An improved LEACH for heterogeneous wireless sensor networks is proposed. Nodes are distributed in a sensing area that is divided into a number of same equilateral hexagons. Heterogeneous nodes act as the cluster head...An improved LEACH for heterogeneous wireless sensor networks is proposed. Nodes are distributed in a sensing area that is divided into a number of same equilateral hexagons. Heterogeneous nodes act as the cluster heads and ordinary nodes act as those cluster sensors in all clusters. The structure of WSNs is a two-layer structure. The upper layer consists of all cluster heads and the lower layer consists of all ordinary sensors managed by their corresponding cluster heads. The cluster heads and the ordinary sensors establish their pairwise keys respectively through utilizing different methods. The arithmetic balances energy expense among all kinds of nodes, saves the node energy, and prolongs the life of wireless sensor networks. Additionally, Analysis demonstrates that the security of wireless sensor networks has been improved obviously even with some heterogeneous nodes.展开更多
A heterogeneous wireless sensor network comprises a number of inexpensive energy constrained wireless sensor nodes which collect data from the sensing environment and transmit them toward the improved cluster head in ...A heterogeneous wireless sensor network comprises a number of inexpensive energy constrained wireless sensor nodes which collect data from the sensing environment and transmit them toward the improved cluster head in a coordinated way. Employing clustering techniques in such networks can achieve balanced energy consumption of member nodes and prolong the network lifetimes.In classical clustering techniques, clustering and in-cluster data routes are usually separated into independent operations. Although separate considerations of these two issues simplify the system design, it is often the non-optimal lifetime expectancy for wireless sensor networks. This paper proposes an integral framework that integrates these two correlated items in an interactive entirety. For that,we develop the clustering problems using nonlinear programming. Evolution process of clustering is provided in simulations. Results show that our joint-design proposal reaches the near optimal match between member nodes and cluster heads.展开更多
In order to achieve low-latency and high-reliability data gathering in heterogeneous wireless sensor networks(HWSNs),the problem of multi-channel-based data gathering with minimum latency(MCDGML),which associates with...In order to achieve low-latency and high-reliability data gathering in heterogeneous wireless sensor networks(HWSNs),the problem of multi-channel-based data gathering with minimum latency(MCDGML),which associates with construction of data gathering trees,channel allocation,power assignment of nodes and link scheduling,is formulated as an optimization problem in this paper.Then,the optimization problem is proved to be NP-hard.To make the problem tractable,firstly,a multi-channel-based low-latency(MCLL)algorithm that constructs data gathering trees is proposed by optimizing the topology of nodes.Secondly,a maximum links scheduling(MLS)algorithm is proposed to further reduce the latency of data gathering,which ensures that the signal to interference plus noise ratio(SINR)of all scheduled links is not less than a certain threshold to guarantee the reliability of links.In addition,considering the interruption problem of data gathering caused by dead nodes or failed links,a robust mechanism is proposed by selecting certain assistant nodes based on the defined one-hop weight.A number of simulation results show that our algorithms can achieve a lower data gathering latency than some comparable data gathering algorithms while guaranteeing the reliability of links,and a higher packet arrival rate at the sink node can be achieved when the proposed algorithms are performed with the robust mechanism.展开更多
Heterogeneous wireless sensor networks(HWSNs)are vulnerable to malware propagation,because of their low configuration and weak defense mechanism.Therefore,an optimality system for HWSNs is developed to suppress malwar...Heterogeneous wireless sensor networks(HWSNs)are vulnerable to malware propagation,because of their low configuration and weak defense mechanism.Therefore,an optimality system for HWSNs is developed to suppress malware propagation in this paper.Firstly,a heterogeneous-susceptible-exposed-infectious-recovered-susceptible(HSEIRS)model is proposed to describe the state dynamics of heterogeneous sensor nodes(HSNs)in HWSNs.Secondly,the existence of an optimal control problem with installing antivirus on HSNs to minimize the sum of the cumulative infection probabilities of HWSNs at a low cost based on the HSEIRS model is proved,and then an optimal control strategy for the problem is derived by the optimal control theory.Thirdly,the optimal control strategy based on the HSEIRS model is transformed into corresponding Hamiltonian by the Pontryagin’s minimum principle,and the corresponding optimality system is derived.Finally,the effectiveness of the optimality system is validated by the experimental simulations,and the results show that the infectious HSNs will fall to an extremely low level at a low cost.展开更多
文摘An improved LEACH for heterogeneous wireless sensor networks is proposed. Nodes are distributed in a sensing area that is divided into a number of same equilateral hexagons. Heterogeneous nodes act as the cluster heads and ordinary nodes act as those cluster sensors in all clusters. The structure of WSNs is a two-layer structure. The upper layer consists of all cluster heads and the lower layer consists of all ordinary sensors managed by their corresponding cluster heads. The cluster heads and the ordinary sensors establish their pairwise keys respectively through utilizing different methods. The arithmetic balances energy expense among all kinds of nodes, saves the node energy, and prolongs the life of wireless sensor networks. Additionally, Analysis demonstrates that the security of wireless sensor networks has been improved obviously even with some heterogeneous nodes.
基金supported by National Natural Science Foundation of China(Nos.61304131 and 61402147)Grant of China Scholarship Council(No.201608130174)+2 种基金Natural Science Foundation of Hebei Province(Nos.F2016402054 and F2014402075)the Scientific Research Plan Projects of Hebei Education Department(Nos.BJ2014019,ZD2015087 and QN2015046)the Research Program of Talent Cultivation Project in Hebei Province(No.A2016002023)
文摘A heterogeneous wireless sensor network comprises a number of inexpensive energy constrained wireless sensor nodes which collect data from the sensing environment and transmit them toward the improved cluster head in a coordinated way. Employing clustering techniques in such networks can achieve balanced energy consumption of member nodes and prolong the network lifetimes.In classical clustering techniques, clustering and in-cluster data routes are usually separated into independent operations. Although separate considerations of these two issues simplify the system design, it is often the non-optimal lifetime expectancy for wireless sensor networks. This paper proposes an integral framework that integrates these two correlated items in an interactive entirety. For that,we develop the clustering problems using nonlinear programming. Evolution process of clustering is provided in simulations. Results show that our joint-design proposal reaches the near optimal match between member nodes and cluster heads.
基金This work was supported by the Natural Science Foun-dation of China(Nos.U1334210 and 61374059).
文摘In order to achieve low-latency and high-reliability data gathering in heterogeneous wireless sensor networks(HWSNs),the problem of multi-channel-based data gathering with minimum latency(MCDGML),which associates with construction of data gathering trees,channel allocation,power assignment of nodes and link scheduling,is formulated as an optimization problem in this paper.Then,the optimization problem is proved to be NP-hard.To make the problem tractable,firstly,a multi-channel-based low-latency(MCLL)algorithm that constructs data gathering trees is proposed by optimizing the topology of nodes.Secondly,a maximum links scheduling(MLS)algorithm is proposed to further reduce the latency of data gathering,which ensures that the signal to interference plus noise ratio(SINR)of all scheduled links is not less than a certain threshold to guarantee the reliability of links.In addition,considering the interruption problem of data gathering caused by dead nodes or failed links,a robust mechanism is proposed by selecting certain assistant nodes based on the defined one-hop weight.A number of simulation results show that our algorithms can achieve a lower data gathering latency than some comparable data gathering algorithms while guaranteeing the reliability of links,and a higher packet arrival rate at the sink node can be achieved when the proposed algorithms are performed with the robust mechanism.
基金National Natural Science Foundation of China(No.61772018)Zhejiang Provincial Natural Science Foundation of China(No.LZ22F020002)。
文摘Heterogeneous wireless sensor networks(HWSNs)are vulnerable to malware propagation,because of their low configuration and weak defense mechanism.Therefore,an optimality system for HWSNs is developed to suppress malware propagation in this paper.Firstly,a heterogeneous-susceptible-exposed-infectious-recovered-susceptible(HSEIRS)model is proposed to describe the state dynamics of heterogeneous sensor nodes(HSNs)in HWSNs.Secondly,the existence of an optimal control problem with installing antivirus on HSNs to minimize the sum of the cumulative infection probabilities of HWSNs at a low cost based on the HSEIRS model is proved,and then an optimal control strategy for the problem is derived by the optimal control theory.Thirdly,the optimal control strategy based on the HSEIRS model is transformed into corresponding Hamiltonian by the Pontryagin’s minimum principle,and the corresponding optimality system is derived.Finally,the effectiveness of the optimality system is validated by the experimental simulations,and the results show that the infectious HSNs will fall to an extremely low level at a low cost.