This study investigates the single-pass absorption(SPA) of ion cyclotron range of frequency(ICRF) heating in hydrogen plasma of the EXL-50U spherical tokamak,which is an upgraded EXL-50 device with a central solenoid ...This study investigates the single-pass absorption(SPA) of ion cyclotron range of frequency(ICRF) heating in hydrogen plasma of the EXL-50U spherical tokamak,which is an upgraded EXL-50 device with a central solenoid and a stronger magnetic field.The reliability of the kinetic dispersion equation is confirmed by the one-dimensional full-wave code,and the applicability of Porkolab's simplified theoretical SPA model is discussed based on the kinetic dispersion equation.Simulations are conducted to investigate the heating effects of the fundamental and second harmonic frequencies.The results indicate that with the design parameters of the EXL-50U device,the SPA for second harmonic heating is 63%,while the SPA for fundamental heating is 13%.Additionally,the optimal injection frequencies are 23 MHz at 0.9 T and 31 MHz at 1.2 T.The wave vector of the antenna parallel to the magnetic field,with a value of k_‖=7.5 m^(-1),falls within the optimal heating region.Simulations reveal that the ICRF heating system can play an important role in the ion heating of the EXL-50U.展开更多
Anomalous ion heat transport is analyzed in the T-10 tokamak plasma heated with electron cyclotron resonance heating(ECRH) in second-harmonic extra-ordinary mode. Predictive modeling with empirical scaling for Ohmical...Anomalous ion heat transport is analyzed in the T-10 tokamak plasma heated with electron cyclotron resonance heating(ECRH) in second-harmonic extra-ordinary mode. Predictive modeling with empirical scaling for Ohmical heat conductivity shows that in ECRH plasmas the calculated ion temperature could be overestimated, so an increase of anomalous ion heat transport is required. To study this effect two scans are presented: over the EC resonance position and over the ECRH power. The EC resonance position varies from the high-field side to the low-field side by variation of the toroidal magnetic field. The scan over the heating power is presented with on-axis and mixed ECRH regimes. Discharges with high anomalous ion heat transport are obtained in all considered regimes. In these discharges the power balance ion heat conductivity exceeds the neoclassical level by up to 10 times. The high ion heat transport regimes are distinguished by three parameters: the ratio Te/Ti, the normalized electron density gradient R/■, and the ion–ion collisionality νii~*. The combination of high Te/Ti, high νii~*, and R/■=6-10 results in values of normalized anomalous ion heat fluxes up to 10 times higher than in the low transport scenario.展开更多
According to the physics of tokamak start-up,this study constructs a zero-dimensional(0D)model applicable to electron cyclotron(EC)wave assisted start-up in NCST spherical torus(spherical tokamak)and CN-H1 stellarator...According to the physics of tokamak start-up,this study constructs a zero-dimensional(0D)model applicable to electron cyclotron(EC)wave assisted start-up in NCST spherical torus(spherical tokamak)and CN-H1 stellarators.Using the constructed 0D model,the results obtained in this study under the same conditions are compared and validated against reference results for pure hydrogen plasma start-up in tokamak.The results are in good agreement,especially regarding electron temperature,ion temperature and plasma current.In the presence of finite Ohmic electric field in the spherical tokamak,a study on the EC wave assisted start-up of the NCST plasma at frequency of 28 GHz is conducted.The impact of the vertical magnetic field B_(v)on EC wave assisted start-up,the relationship between EC wave injection power P_(inj),Ohmic electric field E,and initial hydrogen atom density n_(H0)are explored separately.It is found that under conditions of Ohmic electric field lower than ITER(~0.3 V m^(-1)),EC wave can expand the operational space to achieve better plasma parameters.Simulating the process of28 GHz EC wave start-up in the CN-H1 stellarator plasma,the plasma current in the zerodimensional model is replaced with the current in the poloidal coil of the stellarator.Plasma startup can be successfully achieved at injection powers in the hundreds of kilowatts range,resulting in electron densities on the order of 10^(17)-10^(18)m^(-3).展开更多
Through theoretical analysis,we construct a physical model that includes the influence of counter-external driven current opposite to the plasma current direction in the neoclassical tearing mode(NTM).The equation is ...Through theoretical analysis,we construct a physical model that includes the influence of counter-external driven current opposite to the plasma current direction in the neoclassical tearing mode(NTM).The equation is used with this model to obtain the modified Rutherford equation with co-current and counter-current contributions.Consistent with the reported experimental results,numerical simulations have shown that the localized counter external current can only partially suppress NTM when it is far from the resonant magnetic surface.Under some circumstances,the Ohkawa mechanism dominated current drive(OKCD)by electron cyclotron waves can concurrently create both co-current and counter-current.In this instance,the minimal electron cyclotron wave power that suppresses a particular NTM was calculated by the Rutherford equation.The result is marginally less than when taking co-current alone into consideration.As a result,to suppress NTM using OKCD,one only needs to align the co-current with a greater OKCD peak well with the resonant magnetic surface.The effect of its lower counter-current does not need to be considered because the location of the counter-current deviates greatly from the resonant magnetic surface.展开更多
Stabilization of tearing modes and neoclassical tearing modes is of great importance for tokamak operation.Electron cyclotron waves(ECWs)have been extensively used to stabilize the tearing modes with the virtue of hig...Stabilization of tearing modes and neoclassical tearing modes is of great importance for tokamak operation.Electron cyclotron waves(ECWs)have been extensively used to stabilize the tearing modes with the virtue of highly localized power deposition.Complete suppression of the m/n=2/1 tearing mode(TM)by electron cyclotron resonance heating(ECRH)has been achieved successfully on the J-TEXT tokamak.The effects of ECW deposition location and power amplitude on the 2/1 TM suppression have been investigated.It is found that the suppression is more effective when the ECW power is deposited closer to the rational surface.As the ECW power increases to approximately 230 k W,the 2/1 TM can be completely suppressed.The island rotation frequency is increased when the island width is reduced.The experimental results show that the local heating inside the magnetic island and the resulting temperature perturbation increase at the O-point of the island play dominant roles in TM suppression.As the ECW power increases,the 2/1 island is suppressed to smaller island width,and the flow shear also plays a stabilizing effect on small magnetic islands.With the stabilizing contribution of heating and flow shear,the 2/1 TM can be completely suppressed.展开更多
The electron cyclotron emission(ECE)diagnostic system has been developed on the ENN spherical torus(EXL-50).The ECE system is designed to detect radiation emitted by energetic electrons,rather than conventional 1D ele...The electron cyclotron emission(ECE)diagnostic system has been developed on the ENN spherical torus(EXL-50).The ECE system is designed to detect radiation emitted by energetic electrons,rather than conventional 1D electron temperature profile measurement,in the frequency range of 4-40 GHz.The system is composed of five subsystems,each covering a different frequency band,including the C-band(4-8 GHz),X-band(8-12 GHz),Ku-band(12-18 GHz),K-band(18-26.5 GHz)and Kα-band(26.4-40 GHz).The system uses heterodyne detection to analyze the received signals.The K-band and Kα-band subsystems are located horizontally in the equatorial plane of the EXL-50,while the C-band,X-band and Ku-band subsystems are located under the vacuum vessel of the EXL-50.To direct the microwaves from the plasma to the antennas for the horizontal detection subsystems,a quasi-optical system has been developed.For the vertical detection subsystems,the antennas are directly attached to the port located beneath the torus at R=700 mm,which is also the magnetic axis of the torus.The system integration,bench testing and initial experimental results will be thoroughly discussed,providing a comprehensive understanding of the ECE system s performance and capabilities.展开更多
This paper describes the experimental analysis and preliminary investigation of the predictability of pitch angle scattering(PAS) events through the electron cyclotron emission(ECE)radiometer signals at the ADITYA-Upg...This paper describes the experimental analysis and preliminary investigation of the predictability of pitch angle scattering(PAS) events through the electron cyclotron emission(ECE)radiometer signals at the ADITYA-Upgrade(ADITYA-U) tokamak. For low-density discharges at ADITYA-U, a sudden abnormal rise is observed in the ECE signature while other plasma parameters are unchanged. Investigations are done to understand this abrupt rise that is expected to occur due to PAS. The rise time is as fast as 100 μs with a single step and/or multiple step rise in ECE radiometer measurements. This event is known to limit the on-axis energy of runaway electrons. Being a repetitive event, the conditions of its repetitive occurrence can be investigated, thereby exploring the possibility of it being triggered and surveyed as an alternate runaway electron mitigation plan. Functional parameterization of such events with other discharge parameters is obtained and the possibility to trigger these events is discussed.PREDICT code is used to investigate the possible interpretations for the PAS occurrence through modeling and supporting the ECE observations. The trigger values so obtained experimentally are set as input criteria for PAS occurrence. Preliminary modeling investigations provide reliable consistency with the findings.展开更多
A high-current vacuum arc (HCVA) with the consideration of anode vapor is modeled and simulated. First, from the HCVA column model, the heat flux density to the anode is obtained, which is put into the anode activit...A high-current vacuum arc (HCVA) with the consideration of anode vapor is modeled and simulated. First, from the HCVA column model, the heat flux density to the anode is obtained, which is put into the anode activity model, and the parameter distributions (such as the vapor temperature and velocity) of anode vapor are obtained from the simulation results of the anode activity model. Then, by iterating and calculating the HCVA column model and anode activity model, the interaction between the HCVA column and the anode vapor is simulated and analyzed. In the simulation, the distribution of the axial magnetic field (AMF) generated by the electrode system is calculated by software ANSYS. The simulation results show that the influence of anode vapor on the parameter distributions in the arc column is significant. The simulation results are also compared with the vacuum arc photograph.展开更多
The gradual advances of offshore oil and gas exploitation and the development tendency of equipment integration have prompted the design of a new type of the high-current composite umbilical to meet development needs....The gradual advances of offshore oil and gas exploitation and the development tendency of equipment integration have prompted the design of a new type of the high-current composite umbilical to meet development needs.In order to study the mechanical behavior of the high-current composite umbilical(HCCU)and provide design suggestions,a theoretical analysis framework of the tension-torsion coupled behavior of the spirally wound structure is proposed,which focuses more on the radial mechanical behavior.Then,by considering the mechanical and thermal conditions during the operation of HCCU,a semi-analytical method of the tension and torsion stiffness of the high-current composite umbilical considering the temperature effect is established.Furthermore,a practical case of HCCU is given,and the thermal effect on the radial and axial mechanical behaviors are analyzed.It is found that the thermal effect has a significant influence on the radial stiffness,and shows non-linear variation characteristics.Finally,the sensitivity analysis is carried out to study the influence of the design parameter on the stiffness of tension and torsion.The results indicated that the equivalent radial stiffness and helical angle have obvious effect on the tension-torsion coupled stiffness,which can provide reasonable reference for the design of HCCU.展开更多
The present paper reports the rapid surface alloying induced by the bombardment of high-current pulsed electron beam. Two kinds of substrate materials were examined to show this effect. The first sample was a pure Al ...The present paper reports the rapid surface alloying induced by the bombardment of high-current pulsed electron beam. Two kinds of substrate materials were examined to show this effect. The first sample was a pure Al metal pre-coated with fine carbon powders prior to the bombardment, and the second alloy is the D2-Crl2MolVl mould steel pre-coated with Cr, Ti, and TiN powders. The surface elements diffuse about several micrometers into the substrate materials only after several bombardments. Tribological behaviors of these samples were characterized and significant improvement in wear resistance was found. Finally, a TEM analysis reveals the presence of stress waves generated by coupled thermal and stress fields, which was considered as the main cause of the enhanced properties.展开更多
A power-supply system was developed for Ohmic heating(OH)to double×10^(18)the amount of change magnetic flux in the primary central solenoid(CS)on the QUEST spherical tokamak.Two power supplies are connected with...A power-supply system was developed for Ohmic heating(OH)to double×10^(18)the amount of change magnetic flux in the primary central solenoid(CS)on the QUEST spherical tokamak.Two power supplies are connected with stacks of insulated-gate bipolar transistors,and sequentially operated to generate positive and negative CS currents.This bipolar power-supply system is controlled via a field-programmable gate array,which guarantees the safety of the entire system operation.The new OH system,assisted by electron cyclotron heating,enables the stable generation of plasma currents exceeding 100 k A.Moreover,the achieved electron density over the wide range in the major radial direction exceeds the cut-off density for one of the highpower microwave sources in QUEST.This strategy yields target plasmas for future experiments with the electron Bernstein wave.展开更多
离子回旋射频(Ion Cyclotron Range of Frequencies,ICRF)波加热是托卡马克装置上至关重要的辅助加热方式之一。托卡马克装置中国环流三号(HL-3,原名HL-2M)拟安装加热功率为6 MW的ICRF加热系统。本工作利用TRANSP程序,模拟并研究了ICRF...离子回旋射频(Ion Cyclotron Range of Frequencies,ICRF)波加热是托卡马克装置上至关重要的辅助加热方式之一。托卡马克装置中国环流三号(HL-3,原名HL-2M)拟安装加热功率为6 MW的ICRF加热系统。本工作利用TRANSP程序,模拟并研究了ICRF加热的频率和功率对聚变中子产额以及快离子分布的影响。研究结果表明:ICRF的频率和功率对中子产额有显著影响,固定ICRF频率时,中子产额与加热功率成正比关系,而在固定ICRF加热功率的情况下,中子产额的增加幅度显著依赖ICRF的频率,在研究参数范围内,30 MHz的ICRF对中子产额的增加具有最显著的增强作用。快离子分布的模拟结果显示,在考虑ICRF加热后,中性束和ICRF的协同加热机制能够将快离子加热至最高1 MeV,有效地提高了中子产额。此外,基于中子相机诊断的概念对中子信号进行了仿真。结果表明,中子相机能够有效地测量到由ICRF加热导致的中子产额高低和分布剖面的变化,这为将来优化中子相机诊断系统设计和测量中子空间分布提供了一定的参考。展开更多
基金supported by the National Magnetic Confinement Fusion Energy Program of China (No.2018 YFE0311300)the High-End Talents Program of Hebei Province, Innovative Approaches Towards Development of Carbon-Free Clean Fusion Energy (No.2021HBQZYCSB 006)the Compact Fusion Project of the ENN Group。
文摘This study investigates the single-pass absorption(SPA) of ion cyclotron range of frequency(ICRF) heating in hydrogen plasma of the EXL-50U spherical tokamak,which is an upgraded EXL-50 device with a central solenoid and a stronger magnetic field.The reliability of the kinetic dispersion equation is confirmed by the one-dimensional full-wave code,and the applicability of Porkolab's simplified theoretical SPA model is discussed based on the kinetic dispersion equation.Simulations are conducted to investigate the heating effects of the fundamental and second harmonic frequencies.The results indicate that with the design parameters of the EXL-50U device,the SPA for second harmonic heating is 63%,while the SPA for fundamental heating is 13%.Additionally,the optimal injection frequencies are 23 MHz at 0.9 T and 31 MHz at 1.2 T.The wave vector of the antenna parallel to the magnetic field,with a value of k_‖=7.5 m^(-1),falls within the optimal heating region.Simulations reveal that the ICRF heating system can play an important role in the ion heating of the EXL-50U.
文摘Anomalous ion heat transport is analyzed in the T-10 tokamak plasma heated with electron cyclotron resonance heating(ECRH) in second-harmonic extra-ordinary mode. Predictive modeling with empirical scaling for Ohmical heat conductivity shows that in ECRH plasmas the calculated ion temperature could be overestimated, so an increase of anomalous ion heat transport is required. To study this effect two scans are presented: over the EC resonance position and over the ECRH power. The EC resonance position varies from the high-field side to the low-field side by variation of the toroidal magnetic field. The scan over the heating power is presented with on-axis and mixed ECRH regimes. Discharges with high anomalous ion heat transport are obtained in all considered regimes. In these discharges the power balance ion heat conductivity exceeds the neoclassical level by up to 10 times. The high ion heat transport regimes are distinguished by three parameters: the ratio Te/Ti, the normalized electron density gradient R/■, and the ion–ion collisionality νii~*. The combination of high Te/Ti, high νii~*, and R/■=6-10 results in values of normalized anomalous ion heat fluxes up to 10 times higher than in the low transport scenario.
基金supported by the National Key Research and Development Program of China(Nos.2022YFE03070000 and 2022YFE03070003)National Natural Science Foundation of China(Nos.12375220 and 12075114)。
文摘According to the physics of tokamak start-up,this study constructs a zero-dimensional(0D)model applicable to electron cyclotron(EC)wave assisted start-up in NCST spherical torus(spherical tokamak)and CN-H1 stellarators.Using the constructed 0D model,the results obtained in this study under the same conditions are compared and validated against reference results for pure hydrogen plasma start-up in tokamak.The results are in good agreement,especially regarding electron temperature,ion temperature and plasma current.In the presence of finite Ohmic electric field in the spherical tokamak,a study on the EC wave assisted start-up of the NCST plasma at frequency of 28 GHz is conducted.The impact of the vertical magnetic field B_(v)on EC wave assisted start-up,the relationship between EC wave injection power P_(inj),Ohmic electric field E,and initial hydrogen atom density n_(H0)are explored separately.It is found that under conditions of Ohmic electric field lower than ITER(~0.3 V m^(-1)),EC wave can expand the operational space to achieve better plasma parameters.Simulating the process of28 GHz EC wave start-up in the CN-H1 stellarator plasma,the plasma current in the zerodimensional model is replaced with the current in the poloidal coil of the stellarator.Plasma startup can be successfully achieved at injection powers in the hundreds of kilowatts range,resulting in electron densities on the order of 10^(17)-10^(18)m^(-3).
基金Project supported by the National Key R&D Program of China(Grant Nos.2022YFE03070000 and 2022YFE03070003)the National Natural Science Foundation of China(Grant Nos.12375220 and 12075114)+3 种基金the Hunan Provincial Natural Science Foundation(Grant No.2021JJ30569)the Doctoral Initiation Fund Project of University of South China(Grant No.190XQD114)the Hunan Nuclear Fusion International Science and Technology Innovation Cooperation Base(Grant No.2018WK4009)the Hengyang Key Laboratory of Magnetic Confinement Nuclear Fusion Research(Grant No.2018KJ108)。
文摘Through theoretical analysis,we construct a physical model that includes the influence of counter-external driven current opposite to the plasma current direction in the neoclassical tearing mode(NTM).The equation is used with this model to obtain the modified Rutherford equation with co-current and counter-current contributions.Consistent with the reported experimental results,numerical simulations have shown that the localized counter external current can only partially suppress NTM when it is far from the resonant magnetic surface.Under some circumstances,the Ohkawa mechanism dominated current drive(OKCD)by electron cyclotron waves can concurrently create both co-current and counter-current.In this instance,the minimal electron cyclotron wave power that suppresses a particular NTM was calculated by the Rutherford equation.The result is marginally less than when taking co-current alone into consideration.As a result,to suppress NTM using OKCD,one only needs to align the co-current with a greater OKCD peak well with the resonant magnetic surface.The effect of its lower counter-current does not need to be considered because the location of the counter-current deviates greatly from the resonant magnetic surface.
基金supported by the National Magnetic Confinement Fusion Energy R&D Program of China(No.2019YFE03010004)the Hubei Provincial Natural Science Foundation of China(No.2022CFA072)National Natural Science Foundation of China(No.51821005)。
文摘Stabilization of tearing modes and neoclassical tearing modes is of great importance for tokamak operation.Electron cyclotron waves(ECWs)have been extensively used to stabilize the tearing modes with the virtue of highly localized power deposition.Complete suppression of the m/n=2/1 tearing mode(TM)by electron cyclotron resonance heating(ECRH)has been achieved successfully on the J-TEXT tokamak.The effects of ECW deposition location and power amplitude on the 2/1 TM suppression have been investigated.It is found that the suppression is more effective when the ECW power is deposited closer to the rational surface.As the ECW power increases to approximately 230 k W,the 2/1 TM can be completely suppressed.The island rotation frequency is increased when the island width is reduced.The experimental results show that the local heating inside the magnetic island and the resulting temperature perturbation increase at the O-point of the island play dominant roles in TM suppression.As the ECW power increases,the 2/1 island is suppressed to smaller island width,and the flow shear also plays a stabilizing effect on small magnetic islands.With the stabilizing contribution of heating and flow shear,the 2/1 TM can be completely suppressed.
基金performed under the auspices of National Natural Science Foundation of China(No.11605244)supported by the High-End Talents Program of Hebei Province,Innovative Approaches towards Development of CarbonFree Clean Fusion Energy(No.2021HBQZYCSB006)。
文摘The electron cyclotron emission(ECE)diagnostic system has been developed on the ENN spherical torus(EXL-50).The ECE system is designed to detect radiation emitted by energetic electrons,rather than conventional 1D electron temperature profile measurement,in the frequency range of 4-40 GHz.The system is composed of five subsystems,each covering a different frequency band,including the C-band(4-8 GHz),X-band(8-12 GHz),Ku-band(12-18 GHz),K-band(18-26.5 GHz)and Kα-band(26.4-40 GHz).The system uses heterodyne detection to analyze the received signals.The K-band and Kα-band subsystems are located horizontally in the equatorial plane of the EXL-50,while the C-band,X-band and Ku-band subsystems are located under the vacuum vessel of the EXL-50.To direct the microwaves from the plasma to the antennas for the horizontal detection subsystems,a quasi-optical system has been developed.For the vertical detection subsystems,the antennas are directly attached to the port located beneath the torus at R=700 mm,which is also the magnetic axis of the torus.The system integration,bench testing and initial experimental results will be thoroughly discussed,providing a comprehensive understanding of the ECE system s performance and capabilities.
文摘This paper describes the experimental analysis and preliminary investigation of the predictability of pitch angle scattering(PAS) events through the electron cyclotron emission(ECE)radiometer signals at the ADITYA-Upgrade(ADITYA-U) tokamak. For low-density discharges at ADITYA-U, a sudden abnormal rise is observed in the ECE signature while other plasma parameters are unchanged. Investigations are done to understand this abrupt rise that is expected to occur due to PAS. The rise time is as fast as 100 μs with a single step and/or multiple step rise in ECE radiometer measurements. This event is known to limit the on-axis energy of runaway electrons. Being a repetitive event, the conditions of its repetitive occurrence can be investigated, thereby exploring the possibility of it being triggered and surveyed as an alternate runaway electron mitigation plan. Functional parameterization of such events with other discharge parameters is obtained and the possibility to trigger these events is discussed.PREDICT code is used to investigate the possible interpretations for the PAS occurrence through modeling and supporting the ECE observations. The trigger values so obtained experimentally are set as input criteria for PAS occurrence. Preliminary modeling investigations provide reliable consistency with the findings.
基金supported by National Natural Science Foundation of China (No. 50907045)
文摘A high-current vacuum arc (HCVA) with the consideration of anode vapor is modeled and simulated. First, from the HCVA column model, the heat flux density to the anode is obtained, which is put into the anode activity model, and the parameter distributions (such as the vapor temperature and velocity) of anode vapor are obtained from the simulation results of the anode activity model. Then, by iterating and calculating the HCVA column model and anode activity model, the interaction between the HCVA column and the anode vapor is simulated and analyzed. In the simulation, the distribution of the axial magnetic field (AMF) generated by the electrode system is calculated by software ANSYS. The simulation results show that the influence of anode vapor on the parameter distributions in the arc column is significant. The simulation results are also compared with the vacuum arc photograph.
基金financially supported by the National Key R&D Program of China(Grant No.2021YFA1003501)the National Natural Science Foundation of China(Grant Nos.U1906233 and 52001088)+1 种基金the Key R&D Program of Shandong Province(Grant No.2019JZZY010801)the Fundamental Research Funds for the Central Universities(Grant Nos.DUT20ZD213 and DUT20LAB308)。
文摘The gradual advances of offshore oil and gas exploitation and the development tendency of equipment integration have prompted the design of a new type of the high-current composite umbilical to meet development needs.In order to study the mechanical behavior of the high-current composite umbilical(HCCU)and provide design suggestions,a theoretical analysis framework of the tension-torsion coupled behavior of the spirally wound structure is proposed,which focuses more on the radial mechanical behavior.Then,by considering the mechanical and thermal conditions during the operation of HCCU,a semi-analytical method of the tension and torsion stiffness of the high-current composite umbilical considering the temperature effect is established.Furthermore,a practical case of HCCU is given,and the thermal effect on the radial and axial mechanical behaviors are analyzed.It is found that the thermal effect has a significant influence on the radial stiffness,and shows non-linear variation characteristics.Finally,the sensitivity analysis is carried out to study the influence of the design parameter on the stiffness of tension and torsion.The results indicated that the equivalent radial stiffness and helical angle have obvious effect on the tension-torsion coupled stiffness,which can provide reasonable reference for the design of HCCU.
文摘The present paper reports the rapid surface alloying induced by the bombardment of high-current pulsed electron beam. Two kinds of substrate materials were examined to show this effect. The first sample was a pure Al metal pre-coated with fine carbon powders prior to the bombardment, and the second alloy is the D2-Crl2MolVl mould steel pre-coated with Cr, Ti, and TiN powders. The surface elements diffuse about several micrometers into the substrate materials only after several bombardments. Tribological behaviors of these samples were characterized and significant improvement in wear resistance was found. Finally, a TEM analysis reveals the presence of stress waves generated by coupled thermal and stress fields, which was considered as the main cause of the enhanced properties.
基金supported by the NIFS Bilateral Collaboration Research Program(Nos.NIFS19-KUTR136,NIFS22KUTR169)Grant-in-Aid for Scientific Research(C)(No.21K03510)Collaborative Research Program of the RIAM in Kyushu University。
文摘A power-supply system was developed for Ohmic heating(OH)to double×10^(18)the amount of change magnetic flux in the primary central solenoid(CS)on the QUEST spherical tokamak.Two power supplies are connected with stacks of insulated-gate bipolar transistors,and sequentially operated to generate positive and negative CS currents.This bipolar power-supply system is controlled via a field-programmable gate array,which guarantees the safety of the entire system operation.The new OH system,assisted by electron cyclotron heating,enables the stable generation of plasma currents exceeding 100 k A.Moreover,the achieved electron density over the wide range in the major radial direction exceeds the cut-off density for one of the highpower microwave sources in QUEST.This strategy yields target plasmas for future experiments with the electron Bernstein wave.
文摘离子回旋射频(Ion Cyclotron Range of Frequencies,ICRF)波加热是托卡马克装置上至关重要的辅助加热方式之一。托卡马克装置中国环流三号(HL-3,原名HL-2M)拟安装加热功率为6 MW的ICRF加热系统。本工作利用TRANSP程序,模拟并研究了ICRF加热的频率和功率对聚变中子产额以及快离子分布的影响。研究结果表明:ICRF的频率和功率对中子产额有显著影响,固定ICRF频率时,中子产额与加热功率成正比关系,而在固定ICRF加热功率的情况下,中子产额的增加幅度显著依赖ICRF的频率,在研究参数范围内,30 MHz的ICRF对中子产额的增加具有最显著的增强作用。快离子分布的模拟结果显示,在考虑ICRF加热后,中性束和ICRF的协同加热机制能够将快离子加热至最高1 MeV,有效地提高了中子产额。此外,基于中子相机诊断的概念对中子信号进行了仿真。结果表明,中子相机能够有效地测量到由ICRF加热导致的中子产额高低和分布剖面的变化,这为将来优化中子相机诊断系统设计和测量中子空间分布提供了一定的参考。