A 1-bit electronically controlled metasurface reflectarray is presented to achieve beam steering with multiple polarization manipulations. A metsurface unit cell loaded by two PIN diodes is designed. By switching the ...A 1-bit electronically controlled metasurface reflectarray is presented to achieve beam steering with multiple polarization manipulations. A metsurface unit cell loaded by two PIN diodes is designed. By switching the two PIN diodes between ON and OFF states, the isotropic and anisotropic reflections can be flexibly achieved. For either the isotropic reflection or the anisotropic reflection, the two operation states achieve the reflection coefficients with approximately equal magnitude and 180°out of phase, thus giving rise to the isotropic/anisotropic 1-bit metasurface unit cells. With the 1-bit unit cells, a 12-by-12 metasurface reflectarray is optimally designed and fabricated. Under either y-or x-polarized incident wave illumination, the reflectarray can achieve the co-polarized and cross-polarized beam scanning, respectively, with the peak gains of 20.08 d Bi and 17.26 d Bi within the scan range of about ±50°. With the right-handed circular polarization(RHCP) excitation, the left-handed circular polarization(LHCP) radiation with the peak gain of 16.98 d Bic can be achieved within the scan range of ±50°. Good agreement between the experimental results and the simulation results are observed for 2D beam steering and polarization manipulation capabilities.展开更多
In this study,a pulsed,high voltage driven hollow-cathode electron beam sources through an optical trigger is designed with characteristics of simple structure,low cost,and easy triggering.To validate the new design,t...In this study,a pulsed,high voltage driven hollow-cathode electron beam sources through an optical trigger is designed with characteristics of simple structure,low cost,and easy triggering.To validate the new design,the characteristics of hollow-cathode discharge and electron beam characterization under pulsed high voltage drive are studied experimentally and discussed by discharge characteristics and analyses of waveform details,respectively.The validation experiments indicate that the pulsed high voltage supply significantly improves the frequency and stability of the discharge,which provides a new solution for the realization of a high-frequency,high-energy electron beam source.The peak current amplitude in the high-energy electron beam increases from 6.2 A to 79.6 A,which indicates the pulsed power mode significantly improves the electron beam performance.Besides,increasing the capacitance significantly affects the highcurrent,lower-energy electron beam more than the high-energy electron beam.展开更多
Cryogenic treatment was used to improve the tribological properties of Ti6Al4V artificial hip joint implants.Cryogenic treatment at-196℃with different holding time were carried out on Ti6Al4V specimens fabricated usi...Cryogenic treatment was used to improve the tribological properties of Ti6Al4V artificial hip joint implants.Cryogenic treatment at-196℃with different holding time were carried out on Ti6Al4V specimens fabricated using electron beam melting(EBM),and their microstructure and tribological properties evolution were systematically analyzed by scanning electron microscopy(SEM),vickers hardness,and wear tests.The experimental results show that the as-fabricated specimen consists of lamellarαphase andβcolumnar crystal.While,the thickness of lamellarαphase decreased after cryogenic treatment.In addition,it can be found that the fineαphase was precipitated and dispersed between the lamellarαphase with the holding time increase.Vickers hardness shows a trend of first increasing and then decreasing.The wear rate of the specimen cryogenic treated for 24 h is the minimum and the average friction coefficient is 0.50,which is reduced by 14.61%compared with the as-fabricated.The wear mechanism of the as-fabricated specimen is severe exfoliation,adhesive,abrasive,and slight fatigue wear.However,the specimen cryogenic treated for 24 h shows slight adhesive and abrasive wear.It can be concluded that it is feasibility of utilizing cryogenic treatment to reduce the wear of EBMed Ti6Al4V.展开更多
Electron beam lithography(EBL)involves the transfer of a pattern onto the surface of a substrate byfirst scanning a thin layer of organicfilm(called resist)on the surface by a tightly focused and precisely controlled el...Electron beam lithography(EBL)involves the transfer of a pattern onto the surface of a substrate byfirst scanning a thin layer of organicfilm(called resist)on the surface by a tightly focused and precisely controlled electron beam(exposure)and then selectively removing the exposed or nonexposed regions of the resist in a solvent(developing).It is widely used for fabrication of integrated cir-cuits,mask manufacturing,photoelectric device processing,and otherfields.The key to drawing circular patterns by EBL is the graphics production and control.In an EBL system,an embedded processor calculates and generates the trajectory coordinates for movement of the electron beam,and outputs the corresponding voltage signal through a digital-to-analog converter(DAC)to control a deflector that changes the position of the electron beam.Through this procedure,it is possible to guarantee the accuracy and real-time con-trol of electron beam scanning deflection.Existing EBL systems mostly use the method of polygonal approximation to expose circles.A circle is divided into several polygons,and the smaller the segmentation,the higher is the precision of the splicing circle.However,owing to the need to generate and scan each polygon separately,an increase in the number of segments will lead to a decrease in the overall lithography speed.In this paper,based on Bresenham’s circle algorithm and exploiting the capabilities of afield-programmable gate array and DAC,an improved real-time circle-producing algorithm is designed for EBL.The algorithm can directly generate cir-cular graphics coordinates such as those for a single circle,solid circle,solid ring,or concentric ring,and is able to effectively realizes deflection and scanning of the electron beam for circular graphics lithography.Compared with the polygonal approximation method,the improved algorithm exhibits improved precision and speed.At the same time,the point generation strategy is optimized to solve the blank pixel and pseudo-pixel problems that arise with Bresenham’s circle algorithm.A complete electron beam deflection system is established to carry out lithography experiments,the results of which show that the error between the exposure results and the preset pat-terns is at the nanometer level,indicating that the improved algorithm meets the requirements for real-time control and high precision of EBL.展开更多
Electron beam–directed energy deposition(EB–DED)has emerged as a promising wire-based metal additive manufacturing technique.However,the effects of EBs on pendant droplets at wire tips have not yet been determined.T...Electron beam–directed energy deposition(EB–DED)has emerged as a promising wire-based metal additive manufacturing technique.However,the effects of EBs on pendant droplets at wire tips have not yet been determined.The aim of this study is to enhance the understanding of this action by analyzing the mechanism of droplet oscillation.The pendant droplet oscillation phenomenon hinders the stable transfer of droplets to the molten pool and limits the feasibility of manufacturing complex lattice structures by EB–DED.Hence,another aim of this study is to create an oscillation suppression method.An escalating asymmetric amplitude is the main characteristic of droplet oscillation.The primary oscillationinducing force is the recoil force generated from the EB-acted local surface of the droplet.The physical mechanism of this force is the rapid increase and uneven distribution of the local surface temperature caused by the partial action of the EB.The prerequisites for droplet oscillation include vacuum conditions,high power densities,and bypass wire feeding processes.The proposed EB–dynamic surrounding melting(DSM)method can be applied to conveniently and effectively suppress oscillations,enable the accurate transfer of droplets to the molten pool,and achieve stable processes for preparing the strut elements of lattice structures.Lowering the temperature and improving the uniformity of its distribution are the mechanisms of oscillation suppression in EB–DSM.In this study,the physical basis for interpreting the mechanism by which EBs act on droplets and the technical basis for using EB–DED to prepare complex lattice structure parts are provided.展开更多
An electron vortex beam(EVB) carrying orbital angular momentum(OAM) plays a key role in a series of fundamental scientific researches, such as chiral energy-loss spectroscopy and magnetic dichroism spectroscopy. So fa...An electron vortex beam(EVB) carrying orbital angular momentum(OAM) plays a key role in a series of fundamental scientific researches, such as chiral energy-loss spectroscopy and magnetic dichroism spectroscopy. So far, almost all the experimentally created EVBs manifest isotropic doughnut intensity patterns. Here, based on the correlation between local divergence angle of electron beam and phase gradient along azimuthal direction, we show that free electrons can be tailored to EVBs with customizable intensity patterns independent of the carried OAM. As proof-of-concept, by using computer generated hologram and designing phase masks to shape the incident free electrons in the transmission electron microscope, three structured EVBs carrying identical OAM are tailored to exhibit completely different intensity patterns. Furthermore, through the modal decomposition, we quantitatively investigate their OAM spectral distributions and reveal that structured EVBs present a superposition of a series of different eigenstates induced by the locally varied geometries. These results not only generalize the concept of EVB, but also demonstrate an extra highly controllable degree of freedom for electron beam manipulation in addition to OAM.展开更多
By using a two-dimensional particle-in-cell simulation,we demonstrate a scheme for highenergy-density electron beam generation by irradiating an ultra intense laser pulse onto an aluminum(Al) target.With the laser h...By using a two-dimensional particle-in-cell simulation,we demonstrate a scheme for highenergy-density electron beam generation by irradiating an ultra intense laser pulse onto an aluminum(Al) target.With the laser having a peak intensity of 4×10^23W cm^-2,a high quality electron beam with a maximum density of 117 nc and a kinetic energy density up to8.79×10^18J m^-3 is generated.The temperature of the electron beam can be 416 Me V,and the beam divergence is only 7.25°.As the laser peak intensity increases(e.g.,1024 W cm^-2),both the beam energy density(3.56×10^19J m^-3) and the temperature(545 Me V) are increased,and the beam collimation is well controlled.The maximum density of the electron beam can even reach 180 nc.Such beams should have potential applications in the areas of antiparticle generation,laboratory astrophysics,etc.展开更多
The thorough exploration of the transverse quality represented by divergence angle has been lacking yet in the energy spread measurement of the relativistic electron beam for laser wakefield acceleration(LWFA). In thi...The thorough exploration of the transverse quality represented by divergence angle has been lacking yet in the energy spread measurement of the relativistic electron beam for laser wakefield acceleration(LWFA). In this work, we fill this gap by numerical simulations based on the experimental data, which indicate that in a C-shape magnet, magnetic field possesses the beam focusing effect, considering that the divergence angle will result in an increase in the full width at half maxima(FWHM) of the electron density distribution in a uniformly isotropic manner, while the length-to-width ratio decreases. This indicates that the energy spread obtained from the electron deflection distance is smaller than the actual value, regardless of the divergence angle. A promising and efficient way to accurately correct the value is presented by considering the divergence angle(for instance, for an electron beam with a length-to-width ratio of 1.12, the energy spread correct from 1.2% to 1.5%), providing a reference for developing the high-quality electron beam source.展开更多
Electron beam welding of Ti-15-3 alloy to 304 stainless steel (STS) using a copper filler metal was carried out. The temperature fields and stress distributions in the Ti/Fe and Ti/Cu/Fe joint during the welding pro...Electron beam welding of Ti-15-3 alloy to 304 stainless steel (STS) using a copper filler metal was carried out. The temperature fields and stress distributions in the Ti/Fe and Ti/Cu/Fe joint during the welding process were numerically simulated and experimentally measured. The results show that the rotated parabola body heat source is fit for the simulation of the electron beam welding. The temperature distribution is asymmetric along the weld center and the temperature in the titanium alloy plate is higher than that in the 304 STS plate. The thermal stress also appears to be in asymmetric distribution. The residual tensile stress mainly exists in the weld at the 304 STS side. The copper filler metal decreases the peak temperature and temperature grade in the joint as well as the residual stress. The longitudinal and lateral residual tensile strengths reduce by 66 MPa and 31 MPa, respectively. From the temperature and residual stress, it is concluded that copper is a good filler metal candidate for the electron beam welding of Ti-15-3 titanium alloy to 304 stainless steel.展开更多
The microstructure, phase composition and cold shut defect of thick titanium alloy electron beam welded joint were studied. The results showed that the microstructure of weld zone was composed of α′ phase; the heat ...The microstructure, phase composition and cold shut defect of thick titanium alloy electron beam welded joint were studied. The results showed that the microstructure of weld zone was composed of α′ phase; the heat affected zone was divided into fine-grained zone and coarse-grained zone, the microstructure of fine-grained zone was primary α phase + β phase + equiaxed α phase, and the microstructure of coarse-grained zone was primary α phase + acicular α′ phase; the microstructure of base metal zone basically consisted of primary α phase, and a small amount of residual β phase sprinkled. The forming. reason of cold shut was analyzed, and the precaution of cold shut was proposed.展开更多
Electron beam welding was carried out between aluminum alloy and steel with Ag interlayer. Seam morphology, structure and mechanical properties of the joints were investigated with different action positions of the el...Electron beam welding was carried out between aluminum alloy and steel with Ag interlayer. Seam morphology, structure and mechanical properties of the joints were investigated with different action positions of the electron beam spot. The results show that with the increment of the beam offset to the silver side from the interface between silver and steel, the seam morphology was improved, and the porosity in the Ag interlayer vanished. A transition layer mainly composed of Ag2Al and Al eutectic was formed at the interface between silver and aluminum, and became thin and spiccato as the beam offset increased. When the beam offset was too large, two IMC layers composed of FeAl and FeAl3 respectively were formed at the interface between steel and Ag interlayer. The optimal beam offset was 0.2 mm, and the maximum tensile strength of the joint was 193 MPa, 88.9% that of the aluminum alloy, and the fracture occurred at the interface between steel and Ag interlayer.展开更多
Fatigue behavior of AZ31B magnesium alloy electron beam welded joint undergoing cyclic loading was investigated by infrared thermography. Temperature evolution throughout a fatigue process was presented and the mechan...Fatigue behavior of AZ31B magnesium alloy electron beam welded joint undergoing cyclic loading was investigated by infrared thermography. Temperature evolution throughout a fatigue process was presented and the mechanism of heat generationwas discussed. Fatigue limit of the welded joint was predicted and the fatigue damage was also assessed based ontheevolution of the temperatureand hotspot zone on the specimen surfaceduring fatigue tests. The presented results show that infrared thermography can not onlyquicklypredict the fatigue behavior of the welded joint, but also qualitatively identify the evolution of fatigue damage in real time. It is found that the predicted fatigue limit agrees well with the conventionalS-Nexperimental results. The evolution of the temperatureand hotspot zone on the specimen surface can be an effectivefatigue damage indicatorfor effectiveevaluationof magnesium alloy electron beam welded joint.展开更多
Electron beam welding (EBW) of 304 stainless steel to QCr0.8 copper alloy with copper filler wire was carried out. Orthogonal experiment was performed to investigate the effects of process parameters on the tensile ...Electron beam welding (EBW) of 304 stainless steel to QCr0.8 copper alloy with copper filler wire was carried out. Orthogonal experiment was performed to investigate the effects of process parameters on the tensile strength of the joints, and the process parameters were optimized. The optimum process parameters are as follows:beam current of 30 mA, welding speed of 100 mm/min, wire feed rate of 1 m/min and beam offset of-0.3 mm. The microstructures of the optimum joint were studied. The results indicate that the weld is mainly composed of dendriticαphase with little globularεphase, and copper inhomogeneity only occurs at the top of the fusion zone. In addition, a melted region without mixing exists near the weld junction of copper side. This region with a coarser grain size is the weakest section of the joints. It is found that the microhardness of the weld decreases with the increase of the copper content in solid solution. The highest tensile strength of the joint is 276 MPa.展开更多
QCr0.8 was electron-beam welded to TC4 and the effect of the intermetallic layer (IMC-layer) on the mechanical properties of the joint was investigated. The IMC-layers are joint weaknesses at the Cu fusion line in c...QCr0.8 was electron-beam welded to TC4 and the effect of the intermetallic layer (IMC-layer) on the mechanical properties of the joint was investigated. The IMC-layers are joint weaknesses at the Cu fusion line in centered welding and at the Ti fusion line when the beam is deviated towards Cu. A new method referred to as electron-beam superposition welding was presented, and the optimal welding sequence was considered. The IMC-layer produced by centered welding was fragmented and remelted during Cu-side non-centered welding, giving a finely structured compound layer and improved mechanical properties of the joint. The tensile strength of joint is 276.0 MPa, 76.7% that of the base metal.展开更多
The influence of hot working on the microstructures of TC11/Ti2 Al Nb dual-alloy joints welded by electron beam welding(EBW) process was investigated. The tensile tests were performed at room temperature for specimens...The influence of hot working on the microstructures of TC11/Ti2 Al Nb dual-alloy joints welded by electron beam welding(EBW) process was investigated. The tensile tests were performed at room temperature for specimens before and after thermal exposure. The results show that the fusion zone of TC11/Ti2 Al Nb dual-alloy joint welded by EBW is mainly composed of β phase. After deformation and heat treatment, the grain boundaries of the as-cast alloy are broken and the fusion zone mainly consists of β, α2and α phases. The fusion zone performs poor property in the tensile test. Specimens before and after thermal exposure all fail in this area under different deformation conditions. The ultimate tensile strength of specimens after heat treatment is up to 1190 MPa at room temperature. The joints by water quenching after deformation have better plasticity with an elongation up to 4.4%. After thermal exposure at 500 °C for 100 h, the tensile strength of the specimen slightly rises while the ductility changes a little. SEM observation shows that the fracture mechanism is predominantly transgranular under different deformation conditions.展开更多
A Cu-25Cr alloy prepared by vacuum induction melting method was treated by the high current pulsed electron beam (HCPEB) with pulse numbers ranging from 1 to 100. Surface morphologies and microstructures of the allo...A Cu-25Cr alloy prepared by vacuum induction melting method was treated by the high current pulsed electron beam (HCPEB) with pulse numbers ranging from 1 to 100. Surface morphologies and microstructures of the alloy before and after the treatment were investigated by scanning electron microscopy and X-ray diffraction. The results show that significant surface modification can be induced by HCPEB with the pulse number reaching 10. Craters with typical morphologies on the Cu-25Cr alloy surface are formed due to the dynamic thermal field induced by the HCPEB. Micro-cracks, as a unique feature, are well revealed in the irradiated Cu-25Cr specimens and attributed to quasi-static thermal stresses accumulated along the specimen surface. The amount of cracks is found to increase with the pulse number and a preference of these cracks to Cr phases rather than Cu phases is also noted. Another characteristic produced by the HCPEB is the fine Cr spheroids, which are determined to be due to occurrence of liquid phase separation in the Cu-25Cr alloy. In addition, an examination on surface roughness of all specimens reveals that more pulses will produce a roughened surface, as a result of compromising the above features.展开更多
A new method for determining proximity parameters α,β ,and η in electron beam lithography is introduced on the assumption that the point exposure spread function is composed of two Gaussians.A single line i...A new method for determining proximity parameters α,β ,and η in electron beam lithography is introduced on the assumption that the point exposure spread function is composed of two Gaussians.A single line is used as test pattern to determine proximity effect parameters and the normalization approach is adopted in experimental data transaction in order to eliminate the need of measuring exposure clearing dose of the resist.Furthermore,the parameters acquired by this method are successfully used for proximity effect correction in electron beam lithography on the same experimental conditions.展开更多
Electron beam was successfully used for the degradation of 2,4-dichlorophenol (2,4-DCP) and pentachlorophenol (PCP) in water. The effects of radiation doses on substrate degradation and dechlorination of solutions wit...Electron beam was successfully used for the degradation of 2,4-dichlorophenol (2,4-DCP) and pentachlorophenol (PCP) in water. The effects of radiation doses on substrate degradation and dechlorination of solutions with concentrations of 50 mg/L for both chlorophenols were investigated. The effects of initial concentration, pH and absence of oxygen on the degradation were also investigated. The concentrations of 2,4-DCP and PCP remaining in solution after irradiation were measured by high-performance liquid chromatograph (HPLC). The results showed that an increased radiation dose led to increased degradation of the chlorophenols and increased Cl- yields. In all cases, the rate of degradation was found to be higher than the corresponding inorganic chloride yield from the parent compound. Deoxygenation was also found to increase the rate of degradation of the chlorophenols in water while degradation under alkaline condition was lower than at low to neutral pH.展开更多
The JEOL JBX-5000LS is a vector type machine.The system hardware features an ion-pumped column,a LaB 6 electron emitter,25kV and 50kV accelerating voltage,and a turbo-pumped sample chamber.The resolution,stability,st...The JEOL JBX-5000LS is a vector type machine.The system hardware features an ion-pumped column,a LaB 6 electron emitter,25kV and 50kV accelerating voltage,and a turbo-pumped sample chamber.The resolution,stability,stitching and overlay of this system are evaluated.The system can write complex patterns at dimensions down to 30nm.The demonstrated overlay accuracy of this system is better than 40nm.展开更多
The quasi-static and dynamic tensile behaviors in electron beam welded(EBW) Ti-6Al-4V alloy were investigated at strain rates of 10-3 and 103 s-1,respectively,by materials test system(MTS) and reconstructive Hopki...The quasi-static and dynamic tensile behaviors in electron beam welded(EBW) Ti-6Al-4V alloy were investigated at strain rates of 10-3 and 103 s-1,respectively,by materials test system(MTS) and reconstructive Hopkinson bars apparatus.The microstructures of the base metal(BM) and the welded metal(WM) were observed with optical microscope.The fracture characteristics of the BM and WM were characterized with scanning electronic microscope.In Ti-6Al-4V alloy joint,the flow stress of WM is higher than that of BM,while the fracture strain of WM is less than that of BM at strain rates of 103 and 10-3 s-1,respectively.The fracture strain of WM has apparent improvement when the strain rate rises from 10-3 to 103 s-1,while the fracture strain of BM almost has no change.At the same time,the fracture mode of WM alters from brittle to ductile fracture,which causes improvement of the fracture strain of WM.展开更多
基金Project supported by the National Key Research and Development Program of China (Grant No.2021YFA1401001)the National Natural Science Foundation of China (Grant No.62371355)。
文摘A 1-bit electronically controlled metasurface reflectarray is presented to achieve beam steering with multiple polarization manipulations. A metsurface unit cell loaded by two PIN diodes is designed. By switching the two PIN diodes between ON and OFF states, the isotropic and anisotropic reflections can be flexibly achieved. For either the isotropic reflection or the anisotropic reflection, the two operation states achieve the reflection coefficients with approximately equal magnitude and 180°out of phase, thus giving rise to the isotropic/anisotropic 1-bit metasurface unit cells. With the 1-bit unit cells, a 12-by-12 metasurface reflectarray is optimally designed and fabricated. Under either y-or x-polarized incident wave illumination, the reflectarray can achieve the co-polarized and cross-polarized beam scanning, respectively, with the peak gains of 20.08 d Bi and 17.26 d Bi within the scan range of about ±50°. With the right-handed circular polarization(RHCP) excitation, the left-handed circular polarization(LHCP) radiation with the peak gain of 16.98 d Bic can be achieved within the scan range of ±50°. Good agreement between the experimental results and the simulation results are observed for 2D beam steering and polarization manipulation capabilities.
基金supported by National Natural Science Foundation of China(No.12102099)the National Key R&D Program of China(No.2021YFC2202700)the Outstanding Academic Leader Project of Shanghai(Youth)(No.23XD1421700),respectively。
文摘In this study,a pulsed,high voltage driven hollow-cathode electron beam sources through an optical trigger is designed with characteristics of simple structure,low cost,and easy triggering.To validate the new design,the characteristics of hollow-cathode discharge and electron beam characterization under pulsed high voltage drive are studied experimentally and discussed by discharge characteristics and analyses of waveform details,respectively.The validation experiments indicate that the pulsed high voltage supply significantly improves the frequency and stability of the discharge,which provides a new solution for the realization of a high-frequency,high-energy electron beam source.The peak current amplitude in the high-energy electron beam increases from 6.2 A to 79.6 A,which indicates the pulsed power mode significantly improves the electron beam performance.Besides,increasing the capacitance significantly affects the highcurrent,lower-energy electron beam more than the high-energy electron beam.
基金Funded by the National Natural Science Foundation of China(No.42102345)the Fundamental Research Funds for the Central Universities(No.2023ZKPYJD03)。
文摘Cryogenic treatment was used to improve the tribological properties of Ti6Al4V artificial hip joint implants.Cryogenic treatment at-196℃with different holding time were carried out on Ti6Al4V specimens fabricated using electron beam melting(EBM),and their microstructure and tribological properties evolution were systematically analyzed by scanning electron microscopy(SEM),vickers hardness,and wear tests.The experimental results show that the as-fabricated specimen consists of lamellarαphase andβcolumnar crystal.While,the thickness of lamellarαphase decreased after cryogenic treatment.In addition,it can be found that the fineαphase was precipitated and dispersed between the lamellarαphase with the holding time increase.Vickers hardness shows a trend of first increasing and then decreasing.The wear rate of the specimen cryogenic treated for 24 h is the minimum and the average friction coefficient is 0.50,which is reduced by 14.61%compared with the as-fabricated.The wear mechanism of the as-fabricated specimen is severe exfoliation,adhesive,abrasive,and slight fatigue wear.However,the specimen cryogenic treated for 24 h shows slight adhesive and abrasive wear.It can be concluded that it is feasibility of utilizing cryogenic treatment to reduce the wear of EBMed Ti6Al4V.
基金supported by the Focused Ion Beam/Electron Beam Double Beam Microscopy(Grant No.2021YFF0704702).
文摘Electron beam lithography(EBL)involves the transfer of a pattern onto the surface of a substrate byfirst scanning a thin layer of organicfilm(called resist)on the surface by a tightly focused and precisely controlled electron beam(exposure)and then selectively removing the exposed or nonexposed regions of the resist in a solvent(developing).It is widely used for fabrication of integrated cir-cuits,mask manufacturing,photoelectric device processing,and otherfields.The key to drawing circular patterns by EBL is the graphics production and control.In an EBL system,an embedded processor calculates and generates the trajectory coordinates for movement of the electron beam,and outputs the corresponding voltage signal through a digital-to-analog converter(DAC)to control a deflector that changes the position of the electron beam.Through this procedure,it is possible to guarantee the accuracy and real-time con-trol of electron beam scanning deflection.Existing EBL systems mostly use the method of polygonal approximation to expose circles.A circle is divided into several polygons,and the smaller the segmentation,the higher is the precision of the splicing circle.However,owing to the need to generate and scan each polygon separately,an increase in the number of segments will lead to a decrease in the overall lithography speed.In this paper,based on Bresenham’s circle algorithm and exploiting the capabilities of afield-programmable gate array and DAC,an improved real-time circle-producing algorithm is designed for EBL.The algorithm can directly generate cir-cular graphics coordinates such as those for a single circle,solid circle,solid ring,or concentric ring,and is able to effectively realizes deflection and scanning of the electron beam for circular graphics lithography.Compared with the polygonal approximation method,the improved algorithm exhibits improved precision and speed.At the same time,the point generation strategy is optimized to solve the blank pixel and pseudo-pixel problems that arise with Bresenham’s circle algorithm.A complete electron beam deflection system is established to carry out lithography experiments,the results of which show that the error between the exposure results and the preset pat-terns is at the nanometer level,indicating that the improved algorithm meets the requirements for real-time control and high precision of EBL.
基金supported by the National Natural Science Foundation of China(52375349)the Beijing Municipal Natural Science Foundation(3222008).
文摘Electron beam–directed energy deposition(EB–DED)has emerged as a promising wire-based metal additive manufacturing technique.However,the effects of EBs on pendant droplets at wire tips have not yet been determined.The aim of this study is to enhance the understanding of this action by analyzing the mechanism of droplet oscillation.The pendant droplet oscillation phenomenon hinders the stable transfer of droplets to the molten pool and limits the feasibility of manufacturing complex lattice structures by EB–DED.Hence,another aim of this study is to create an oscillation suppression method.An escalating asymmetric amplitude is the main characteristic of droplet oscillation.The primary oscillationinducing force is the recoil force generated from the EB-acted local surface of the droplet.The physical mechanism of this force is the rapid increase and uneven distribution of the local surface temperature caused by the partial action of the EB.The prerequisites for droplet oscillation include vacuum conditions,high power densities,and bypass wire feeding processes.The proposed EB–dynamic surrounding melting(DSM)method can be applied to conveniently and effectively suppress oscillations,enable the accurate transfer of droplets to the molten pool,and achieve stable processes for preparing the strut elements of lattice structures.Lowering the temperature and improving the uniformity of its distribution are the mechanisms of oscillation suppression in EB–DSM.In this study,the physical basis for interpreting the mechanism by which EBs act on droplets and the technical basis for using EB–DED to prepare complex lattice structure parts are provided.
基金This work is supported in part by the Key Research and Development Program from Ministry of Science and Technology of China(2022YFA1205000)National Natural Science Foundation of China(12274217 and 62105142)+1 种基金Natural Science Foundation of Jiangsu Province(BK20220068 and BK20212004)Fundamental Research Funds for Central Universities.
文摘An electron vortex beam(EVB) carrying orbital angular momentum(OAM) plays a key role in a series of fundamental scientific researches, such as chiral energy-loss spectroscopy and magnetic dichroism spectroscopy. So far, almost all the experimentally created EVBs manifest isotropic doughnut intensity patterns. Here, based on the correlation between local divergence angle of electron beam and phase gradient along azimuthal direction, we show that free electrons can be tailored to EVBs with customizable intensity patterns independent of the carried OAM. As proof-of-concept, by using computer generated hologram and designing phase masks to shape the incident free electrons in the transmission electron microscope, three structured EVBs carrying identical OAM are tailored to exhibit completely different intensity patterns. Furthermore, through the modal decomposition, we quantitatively investigate their OAM spectral distributions and reveal that structured EVBs present a superposition of a series of different eigenstates induced by the locally varied geometries. These results not only generalize the concept of EVB, but also demonstrate an extra highly controllable degree of freedom for electron beam manipulation in addition to OAM.
基金financially supported by the National Natural Science Foundation of China(Nos.11475260,11305264,11622547,91230205,and 11474360)the National Basic Research Program of China(No.2013CBA01504)the Research Project of NUDT(No.JC14-02-02)
文摘By using a two-dimensional particle-in-cell simulation,we demonstrate a scheme for highenergy-density electron beam generation by irradiating an ultra intense laser pulse onto an aluminum(Al) target.With the laser having a peak intensity of 4×10^23W cm^-2,a high quality electron beam with a maximum density of 117 nc and a kinetic energy density up to8.79×10^18J m^-3 is generated.The temperature of the electron beam can be 416 Me V,and the beam divergence is only 7.25°.As the laser peak intensity increases(e.g.,1024 W cm^-2),both the beam energy density(3.56×10^19J m^-3) and the temperature(545 Me V) are increased,and the beam collimation is well controlled.The maximum density of the electron beam can even reach 180 nc.Such beams should have potential applications in the areas of antiparticle generation,laboratory astrophysics,etc.
基金Project supported by the National Key Research and Development Program of China (Grant No. 2021YFA1601700)the National Natural Science Foundation of China (Grant Nos. 12074251, 11991073, 12335016, 12305272, and 12105174)+1 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant Nos. XDA25000000 and XDA25030400)Yangyang Development Fund,China。
文摘The thorough exploration of the transverse quality represented by divergence angle has been lacking yet in the energy spread measurement of the relativistic electron beam for laser wakefield acceleration(LWFA). In this work, we fill this gap by numerical simulations based on the experimental data, which indicate that in a C-shape magnet, magnetic field possesses the beam focusing effect, considering that the divergence angle will result in an increase in the full width at half maxima(FWHM) of the electron density distribution in a uniformly isotropic manner, while the length-to-width ratio decreases. This indicates that the energy spread obtained from the electron deflection distance is smaller than the actual value, regardless of the divergence angle. A promising and efficient way to accurately correct the value is presented by considering the divergence angle(for instance, for an electron beam with a length-to-width ratio of 1.12, the energy spread correct from 1.2% to 1.5%), providing a reference for developing the high-quality electron beam source.
基金Foundation item:Project (2010CB731704) supported by the National Basic Research Program of ChinaProject (51075189) supported by the National Natural Science Foundation of China
文摘Electron beam welding of Ti-15-3 alloy to 304 stainless steel (STS) using a copper filler metal was carried out. The temperature fields and stress distributions in the Ti/Fe and Ti/Cu/Fe joint during the welding process were numerically simulated and experimentally measured. The results show that the rotated parabola body heat source is fit for the simulation of the electron beam welding. The temperature distribution is asymmetric along the weld center and the temperature in the titanium alloy plate is higher than that in the 304 STS plate. The thermal stress also appears to be in asymmetric distribution. The residual tensile stress mainly exists in the weld at the 304 STS side. The copper filler metal decreases the peak temperature and temperature grade in the joint as well as the residual stress. The longitudinal and lateral residual tensile strengths reduce by 66 MPa and 31 MPa, respectively. From the temperature and residual stress, it is concluded that copper is a good filler metal candidate for the electron beam welding of Ti-15-3 titanium alloy to 304 stainless steel.
基金Project (2010CB731704) supported by the National Basic Research Program of China
文摘The microstructure, phase composition and cold shut defect of thick titanium alloy electron beam welded joint were studied. The results showed that the microstructure of weld zone was composed of α′ phase; the heat affected zone was divided into fine-grained zone and coarse-grained zone, the microstructure of fine-grained zone was primary α phase + β phase + equiaxed α phase, and the microstructure of coarse-grained zone was primary α phase + acicular α′ phase; the microstructure of base metal zone basically consisted of primary α phase, and a small amount of residual β phase sprinkled. The forming. reason of cold shut was analyzed, and the precaution of cold shut was proposed.
基金Project (2010CB731704) supported by the National Basic Research Program of ChinaProject (51075089) supported by the National Natural Science Foundation of china
文摘Electron beam welding was carried out between aluminum alloy and steel with Ag interlayer. Seam morphology, structure and mechanical properties of the joints were investigated with different action positions of the electron beam spot. The results show that with the increment of the beam offset to the silver side from the interface between silver and steel, the seam morphology was improved, and the porosity in the Ag interlayer vanished. A transition layer mainly composed of Ag2Al and Al eutectic was formed at the interface between silver and aluminum, and became thin and spiccato as the beam offset increased. When the beam offset was too large, two IMC layers composed of FeAl and FeAl3 respectively were formed at the interface between steel and Ag interlayer. The optimal beam offset was 0.2 mm, and the maximum tensile strength of the joint was 193 MPa, 88.9% that of the aluminum alloy, and the fracture occurred at the interface between steel and Ag interlayer.
基金Project(51305292)supported by the National Natural Science Foundation of ChinaProject(20105429001)supported by the National Aeronautical Science Foundation of China
文摘Fatigue behavior of AZ31B magnesium alloy electron beam welded joint undergoing cyclic loading was investigated by infrared thermography. Temperature evolution throughout a fatigue process was presented and the mechanism of heat generationwas discussed. Fatigue limit of the welded joint was predicted and the fatigue damage was also assessed based ontheevolution of the temperatureand hotspot zone on the specimen surfaceduring fatigue tests. The presented results show that infrared thermography can not onlyquicklypredict the fatigue behavior of the welded joint, but also qualitatively identify the evolution of fatigue damage in real time. It is found that the predicted fatigue limit agrees well with the conventionalS-Nexperimental results. The evolution of the temperatureand hotspot zone on the specimen surface can be an effectivefatigue damage indicatorfor effectiveevaluationof magnesium alloy electron beam welded joint.
基金Project(2010CB731704)supported by the National Basic Research Program of ChinaProject(2011DFR50760)supported by International Science&Technology Cooperation Program of China
文摘Electron beam welding (EBW) of 304 stainless steel to QCr0.8 copper alloy with copper filler wire was carried out. Orthogonal experiment was performed to investigate the effects of process parameters on the tensile strength of the joints, and the process parameters were optimized. The optimum process parameters are as follows:beam current of 30 mA, welding speed of 100 mm/min, wire feed rate of 1 m/min and beam offset of-0.3 mm. The microstructures of the optimum joint were studied. The results indicate that the weld is mainly composed of dendriticαphase with little globularεphase, and copper inhomogeneity only occurs at the top of the fusion zone. In addition, a melted region without mixing exists near the weld junction of copper side. This region with a coarser grain size is the weakest section of the joints. It is found that the microhardness of the weld decreases with the increase of the copper content in solid solution. The highest tensile strength of the joint is 276 MPa.
基金Project (2010CB731704) supported by the National Basic Research Program of China
文摘QCr0.8 was electron-beam welded to TC4 and the effect of the intermetallic layer (IMC-layer) on the mechanical properties of the joint was investigated. The IMC-layers are joint weaknesses at the Cu fusion line in centered welding and at the Ti fusion line when the beam is deviated towards Cu. A new method referred to as electron-beam superposition welding was presented, and the optimal welding sequence was considered. The IMC-layer produced by centered welding was fragmented and remelted during Cu-side non-centered welding, giving a finely structured compound layer and improved mechanical properties of the joint. The tensile strength of joint is 276.0 MPa, 76.7% that of the base metal.
基金Project(51175431)supported by the National Natural Science Foundation of China
文摘The influence of hot working on the microstructures of TC11/Ti2 Al Nb dual-alloy joints welded by electron beam welding(EBW) process was investigated. The tensile tests were performed at room temperature for specimens before and after thermal exposure. The results show that the fusion zone of TC11/Ti2 Al Nb dual-alloy joint welded by EBW is mainly composed of β phase. After deformation and heat treatment, the grain boundaries of the as-cast alloy are broken and the fusion zone mainly consists of β, α2and α phases. The fusion zone performs poor property in the tensile test. Specimens before and after thermal exposure all fail in this area under different deformation conditions. The ultimate tensile strength of specimens after heat treatment is up to 1190 MPa at room temperature. The joints by water quenching after deformation have better plasticity with an elongation up to 4.4%. After thermal exposure at 500 °C for 100 h, the tensile strength of the specimen slightly rises while the ductility changes a little. SEM observation shows that the fracture mechanism is predominantly transgranular under different deformation conditions.
基金Projects(51101177,51401040,51171146,51171216) supported by the National Natural Science Foundation of ChinaProject(CSTC2012JJA245) supported by the Natural Science Foundation of Chongqing,China
文摘A Cu-25Cr alloy prepared by vacuum induction melting method was treated by the high current pulsed electron beam (HCPEB) with pulse numbers ranging from 1 to 100. Surface morphologies and microstructures of the alloy before and after the treatment were investigated by scanning electron microscopy and X-ray diffraction. The results show that significant surface modification can be induced by HCPEB with the pulse number reaching 10. Craters with typical morphologies on the Cu-25Cr alloy surface are formed due to the dynamic thermal field induced by the HCPEB. Micro-cracks, as a unique feature, are well revealed in the irradiated Cu-25Cr specimens and attributed to quasi-static thermal stresses accumulated along the specimen surface. The amount of cracks is found to increase with the pulse number and a preference of these cracks to Cr phases rather than Cu phases is also noted. Another characteristic produced by the HCPEB is the fine Cr spheroids, which are determined to be due to occurrence of liquid phase separation in the Cu-25Cr alloy. In addition, an examination on surface roughness of all specimens reveals that more pulses will produce a roughened surface, as a result of compromising the above features.
文摘A new method for determining proximity parameters α,β ,and η in electron beam lithography is introduced on the assumption that the point exposure spread function is composed of two Gaussians.A single line is used as test pattern to determine proximity effect parameters and the normalization approach is adopted in experimental data transaction in order to eliminate the need of measuring exposure clearing dose of the resist.Furthermore,the parameters acquired by this method are successfully used for proximity effect correction in electron beam lithography on the same experimental conditions.
文摘Electron beam was successfully used for the degradation of 2,4-dichlorophenol (2,4-DCP) and pentachlorophenol (PCP) in water. The effects of radiation doses on substrate degradation and dechlorination of solutions with concentrations of 50 mg/L for both chlorophenols were investigated. The effects of initial concentration, pH and absence of oxygen on the degradation were also investigated. The concentrations of 2,4-DCP and PCP remaining in solution after irradiation were measured by high-performance liquid chromatograph (HPLC). The results showed that an increased radiation dose led to increased degradation of the chlorophenols and increased Cl- yields. In all cases, the rate of degradation was found to be higher than the corresponding inorganic chloride yield from the parent compound. Deoxygenation was also found to increase the rate of degradation of the chlorophenols in water while degradation under alkaline condition was lower than at low to neutral pH.
文摘The JEOL JBX-5000LS is a vector type machine.The system hardware features an ion-pumped column,a LaB 6 electron emitter,25kV and 50kV accelerating voltage,and a turbo-pumped sample chamber.The resolution,stability,stitching and overlay of this system are evaluated.The system can write complex patterns at dimensions down to 30nm.The demonstrated overlay accuracy of this system is better than 40nm.
文摘The quasi-static and dynamic tensile behaviors in electron beam welded(EBW) Ti-6Al-4V alloy were investigated at strain rates of 10-3 and 103 s-1,respectively,by materials test system(MTS) and reconstructive Hopkinson bars apparatus.The microstructures of the base metal(BM) and the welded metal(WM) were observed with optical microscope.The fracture characteristics of the BM and WM were characterized with scanning electronic microscope.In Ti-6Al-4V alloy joint,the flow stress of WM is higher than that of BM,while the fracture strain of WM is less than that of BM at strain rates of 103 and 10-3 s-1,respectively.The fracture strain of WM has apparent improvement when the strain rate rises from 10-3 to 103 s-1,while the fracture strain of BM almost has no change.At the same time,the fracture mode of WM alters from brittle to ductile fracture,which causes improvement of the fracture strain of WM.