期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
Clean production of Fe-based amorphous soft magnetic alloys via smelting reduction of high-phosphorus iron ore and apatite
1
作者 Hua Zhang Tuoxiao Wang +5 位作者 Guoyang Zhang Wenjie Wu Long Zhao Tao Liu Shuai Mo Hongwei Ni 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第12期2356-2363,共8页
Separated preparation of prealloys and amorphous alloys results in severe solidification-remelting and beneficial element removal-readdition contradictions,which markedly increase energy consumption and emissions.This... Separated preparation of prealloys and amorphous alloys results in severe solidification-remelting and beneficial element removal-readdition contradictions,which markedly increase energy consumption and emissions.This study offered a novel strategy for the direct production of FePC amorphous soft magnetic alloys via smelting reduction of high-phosphorus iron ore(HPIO)and apatite.First,the thermodynamic conditions and equilibrium states of the carbothermal reduction reactions in HPIO were calculated,and the element content in reduced alloys was theoretically determined.The phase and structural evolutions,as well as element migration and enrichment behaviors during the smelting reduction of HPIO and Ca_(3)(PO_(4))_(2),were then experimentally verified.The addition of Ca_(3)(PO_(4))_(2)in HPIO contributes to the enrichment of the P element in reduced alloys and the subsequent development of Fe_(3)P and Fe_(2)P phases.The content of P and C elements in the range of 1.52 wt% -14.63 wt% and 0.62 wt% -2.47 wt%,respectively,can be well tailored by adding 0-50 g Ca_(3)(PO_(4))_(2)and controlling the C/O mole ratio of 0.8-1.1,which is highly consistent with the calculated results.These FePC alloys were then successfully formed into amorphous ribbons and rods.The energy consumption of the proposed strategy was estimated to be 2.00×10^(8) kJ/t,which is reduced by 30% when compared with the conventional production process.These results are critical for the comprehensive utilization of mineral resources and pave the way for the clean production of Fe-based amorphous soft magnetic alloys. 展开更多
关键词 high-phosphorus iron ore smelting reduction structural evolution Fe-based amorphous alloy clean production
下载PDF
Strengthening iron enrichment and dephosphorization of high-phosphorus oolitic hematite using high-temperature pretreatment 被引量:16
2
作者 Wen-tao Zhou Yue-xin Han +1 位作者 Yong-sheng Sun Yan-jun Li 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2020年第4期443-453,共11页
The efficient development and utilization of high-phosphorus oolitic hematite is of great strategic significance for the sustainable supply of iron-ore resources in China.In this paper,the mechanism of high-temperatur... The efficient development and utilization of high-phosphorus oolitic hematite is of great strategic significance for the sustainable supply of iron-ore resources in China.In this paper,the mechanism of high-temperature pretreatment for enhancing the effect of iron enrichment and dephosphorization in the magnetization roasting–leaching process was studied by X-ray diffraction(XRD),vibration sample magnetometer(VSM),scanning electron microscopy and energy dispersive spectrometry(SEM–EDS).Compared with the process without high-temperature pretreatment,the iron grade of the magnetic separation concentrate after high-temperature pretreatment had increased by 0.98%,iron recovery rate had increased by 1.33%,and the phosphorus content in the leached residue had decreased by 0.12%.High-temperature pretreatment resulted in the dehydration and decomposition of hydroxyapatite,the dehydration of limonite and the thermal decomposition of siderite,which can produce pores and cracks and weaken the compactness of the ore,improve the magnetization characteristics of roasted ore,and strengthen the iron enrichment and dephosphorization during the magnetization roasting and leaching process. 展开更多
关键词 high-phosphorus oolitic HEMATITE high-temperature PRETREATMENT iron ENRICHMENT and DEPHOSPHORIZATION MAGNETIZATION roasting–leaching process phase transformation
下载PDF
Migration behaviors and kinetics of phosphorus during coal-based reduction of high-phosphorus oolitic iron ore 被引量:7
3
作者 Yong-sheng Sun Yan-feng Li +1 位作者 Yue-xin Han Yan-jun Li 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2019年第8期938-945,共8页
To understand the migration mechanisms of phosphorus(P)during coal-based reduction,a high-phosphorus oolitic iron ore was reduced by coal under various experimental conditions.The migration characteristics and kinetic... To understand the migration mechanisms of phosphorus(P)during coal-based reduction,a high-phosphorus oolitic iron ore was reduced by coal under various experimental conditions.The migration characteristics and kinetics of P were investigated by a field-emission electron probe microanalyzer(FE-EPMA)and using the basic principle of solid phase mass transfer,respectively.Experimental results showed that the P transferred from the slag to the metallic phase during reduction,and the migration process could be divided into three stages:phosphorus diffusing from the slag to the metallic interface,the formation of Fe P compounds at the slag metal interface and P diffusing from the slag metal interface to the metallic interior.The reduction time and temperature significantly influenced the phosphorus content of the metallic and slag phases.The P content of the metallic phase increased with increasing reduction time and temperature,while that of the slag phase gradually decreased.The P diffusion constant and activation energy were determined and a migration kinetics model of P in coal-based reduction was proposed.P diffusion in the metallic phase was the controlling step of the P migration. 展开更多
关键词 high-phosphorus oolitic iron ORE COAL-BASED REDUCTION PHOSPHORUS migration KINETICS
下载PDF
Effect of calcium compounds on direct reduction and phosphorus removal of high-phosphorus iron ore 被引量:5
4
作者 WU Shi-chao LI Zheng-yao +2 位作者 SUN Ti-chang LI Xiao-hui XU Cheng-yan 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第2期443-454,共12页
The increasing demand for iron ore in the world causes the continuous exhaustion of magnetite resources.The utilization of high-phosphorus iron ore becomes the focus.With calcium carbonate(CaCO_(3)),calcium chloride(C... The increasing demand for iron ore in the world causes the continuous exhaustion of magnetite resources.The utilization of high-phosphorus iron ore becomes the focus.With calcium carbonate(CaCO_(3)),calcium chloride(CaCl_(2)),or calcium sulfate(CaSO_(4))as additive,the process of direct reduction and phosphorus removal of high-phosphorus iron ore(phosphorus mainly occurred in the form of Fe_(3)PO_(7) and apatite)was studied by using the technique of direct reductiongrinding-magnetic separation.The mechanism of calcium compounds to reduce phosphorus was investigated from thermodynamics,iron metallization degree,mineral composition and microstructure.Results showed that Fe_(3)PO_(7) was reduced to elemental phosphorus without calcium compounds.The iron-phosphorus alloy was generated by react of metallic iron and phosphorus,resulting in high phosphorus in reduced iron products.CaCO_(3) promoted the reduction of hematite and magnetite,and improved iron metallization degree,but inhibited the growth of metallic iron particles.CaCl_(2) strengthened the growth of iron particles.However,the recovery of iron was reduced due to the formation of volatile FeCl_(2).CaSO_(4) promoted the growth of iron particles,but the recovery of iron was drastically reduced due to the formation of non-magnetic FeS.CaCO_(3),CaCl_(2) or CaSO_(4) could react with Fe_(3)PO_(7) to form calcium phosphate(Ca_(3)(PO_(4))_(2)).With the addition of CaCO_(3),Ca_(3)(PO_(4))_(2) was closely combined with fine iron particles.It is difficult to separate iron and phosphorus by grinding and magnetic separation,resulting in the reduced iron product phosphorus content of 0.18%.In the presence of CaCl_(2) or CaSO_(4),the boundary between the generated Ca_(3)(PO_(4))_(2) and the metallic iron particles was obvious.Phosphorus was removed by grinding and magnetic separation,and the phosphorus content in the reduced iron product was less than 0.10%. 展开更多
关键词 high-phosphorus iron ore direct reduction calcium compounds phosphorus removal calcium phosphate tribasic
下载PDF
Synchronous enrichment of phosphorus and iron from a high-phosphorus oolitic hematite ore to prepare Fe-P alloy by direct reduction-magnetic separation process 被引量:3
5
作者 LI Si-wei PAN Jian +4 位作者 ZHU De-qing YANG Cong-cong GUO Zheng-qi DONG Tao LU Sheng-hu 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第9期2724-2734,共11页
In this study,direct reduction-magnetic separation process was applied to enrich phosphorus and iron to prepare Fe-P crude alloy from a high phosphorus oolitic hematite ore(HPOH).The results show that at lower tempera... In this study,direct reduction-magnetic separation process was applied to enrich phosphorus and iron to prepare Fe-P crude alloy from a high phosphorus oolitic hematite ore(HPOH).The results show that at lower temperatures and with absence of any of additives,Fe cannot be effectively recovered because of the oolitic structure is not destroyed.In contrast,under the conditions of 15%Na_(2)SO_(4)and reducing at 1050℃ for 120 min with a total C/Fe ratio(molar ratio)of 8.5,a final Fe-P alloy containing 92.40%Fe and 1.09%P can be obtained at an overall iron recovery of 95.43%and phosphorus recovery of 68.98%,respectively.This metallized Fe-P powder can be applied as the burden for production of weathering resistant steels.The developed process can provide an alternative for effective and green utilization of high phosphorus iron ore. 展开更多
关键词 high-phosphorus oolitic hematite ore direct reduction magnetic separation Fe-P alloy
下载PDF
Effect of Na2CO3 and CaCO3 on Coreduction Roasting of Blast Furnace Dust and High-phosphorus Oolitic Hematite 被引量:3
6
作者 曹允业 孙体昌 +2 位作者 KOU Jue XU Chengyan GAO Enxia 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2017年第3期517-524,共8页
Iron was recovered from blast furnace dust and high-phosphorus oolitic hematite in the presence of Na2CO3 and CaCO3 additives. The functions of Na2CO3 and CaCO3 during the coreduction roasting process were investigate... Iron was recovered from blast furnace dust and high-phosphorus oolitic hematite in the presence of Na2CO3 and CaCO3 additives. The functions of Na2CO3 and CaCO3 during the coreduction roasting process were investigated by XRD and SEM-EDS analyses. Results indicate that these additives not only hinder the reduction of fluorapatite, CaCO3 also decreases the P content of direct reduced iron(DRI) by increasing the reduction alkalinity. P remains as fluorapatite in the slag, which can be removed by grinding and magnetic separation under optimal conditions. The Na2CO3 promotes hematite reduction and improves the iron recovery(εFe) by replacing the FeO from fayalite, which results in quick growth and aggregation of metallic iron and improvement of ε(Fe) in DRI. A DRI with 91.88 mass% Fe, and 0.065 mass% P can be achieved at a recovery of 87.86 mass% under the optimal condition. 展开更多
关键词 Na2CO3 CaCO3 blast furnace dust high-phosphorus oolitic hematite coreduction roasting
下载PDF
Direct Reduction of High-phosphorus Oolitic Hematite Ore Based on Biomass Pyrolysis 被引量:6
7
作者 Dong-bo HUANG Yan-bing ZONG +2 位作者 Ru-fei WEI Wei GAO Xiao-ming LIU 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2016年第9期874-883,共10页
Direct reduction of high-phosphorus oolitic hematite ore based on biomass pyrolysis gases (CO, H2, and CH4 ), tar, and char was conducted to investigate the effects of reduction temperature, iron ore-biomass mass ra... Direct reduction of high-phosphorus oolitic hematite ore based on biomass pyrolysis gases (CO, H2, and CH4 ), tar, and char was conducted to investigate the effects of reduction temperature, iron ore-biomass mass ratio, and reduction time on the metallization rate. In addition, the effect of particle size on the dephosphorization and iron recovery rate was studied by magnetic separation. It was determined that the metallization rate of the hematite ore could reach 99.35 % at iron ore-biomass mass ratio of 1 : 0.6, reduction temperature of 1100℃, and reduction time of 55 min. The metallization rate and the aggregation degree of iron particles increase with the increase of reduction temperature. The particle size of direct reduced iron (DRI) has a great influence on the quality of the iron concentrate during magnetic separation. The separation degree of slag and iron was improved by the addition of 15 mass% sodium carbonate. DRI with iron grade of 89.11%, iron recovery rate of 83.47%, and phosphorus content of 0.28% can be obtained when ore fines with particle size of -10μm account for 78.15%. 展开更多
关键词 high-phosphorus oolitic hematite ore direct reduction biomass pyrolysis DEPHOSPHORIZATION
原文传递
Application of Wood Char in Processing Oolitic High-phosphorus Hematite for Phosphorus Removal 被引量:2
8
作者 Hui-qing TANG Yan-qi QIN +2 位作者 Teng-fei QI Zhi-lei DONG Qing-guo XUE 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2016年第2期109-115,共7页
Phosphorus removal from oolitic high-phosphorus hematite using direct reduction followed by melting sep aration was investigated. At the direct reduction stage, highly volatile wood char was prepared by carbonizing ju... Phosphorus removal from oolitic high-phosphorus hematite using direct reduction followed by melting sep aration was investigated. At the direct reduction stage, highly volatile wood char was prepared by carbonizing jujube wood at 673 K for 2 h and was used as reducing agent. The results of the direct reduction tests show that at a tem- perature of 1373 K, a char mixing ratio of 0.8, and a reduction time of 10-25 min, the briquettes reached a metal- lization degree of 80% -84% and a residual carbon content of 0.13 -1.98 mass%. Phosphorus remained in the gangue as calcium phosphate after reduction. The results of the melting separation tests show that residual carbon in reduced briquette negatively affects the phosphorus content (W[p]) in hot metal. When the reduced briquettes ob- tained under the aforementioned conditions were used for melting separation, hot metal suitable for basic oxygen steelmaking (w[p]〈0.4 mass%) could not be obtained from metallic briquettes with a residual carbon content more than 1.0 mass~. In contrast, it could be obtained from metallic briquettes with residual carbon content less than 0.35 mass% by mixing with 2%-4% Na2CO3. 展开更多
关键词 high-phosphorus hematite wood char direct reduction melting separation phosphorus removal
原文传递
Slag/metal Separation Process of Gas-reduced Oolitic High-phosphorus Iron Ore Fines 被引量:2
9
作者 Hui-qing TANG Long MA +1 位作者 Jun-wei WANG Zhan-cheng GUO 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2014年第11期1009-1015,共7页
Slag/metal separation process of the highly reduced oolitic high-phosphorus iron ore fines was investigated. Samples were prepared using the reduced ore fines (metallization rate: 88%) and powder additives of CaO a... Slag/metal separation process of the highly reduced oolitic high-phosphorus iron ore fines was investigated. Samples were prepared using the reduced ore fines (metallization rate: 88%) and powder additives of CaO and Na2CO3. Slag/metal separation behavior tests were conducted using a quenching method and the obtained metal parts were subjected to direct observation as well as microstructure examination with SEM and EDS; iron recovery and phosphorus distribution tests were conducted using a Si-Mo high temperature furnace and the obtained metal parts were examined by ICP-AES analysis and mass measurement. Thermodynamic calculation using coexistence theory of slag structure was also performed. Results show that temperature for slag/metal separation must be higher than 1823 K and a satisfying slag/metal separation of the highly reduced ore fines needs at least 4 min; phosphorus con- tent of hot metal is mainly determined by thermodynamics; temperature of 1823-1873 K and Na2CO3 mixing ratio of about 3 % are adequate for controlling phosphorus content to be less than 0.3 mass% in hot metal; temperature, time and Na2CO3 mixing ratio do not have significant effect on iron recovery, and iron recovery rate could be higher than 80% as long as a good slag/metal separation result is obtained. 展开更多
关键词 oolitic high-phosphorus iron ore fine slag/metal separation iron recovery phosphorus partition
原文传递
Influence of Mechanical Activation on Acid Leaching Dephosphorization of High-phosphorus Iron Ore Concentrates 被引量:1
10
作者 De-qing ZHU Hao WANG +1 位作者 Jian PAN Cong-cong YANG 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2016年第7期661-668,共8页
High pressure roll grinding(HPRG)and ball milling were compared to investigate the influence of mechanical activation on the acid leaching dephosphorization of a high-phosphorus iron ore concentrate,which was manufa... High pressure roll grinding(HPRG)and ball milling were compared to investigate the influence of mechanical activation on the acid leaching dephosphorization of a high-phosphorus iron ore concentrate,which was manufactured through magnetizing roasting-magnetic separation of high-phosphorus oolitic iron ores.The results indicated that when high-phosphorus iron ore concentrates containing 54.92 mass% iron and 0.76 mass% phosphorus were directly processed through acid leaching,iron ore concentrates containing 55.74mass%iron and 0.33mass%phosphorus with an iron recovery of 84.64%and dephosphorization of 63.79% were obtained.When high-phosphorus iron ore concentrates activated by ball milling were processed by acid leaching,iron ore concentrates containing56.03mass%iron and 0.21mass% phosphorus with an iron recovery of 85.65% and dephosphorization of 77.49%were obtained.Meanwhile,when high-phosphorus iron ore concentrates activated by HPRG were processed by acid leaching,iron ore concentrates containing 58.02mass%iron and 0.10mass% phosphorus were obtained,with the iron recovery reaching 88.42% and the dephosphorization rate reaching 88.99%.Mechanistic studies demonstrated that ball milling can reduce the particle size,demonstrating aprominent reunion phenomenon.In contrast,HPRG pretreatment contributes to the formation of more cracks within the particles and selective dissociation of iron and P bearing minerals,which can provide the favorable kinetic conditions to accelerate the solid-liquid reaction rate.As such,the crystal structure is destroyed and the surface energy of mineral particles is strengthened by mechanical activation,further strengthening the dephosphorization. 展开更多
关键词 high-phosphorus iron ore concentrate high pressure roll grinding ball milling selective dissociation sulfuric acid leaching dephosphorization iron recovery
原文传递
Inorganic phosphate in the development and treatment of cancer:A Janus Bifrons? 被引量:1
11
作者 Luigi Sapio Silvio Naviglio 《World Journal of Clinical Oncology》 CAS 2015年第6期198-201,共4页
Inorganic phosphate(Pi) is an essential nutrient to living organisms. It is required as a component of the energy metabolism,kinase/phosphatase signaling and in the formation and function of lipids,carbohydrates and n... Inorganic phosphate(Pi) is an essential nutrient to living organisms. It is required as a component of the energy metabolism,kinase/phosphatase signaling and in the formation and function of lipids,carbohydrates and nucleic acids and,at systemic level,it plays a key role for normal skeletal and dentin mineralization. Pi represents an abundant dietary element and its intestinal absorption is efficient,minimally regulated and typically extends to approximately 70%. Maintenance of proper Pi homeostasis is a critical event and serum Pi level is maintained within a narrow range through an elaborate network of humoral interactions and feedback loops involving intestine,kidney,parathyroid gland and bone,and depends on the activity of a number of hormones,including parathyroid hormone,1,25-dihydroxy vitamin D,and fibroblast growth factor 23 as major regulators of Pi homeostasis. Notably,Pi intake seemingly continues to increase as a consequence of chronic high-phosphorus(P) diets deriving from the growing consumption of highly processed foods,especially restaurant meals,fast foods,and convenience foods. Several recent reports have generated significant associations between high-P intake or high-serum Pi concentration and morbidity and mortality. Many chronic diseases,including cardiovascular diseases,obesity and even cancer have been proposed to be associated with high-P intakes and high-serum Pi concentrations. On the other hand,there is also evidence that Pi can have antiproliferative effects on some cancer cell types,depending on cell status and genetic background and achieve additive cytotoxic effects when combined with doxorubicin,illustrating its potential for clinical applications and suggesting that up-regulating Pi levels at local sites for brief times,might contribute to the development of novel and cheap modalities for therapeutic intervention in some tumours. Overall,the influence of Pi on cell function and the possible relationship to cancer have to be fully understood and investigated further. 展开更多
关键词 CALCIUM-PHOSPHATE nanoparticles Inorganic phosphate Cancer high-phosphorus DIETS PHOSPHORUS INTAKE DOXORUBICIN Combination therapy Naturally occurring molecule OSTEOSARCOMA
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部