin to study the technology of lightweight wheel. One way to achieve this goal is improving strength grade of the steel and optimizing the structure design in the field of steel wheels. But there are a few problems in flash butt welding process in the application of high strength steel, leading to high rejection rates. SW400 steel is a special high strength wheel steel developed by Benxi Steel. Taking SW400 steel as the research material, this article studys the feasibility of improving the properties of rim flash butt welded joints by adding preheating process.
文摘The relationships between the surface quality of a single crystal copper ingot and the process parameters of heated mould continuous casting method were studied experimentally using our own design of horizontal heated mould continuous casting apparatus, and the mechanism by which process parameters affect the surface quality of a single crystal copper ingot is analyzed in the present paper. The results show that the process parameters affect the surface quality of a pure copper ingot by affecting the position of the liquid-solid interface in the mould. The position of the liquid-solid interface in the mould must be controlled carefully within an appropriate range, which is determined through a series of experiments, in order to gain a single crystal copper ingot with good surface quality.
文摘In this article,the rheology of Ferro-fluid over an axisymmetric heated disc with a variable magnetic field by considering the dispersion of hybrid nanoparticles is considered.The flow is assumed to be produced by the stretching of a rotating heated disc.The contribution of variable thermophysical properties is taken to explore themomentum,mass and thermal transportation.The concept of boundary layermechanismis engaged to reduce the complex problem into a simpler one in the form of coupled partial differential equations system.The complex coupled PDEs are converted into highly nonlinear coupled ordinary differential equations system(ODEs)and the resulting nonlinear flow problem is handled numerically.The solution is obtained via finite element procedure(FEP)and convergence is established by conducting the grid-independent survey.The solution of converted dimensionless problem containing fluid velocity,temperature and concentration field is plotted against numerous involved emerging parameters and their impact is noted.From the obtained solution,it is monitored that higher values of magnetic parameter retard the fluid flow and escalating values of Eckert number results in to enhance temperature profile.Ferro-fluid flow and heat energy for the case of the Yamada Ota hybrid model are higher than for the case of the Hamilton Crosser hybrid model.Developing a model is applicable to the printing process,electronic devices,temperature measurements,engineering process and food-making process.The amount of mass species is reduced vs.incline impacts of chemical reaction and Schmidt parameter.
文摘This work illustrates the steady state, two dimensional natural convective flow and heat transfer features in square enclosure containing heated hexagonal block maintained either at constant wall temperature(CWT) or uniform heat flux(UHF) thermal conditions. Governing equations(mass, momentum and energy) are solved by using finite volume method(FVM) with 3rd order accurate QUICK discretization scheme and SIMPLE algorithm for range of field pertinent parameters such as, Grashof number(10~3≤ Gr ≤ 10~6), Prandtl number(1 ≤ Pr ≤ 100) and power law index(0.5 ≤ n ≤ 1.5). The analysis of momentum and heat transfer characteristics are delineated by evolution of streamlines, isotherms, variation of average Nusselt number value and Colburn factor for natural convection(j_(nH)). A remarkable change is observed on fluid flow and thermal distribution pattern in cavity for both thermal conditions. Nusselt number shows linear variation with Grashof and Prandtl numbers; while rate of heat transfer by convection decreases for power law index value. Higher heat transfer rate can be achieved by using uniform heat flux condition. A Nusselt number correlation is developed for possible utilization in engineering/scientific design purpose.
文摘This paper presents the effect of magnetic field, indicated by Hartmann number (Ha), on the free convective flow of Magneto-hydro-dynamic (MHD) fluid in a square cavity with a heated cone of different orientation. Although similar studies abound, the novelty of this work lies in the presence of the heated cone, whose orientation is varied at different angles. The mathematical model includes the system of governing mass, momentum and energy equations. The system is solved by finite element method. The calculations are performed for Prandtl number Pr = 0.71;the Rayleigh number Ra = 10, 1000, 100,000;and for Hartmann number Ha = 0, 20, 50, 100. The results are illustrated with streamlines, velocity profiles and isotherms. From the results, it is found that for the present configuration, magnetic field (Hartmann number) has no effect on the shape of the streamlines for low Rayleigh numbers. However, for high values of Ra, the effect of Ha becomes quite visible. Magnetic field affects the flow by retarding the fluid movement, and thus affects convective heat transfer. At low Ra, the fluid movement and heat transfer rate are already slowing, thus impressing a magnetic field does not produce much effect. At high Ra, fluid particles move at high velocity and change the stream lines, in absence of any magnetic force. Impressing magnetic field in this situation produced noticeable effect by slowing down the fluid movement and changing the streamlines back to low Ra situations. It is noted that a combination of low Ra with zero or low Ha produces similar effects with the combination of high Ra and high Ha. It can be concluded that with increasing Ha, heat transfer mode in MHD fluid gradually changes toward conduction from convection. It can be surmised that sufficiently large Ha can potentially stop the fluid movement altogether. In that case, heat transfer would be fully by conduction.
基金the partial support by CMUP(UID/MAT/00144/2013),which is funded by FCT(Portugal)with national(MCTES)and European structural funds(FEDER),under the partnership agreement PT2020-ext.to 2018the financial support by CAPES(Brazil)SG acknowledges the Project STRIDE-NORTE-01-0145-FEDER-000033,funded by ERDF NORTE 2020.
文摘Few studies jointly investigate thermal and turbulent effects. In general, these subjects are treated separately. The purpose of this paper is to use the Immersed Boundary Method (IBM) coupled with the Virtual Physical Model (VPM) to investigate incompressible two-dimensional Newtonian flow around a heated square cylinder at constant temperature on its surface with forced convection and turbulence. The VPM model dynamically evaluates the force that the fluid exerts on the immersed surface and the thermal exchange between both in the Reynolds numbers (Re) window 40 ≤ Re ≤ 5×103 . For simulations of turbulence the Smagorinsky and Spalart-Allmaras models are used. The first model uses the Large Eddy Simulation (LES) methodology and is based on the local equilibrium hypothesis for small scales associated with the Boussinesq hypothesis, such that the energy injected into the spectrum of the turbulence balances the energy dissipated by convective effects. The second model uses the concept Unsteady Reynolds Averaged Navier-Stokes Equations (URANS), with only one transport equation for turbulent viscosity, being calibrated in pressure gradient layers. The goal of this work is to analyse the combination of the heat-transfer phenomena with the turbulence for the thermo-fluid-structure interaction in a square cylinder. For this, it was developed a C/C++ code that requires low computational costs in regards to memory and computer facilities. It is observed that, with the increase of the Reynolds number, an increase of the drag coefficient occurs, as well as reinforces the influence of the pressure distribution downstream of the cylinder, which is strongly influenced by the formation and detachment of vortices on the upper and lower sides of the square cylinder.
基金The project supported by National Natural Science Foundation of China.
文摘Heat transfer characteristics of a small heated device have been investigated in a liquid bath with gas jetimpingement as function of gas flow rate,coolant temperature,liquid phsicochemical properties,heat flux,heat source size,ambient pressure and the distance between jet and heated wall.The experimental results show that the agitation of liquid caused by gas jet bubbles increases greatly therate of heat transfer,and the evaporation of coolant near the wall,which was due to the concentration differencebetween gas-liquid interface and bulk gas phase,gives additional enhancement of heat transfer.The rate ofevaporation related to the bubble growth was mathematically formulated.By using the simultaneous heat and mass transfer model,the convective heat transfer coefficient and masstransfer coefficient can be deduced from the experimental results.In addition,the local heat transfer coefficient and the distribution of evaporation heat flux on the smallheated surface are investigated mathematically and experimentally.