High-speed laser cladding technology, a kind of surface technology to improve the wear-resistance and corrosion-resistance of mechanical parts, has the characterizations of fast scan speed, high powder utilization rat...High-speed laser cladding technology, a kind of surface technology to improve the wear-resistance and corrosion-resistance of mechanical parts, has the characterizations of fast scan speed, high powder utilization rate, and high cladding efficiency. However, its thermal-stress evolution process is very complex, which has a great influence on the residual stress and deformation. In the paper, the numerical models for the high-speed laser cladding coatings with overlap ratios of 10%,30%, and 50% are developed to investigate the influence rules of overlap ratio on the thermal-stress evolution, as well as the residual stresses and deformations. Results show that the heat accumulation can reheat and preheat the adjacent track coating and substrate, resulting in stress release of the previous track coating and decreased longitudinal stress peak of the next track coating. With the overlap ratio increasing, the heat accumulation and the corresponding maximum residual stress position tend to locate in the center of the cladding coating, where the coating has a high crack susceptibility. For a small overlap ratio of 10%, there are abrupt stress changes from tensile stress to compressive stress at the lap joint, due to insufficient input energy in the position. Increasing the overlap ratio can alleviate the abrupt stress change and reduce the residual deformation but increase the average residual stress and enlarge the hardening depth. This study reveals the mechanism of thermal-stress evolution, and provides a theoretical basis for improving the coating quality.展开更多
In order to study the corrosion resistance of high-speed laser cladding(HLC) coating while improving production efficiency,a CoCrFeNiMo_(0.2)high-entropy alloy(HEA) coating was prepared by HLC.The optimized parameters...In order to study the corrosion resistance of high-speed laser cladding(HLC) coating while improving production efficiency,a CoCrFeNiMo_(0.2)high-entropy alloy(HEA) coating was prepared by HLC.The optimized parameters of HLC are laser power of 880 W,scanning speed of 18 m/min,overlapping ratio of 60%,and powder feed speed of 3 r/min.Then,the surface roughness,microstructure,phase composition,element distribution,and electrochemical properties in 3.5 wt% NaCl solution of the coatings were analyzed,respectively.The local surface roughness of the CoCrFeNiMo_(0.2)HEA coating was found to be 15.53 μm.A distinct metallurgical bond could be observed between the coating and the substrate.Compared to the conventional laser cladding(CLC),the results of electrochemical tests showed that CoCrFeNiMo_(0.2)HEA coating exhibited a significant passivation.The corrosion current density of 5.4411 × 10^(-6)A·cm^(-2) and the corrosion potential of-0.7445 V for the HLC coating were calculated by the Tafel extrapolation method.The CLC coating’s corrosion current density and corrosion potential are 2.7083×10^(-5)A·cm^(-2) and-0.9685 V,respectively.The HLC coating shows a superior corrosion resistance,crucially due to the uniform and fine grains.Under various complex and harsh working conditions,this method can be widely used in the field of repairing and remanufacturing of corro sion-proof workpiece s.展开更多
21-4N(5Cr21Mn9Ni4N)is extensively employed in the production of engine valves,operating under severe conditions.Apart from withstanding high-temperature gas corrosion,it must also endure the impact of cylinder explosi...21-4N(5Cr21Mn9Ni4N)is extensively employed in the production of engine valves,operating under severe conditions.Apart from withstanding high-temperature gas corrosion,it must also endure the impact of cylinder explosion pressure.The predominant failure mode of 21-4N valves is abrasive wear.Surface coatings serve as an effective approach to prevent such failures.In this investigation,Laser cladding technology was utilized to fabricate AlCoCrFeNiTi high entropy alloy coatings onto the surfaces of 21-4N valves.According to the findings,the cladding zone has a normal dendritic microstructure,a good substrate-to-cladding layer interaction,and no obvious flaws.In terms of hardness,the cladding demonstrates an average hardness of 620 HV.The hardness has increased by 140%compared to the substrate.The average hardness of the cladding remains at approximately 520 HV even at elevated temperatures.Regarding frictional wear performance,between 400℃and 800℃,the cladding layer exhibits an average friction coefficient of 0.4,with the primary wear mechanisms being abrasive wear,adhesive wear,and a minor degree of plastic deformation.展开更多
The effect of the gradient content of Co element on the solidification process of Cu-based alloy under deep under cooling conditions was explored.The non-equilibrium solidification structure of the under cooled alloy ...The effect of the gradient content of Co element on the solidification process of Cu-based alloy under deep under cooling conditions was explored.The non-equilibrium solidification structure of the under cooled alloy samples were analyzed.It is found that the rapidly solidified alloy has undergone twice grain refinement during the undercooling process.Characterization and significance of the maximum undercooling refinement structure of Cu60Ni35Co5 at T=253 K were analyzed.High-density defects were observed,such as dislocations,stacking faults networks,and twinning structures.The standard FCC diffraction pattern represents that it is still a single-phase structure.Based on the metallographic diagram,EBSD and TEM data analysis,it is illustrated that the occurrence of grain refinement under high undercooling is due to stress induced recrystallization.In addition,the laser cladding technology is used to coat Co-based alloy(Stellite12) coating on 304 stainless steel substrate;the microstructure of the coating cross-section was analyzed.It was found that the microstructure of the cross-section is presented as columnar crystals,planar crystals,and disordered growth direction,so that the coating has better hardness and wear resistance.By electrochemical corrosion of the substrate and coating,it can be seen that the Co and Cr elements present in the coating are more likely to form a dense passivation film,which improved the corrosion resistance of the coating.展开更多
In order to improve the sealing surface performance of gray cast iron gas gate valves and achieve precise molding control of the cladding layer,as well as to reveal the influence of laser cladding process parameters o...In order to improve the sealing surface performance of gray cast iron gas gate valves and achieve precise molding control of the cladding layer,as well as to reveal the influence of laser cladding process parameters on the morphology and structure of the cladding layer,we prepared the 316L coating on HT 200 by using Design-Expert software central composite design(CCD)based on response surface analysis.We built a regression prediction model and analyzed the ANOVA with the inspection results.With a target cladding layer width of 3.5 mm and height of 1.3 mm,the process parameters were optimized to obtain the best combination of process parameters.The microstructure,phases,and hardness variations of the cladding layer from experiments with optimal parameters were analyzed by the metallographic microscope,confocal microscope,and microhardness instrument.The experimental results indicate that laser power has a significant impact on the cladding layer width,followed by powder feed rate;scan speed has a significant impact on the cladding layer height,followed by powder feed rate.The HT200 substrate and 316L can metallurgically bond well,and the cladding layer structure consists of dendritic crystals,columnar crystals,and equiaxed crystals in sequence.The optimal process parameter combination satisfying the morphology requirements is laser power(A)of 1993 W,scan speed(B)of 8.949 mm/s,powder feed rate(C)of 1.408 r/min,with a maximum hardness of 1564.3 HV0.5,significantly higher than the hardness of the HT200 substrate.展开更多
To enrich material types applied to additive manufacturing and enlarge application scope of additive manufacturing in conformal cooling tools,M2 high-speed steel specimens were fabricated by selective laser melting(SL...To enrich material types applied to additive manufacturing and enlarge application scope of additive manufacturing in conformal cooling tools,M2 high-speed steel specimens were fabricated by selective laser melting(SLM).Effects of SLM parameters on the microstructure and mechanical properties of M2 high-speed steel were investigated.The results showed that substrate temperature and energy density had significant influence on the densification process of materials and defects control.Models to evaluate the effect of substrate temperature and energy density on hardness were studied.The optimized process parameters,laser power,scan speed,scan distance,and substrate temperature,for fabricated M2 are 220 W,960 mm/s,0.06 mm,and 200℃,respectively.Based on this,the hardness and tensile strength reached 60 HRC and 1000 MPa,respectively.Interlaminar crack formation and suppression mechanism and the relationship between temperature gradient and thermal stress were illustrated.The inhibition effect of substrate temperature on the cracks generated by residual stresses was also explained.AM showed great application potential in the field of special conformal cooling cutting tool preparation.展开更多
This study is concerned with the surface integrity of Inconel 738LC parts manufactured by selective laser melting(SLM)followed by high-speed milling(HSM).In the investigation process of surface integrity,the study emp...This study is concerned with the surface integrity of Inconel 738LC parts manufactured by selective laser melting(SLM)followed by high-speed milling(HSM).In the investigation process of surface integrity,the study employs ultradepth three-dimensional microscopy,laser scanning confocal microscopy,scanning electron microscopy,electron backscatter diffractometry,and energy dispersive spectroscopy to characterize the evolution of material microstructure,work hardening,residual stress coupling,and anisotropic effect of the building direction on surface integrity of the samples.The results show that SLM/HSM hybrid manufacturing can be an effective method to obtain better surface quality with a thinner machining metamorphic layer.High-speed machining is adopted to reduce cutting force and suppress machining heat,which is an effective way to produce better surface mechanical properties during the SLM/HSM hybrid manufacturing process.In general,high-speed milling of the SLM-built Inconel 738LC samples offers better surface integrity,compared to simplex additive manufacturing or casting.展开更多
The crack-free Ni60 A coating was fabricated on 45 steel substrate by laser cladding and the microstructure including solidification characteristics, phases constitution and phase distribution was systematically inves...The crack-free Ni60 A coating was fabricated on 45 steel substrate by laser cladding and the microstructure including solidification characteristics, phases constitution and phase distribution was systematically investigated. The high temperature friction and wear behavior of the cladding coating and substrate sliding against GCr15 ball under different loads was systematically evaluated. It was found that the coating has homogenous and fine microstructure consisting of γ(Ni) solid solution, a considerable amount of network Ni-Ni3 B eutectics, m^23C6 with the floret-shape structure and Cr B with the dark spot-shape structure uniformly distributing in interdendritic eutectics. The microhardness of the coating is about 2.6 times as much as that of the substrate. The coating produces higher friction values than the substrate under the same load condition, but the friction process on the coating keeps relatively stable. Wear rates of the coating are about 1/6.2 of that of the substrate under the higher load(300 g). Wear mechanism of the substrate includes adhesion wear, abrasive wear, severe plastic deformation and oxidation wear, while that of the coating is merely a combination of mild abrasive wear and moderate oxidation wear.展开更多
Fe-based coating was produced on pure Ti substrate by the laser cladding technology. The composition and microstructure of the fabricated coating were analyzed by scanning electron microscopy (SEM), X-ray diffracti...Fe-based coating was produced on pure Ti substrate by the laser cladding technology. The composition and microstructure of the fabricated coating were analyzed by scanning electron microscopy (SEM), X-ray diffraction (XRD) and transmission electron microscopy (TEM) technique. The tribological properties were tested through sliding against AISI52100 steel ball at different normal loads and sliding speeds. Besides, the morphologies of the worn surfaces and wear debris were analyzed by scanning electron microscopy (SEM) and three dimensional (3D) non-contact surface mapping. The results show that the prepared Fe-based coating has a high hardness of about 860 HV0.2 and exhibits an average wear rate of (0.70-2.32)×10-6 mm3/(N-m), showing that the Fe-based coating can greatly improve the wear resistance of pure Ti substrate. The wear mechanism of the coating involves moderate adhesive and abrasive wear.展开更多
A Y2O3 particle enhanced Ni/TiC composite coating was fabricated in-situ on a TC4 Ti alloy by laser surface cladding. The phase component, microstructure, composition distribution and properties of the composite layer...A Y2O3 particle enhanced Ni/TiC composite coating was fabricated in-situ on a TC4 Ti alloy by laser surface cladding. The phase component, microstructure, composition distribution and properties of the composite layer were investigated. The composite layer has graded microstructures and compositions, due to the fast melting followed by rapid solidification and cooling during laser cladding. The TiC powders are completely dissolved into the melted layer during melting and segregated as fine dendrites when solidified. The size of TiC dendrites decreases with increasing depth. Y2O3 fine particles distribute in the whole clad layer. The Y2O3 particle enhanced Ni/TiC composite layer has a quite uniform hardness along depth with a maximum value of HV1380, which is 4 times higher than the initial hardness. The wear resistance of the Ti alloy is significantly improved after laser cladding due to the high hardness of the composite coating.展开更多
Al2O3-13%TiO2 (mass fraction) coatings, prepared by laser cladding on nickel-based alloy, were heated using high frequency induction sources. The coating microstructure and the interface between bond coating and cer...Al2O3-13%TiO2 (mass fraction) coatings, prepared by laser cladding on nickel-based alloy, were heated using high frequency induction sources. The coating microstructure and the interface between bond coating and ceramic coating were characterized by SEM, XRD and EDS. The results show that two-layer substructure exists in the ceramic coating: one layer evolving from fully melted region where the sintered grains grow fully; another layer resembling the liquid-phase-sintered structure consisting of three-dimensional net where the melted Al2O3 particles are embedded in the TiO2-rich matrix. The mechanism of the two-layer substructure formation is also explained in terms of the melting and flattening behavior of the powders during laser cladding processing. The spinel compounds NiAl2O4 and acicular compounds Cr2O3 are discovered in the interface between bond coating and ceramic coating. It proves that the chemical reactions in the laser cladding process will significantly enhance the coating adhesion.展开更多
The Hastelloy C22 coatings on Q235 steel substrate were produced by high power diode laser cladding technique. Their corrosion behaviors in static and cavitation hydrochloric, sulfuric and nitric acid solutions were i...The Hastelloy C22 coatings on Q235 steel substrate were produced by high power diode laser cladding technique. Their corrosion behaviors in static and cavitation hydrochloric, sulfuric and nitric acid solutions were investigated. The electrochemical results show that corrosion resistance of coatings in static acid solutions is higher than that in cavitation ones. In each case, coating corrosion resistance in descending order is in nitric, sulfuric and hydrochloric acid solutions. Obvious erosion-corrosion morphology and serious intercrystalline corrosion of coating are noticed in cavitation hydrochloric acid solution. This is mainly ascribed to the aggressive ions in hydrochloric acid solution and mechanical effect from cavitation bubbles collapse. While coating after corrosion test in cavitation nitric acid solution shows nearly unchanged surface morphology. The results indicate that the associated action of cavitation and property of acid solution determines the corrosion development of coating. Hastelloy C22 coating exhibits better corrosion resistance in oxidizing acid solution for the stable formation of dense oxide film on the surface.展开更多
Inconel 718 superalloy is widely used in the aerospace and turbine industry. Segregation of niobium appears in the laser cladding Inconel 718 superalloy and consequently influences the phase transformation during the ...Inconel 718 superalloy is widely used in the aerospace and turbine industry. Segregation of niobium appears in the laser cladding Inconel 718 superalloy and consequently influences the phase transformation during the rapid solidification. In order to control the microstructure and improve the mechanical properties of the deposited coating, the the influence of solidification conditions on the segregation of niobium and the resultant formation of Nb-rich Laves phase was studied using the microstructure observation and EDS analysis. The results show that the cooling rate has considerable influence on the microstructure of the deposited coating. High cooling rate is beneficial for suppressing the segregation of Nb and reducing the formation of Laves phase, which is believed to be detrimental to the performance of the Inconel 718 alloy.展开更多
In consideration of the special environmental conditions of coal equipment in mining, the seamless steel tube of hy-draulic prop made of 20^# carbon steel was taken as the substrate, and 316L stainless steel powder wa...In consideration of the special environmental conditions of coal equipment in mining, the seamless steel tube of hy-draulic prop made of 20^# carbon steel was taken as the substrate, and 316L stainless steel powder was used to clad the sub-strate by a fiber-coupled semiconductor laser. The microstructure of the cladding layer was determined by metalloscope. The hardness, wear resistance and corrosion resistance of the cladding layer were measured. The results show that metallurgy bind-ing interface between the cladding layer and the substrate is obtained without defects such as cracks and pores. The hardness of the cladding layer is much higher than that of the matrix, and the wear resistance and corrosion resistance are simultaneously better. According to the analysis, it is summarized that the improvement in performance of the cladding layer is closely related to the change of microstructure and the thermal effect in the cladding process. The maximum hardness occurs in the equiaxed zone, and with the grain coarsening, the hardness reduces simultaneously. In addition, the precipitated phase, hard particles and trace elements also have a great influence on the properties of the cladding layer, and they will prevent the surface from ab-rasion and reduce the plastic deformation of the matrix. It is verified that the 316L stainless steel is suitable for the 20^# steel in laser cladding repairing process. Since this study focused on coal machine equipment parts, it has certain practical significance for the repair of hydraulic equipment.展开更多
This paper presents the results of a study concerned with the surface hardening of Fe-based alloys and WC-8Co cemented carbide by inte- grating laser cladding and the electrospark deposition processes. Specimens of lo...This paper presents the results of a study concerned with the surface hardening of Fe-based alloys and WC-8Co cemented carbide by inte- grating laser cladding and the electrospark deposition processes. Specimens of low carbon steel were processed firstly by laser cladding with Fe-based alloy powders and then by electrospark deposition with WC-SCo cemented carbide. It is shown that, for these two treatments, the electrospark coating possesses finer microstructure than the laser coating, and the thickness and surface hardness of the electrospark coating can be substantially increased.展开更多
Particulate reinforced metal matrix composite(PR-MMC) has excellent properties such as good wear resistance,corrosion resistance and high temperature properties.Laser cladding is usually used to form PR-MMC on metal s...Particulate reinforced metal matrix composite(PR-MMC) has excellent properties such as good wear resistance,corrosion resistance and high temperature properties.Laser cladding is usually used to form PR-MMC on metal surface with various volume fractions of ceramic particles.Recent literatures showed that laser melting of powder mixture containing carbon and carbide-forming elements,was favorable for the formation of in-situ synthesized carbide particles.In this paper,rare earth oxide(RE2O3) was added into t...展开更多
A Ni-based composite coating reinforced by in situ synthesized TiB2 and TiC particles was fabricated on Ti6A14V by laser cladding. An attempt was made to correlate the thermodynamic predictions and experimental observ...A Ni-based composite coating reinforced by in situ synthesized TiB2 and TiC particles was fabricated on Ti6A14V by laser cladding. An attempt was made to correlate the thermodynamic predictions and experimental observation. The micro- structure and the microhardness profile across the coating were investigated by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and a hardness tester. It is found that the coating mainly consists of a large number of reinforcements (black blocky TiB2, flower-like or equiaxial TiC, and fine acicular CrB) and the 7 matrix. The hardness of TiB2, TiC, and CrB reinforcements is much higher than that of the 7 matrix. The dispersive distribu- tion of such high hardness reinforcements causes the increase in hardness of the whole coating. The average value of the hard- ness is approximately Hv0.2 700 in the coating. The hardness of the coating is obviously higher than that of the substrate due to the dispersion strengthening of reinforcements.展开更多
Titanium-based composite coatings reinforced by in situ synthesized TiB and TiC particles between titanium and B4C were successfully fabricated on Ti6Al4V by laser cladding. Phase constituents of the coatings were pre...Titanium-based composite coatings reinforced by in situ synthesized TiB and TiC particles between titanium and B4C were successfully fabricated on Ti6Al4V by laser cladding. Phase constituents of the coatings were predicted by thermodynamic calculations in the Ti-BnC-Al and Ti-B-C-Al systems, respectively, and were validated well by X-ray diffraction (XRD) analysis results. Microstructural and metallographic analyses were made by scanning electron microscopy (SEM) and electron probe micro-analysis (EPMA). The results show that the coatings are mainly composed of α-Ti cellular dendrites and the eutecticum in which a large number of needle-shaped TiB and a few equiaxial TiC particles are embedded. C is enriched in α-Ti cellular dendrites and far exceeds the theoretical maximum dissolubility, owing to the extension of saturation during laser cladding. The coatings have a good metallurgical bond with the substrate due to the existence of the dilution zone, in which a great amount of lamella β-Ti grains consisting of a thin needle-shaped martensitic microstructure are present and grow parallel to the heat flux direction; a few TiB and TiC reinforcements are observed at the boundaries of initial β-Ti grains.展开更多
In order to study the effect of scanning speed on the electrochemical corrosion resistance of laser cladding TC4 alloy in artificial seawater, the x-ray diffraction analysis, microstructure of cross-section, microhard...In order to study the effect of scanning speed on the electrochemical corrosion resistance of laser cladding TC4 alloy in artificial seawater, the x-ray diffraction analysis, microstructure of cross-section, microhardness variation, and impedance spectrum have been studied in comparison with the TC4 titanium alloy. The results show that the main phase of cladding coating is α-Ti, and the change of scanning speed has no obvious effect on it; therefore, the supersaturated α-Ti solid solution is formed, and the acicular α martensite is obtained. As the scanning speed increases, the microstructure of cladding coating is orthogonal basket-weave, the crystal surface spacing decreases, and the average microhardness of laser cladding TC4 alloy slightly increases. When the scanning speed increases to 10 mm/s, the microhardness is about 14.71%higher than that of the substrate, and the electrochemical corrosion resistance of laser cladding TC4 alloy is also improved,which is about 2.48 times more than the substrate. Grain refinement has a great effect on enhancing the anti-electrochemical corrosion.展开更多
Titanium-based composite coatings reinforced by in situ synthesized TiB and TiC particles were successfully fabricated on Ti6Al4V by laser cladding using Ti-B_4C-Al or Ti-B_4C-C-Al powders as the precursor materials.T...Titanium-based composite coatings reinforced by in situ synthesized TiB and TiC particles were successfully fabricated on Ti6Al4V by laser cladding using Ti-B_4C-Al or Ti-B_4C-C-Al powders as the precursor materials.The microstructural and metallographic analyses were made by X-ray diffraction(XRD),optical microscope(OM),scanning electron microscopy(SEM),and electron probe microanalysis (EPMA).The results show that the coatings are mainly composed ofα-Ti cellular dendrites and a eutectic transformation product in which a large number of coarse and fine needle-shaped TiB and a few equiaxial TiC particles are homogeneously embedded.A thin dilution zone with a thickness of about 100μm is present at the interface,and it consists of a few TiB and TiC reinforcements and a large number of lamella grains growing parallel to the heat flux direction in which a thin needle-shaped microstructure exists due to the martensitic transformation. The microstructural evolution can be divided into four stages:precipitation and growth of primaryβ-Ti phase,formation of the binary eutecticumβ-Ti+TiB,formation of the ternary eutecticumβ-Ti+TiB+TiC,and solid transformation fromβ-Ti toα-Ti.展开更多
基金Project supported by the National Key Research and Development Program of China(Grant No.2018YFC0810500)the National Natural Science Foundation of China(Grant No.51975042)the Fundamental Research Funds for the Central Universities,China(Grant No.FRF-TP-19-004A3)。
文摘High-speed laser cladding technology, a kind of surface technology to improve the wear-resistance and corrosion-resistance of mechanical parts, has the characterizations of fast scan speed, high powder utilization rate, and high cladding efficiency. However, its thermal-stress evolution process is very complex, which has a great influence on the residual stress and deformation. In the paper, the numerical models for the high-speed laser cladding coatings with overlap ratios of 10%,30%, and 50% are developed to investigate the influence rules of overlap ratio on the thermal-stress evolution, as well as the residual stresses and deformations. Results show that the heat accumulation can reheat and preheat the adjacent track coating and substrate, resulting in stress release of the previous track coating and decreased longitudinal stress peak of the next track coating. With the overlap ratio increasing, the heat accumulation and the corresponding maximum residual stress position tend to locate in the center of the cladding coating, where the coating has a high crack susceptibility. For a small overlap ratio of 10%, there are abrupt stress changes from tensile stress to compressive stress at the lap joint, due to insufficient input energy in the position. Increasing the overlap ratio can alleviate the abrupt stress change and reduce the residual deformation but increase the average residual stress and enlarge the hardening depth. This study reveals the mechanism of thermal-stress evolution, and provides a theoretical basis for improving the coating quality.
基金Project(2020E0264) supported by the Xinjiang Science and Technology Project Plan of Autonomous Region,ChinaProject(2020D01C030) supported by the Autonomous Region Natural Science Foundation,China。
文摘In order to study the corrosion resistance of high-speed laser cladding(HLC) coating while improving production efficiency,a CoCrFeNiMo_(0.2)high-entropy alloy(HEA) coating was prepared by HLC.The optimized parameters of HLC are laser power of 880 W,scanning speed of 18 m/min,overlapping ratio of 60%,and powder feed speed of 3 r/min.Then,the surface roughness,microstructure,phase composition,element distribution,and electrochemical properties in 3.5 wt% NaCl solution of the coatings were analyzed,respectively.The local surface roughness of the CoCrFeNiMo_(0.2)HEA coating was found to be 15.53 μm.A distinct metallurgical bond could be observed between the coating and the substrate.Compared to the conventional laser cladding(CLC),the results of electrochemical tests showed that CoCrFeNiMo_(0.2)HEA coating exhibited a significant passivation.The corrosion current density of 5.4411 × 10^(-6)A·cm^(-2) and the corrosion potential of-0.7445 V for the HLC coating were calculated by the Tafel extrapolation method.The CLC coating’s corrosion current density and corrosion potential are 2.7083×10^(-5)A·cm^(-2) and-0.9685 V,respectively.The HLC coating shows a superior corrosion resistance,crucially due to the uniform and fine grains.Under various complex and harsh working conditions,this method can be widely used in the field of repairing and remanufacturing of corro sion-proof workpiece s.
基金Sponsored by the Project to Enhance the Innovative Capabilities of Science and Technology SMEs of Shandong Province(Grant No.2023TSGC0531).
文摘21-4N(5Cr21Mn9Ni4N)is extensively employed in the production of engine valves,operating under severe conditions.Apart from withstanding high-temperature gas corrosion,it must also endure the impact of cylinder explosion pressure.The predominant failure mode of 21-4N valves is abrasive wear.Surface coatings serve as an effective approach to prevent such failures.In this investigation,Laser cladding technology was utilized to fabricate AlCoCrFeNiTi high entropy alloy coatings onto the surfaces of 21-4N valves.According to the findings,the cladding zone has a normal dendritic microstructure,a good substrate-to-cladding layer interaction,and no obvious flaws.In terms of hardness,the cladding demonstrates an average hardness of 620 HV.The hardness has increased by 140%compared to the substrate.The average hardness of the cladding remains at approximately 520 HV even at elevated temperatures.Regarding frictional wear performance,between 400℃and 800℃,the cladding layer exhibits an average friction coefficient of 0.4,with the primary wear mechanisms being abrasive wear,adhesive wear,and a minor degree of plastic deformation.
基金Funded by the Basic Research Projects in Shanxi Province(No.202103021224183)。
文摘The effect of the gradient content of Co element on the solidification process of Cu-based alloy under deep under cooling conditions was explored.The non-equilibrium solidification structure of the under cooled alloy samples were analyzed.It is found that the rapidly solidified alloy has undergone twice grain refinement during the undercooling process.Characterization and significance of the maximum undercooling refinement structure of Cu60Ni35Co5 at T=253 K were analyzed.High-density defects were observed,such as dislocations,stacking faults networks,and twinning structures.The standard FCC diffraction pattern represents that it is still a single-phase structure.Based on the metallographic diagram,EBSD and TEM data analysis,it is illustrated that the occurrence of grain refinement under high undercooling is due to stress induced recrystallization.In addition,the laser cladding technology is used to coat Co-based alloy(Stellite12) coating on 304 stainless steel substrate;the microstructure of the coating cross-section was analyzed.It was found that the microstructure of the cross-section is presented as columnar crystals,planar crystals,and disordered growth direction,so that the coating has better hardness and wear resistance.By electrochemical corrosion of the substrate and coating,it can be seen that the Co and Cr elements present in the coating are more likely to form a dense passivation film,which improved the corrosion resistance of the coating.
基金Funded by the National Natural Science Foundation of China(No.51975540)。
文摘In order to improve the sealing surface performance of gray cast iron gas gate valves and achieve precise molding control of the cladding layer,as well as to reveal the influence of laser cladding process parameters on the morphology and structure of the cladding layer,we prepared the 316L coating on HT 200 by using Design-Expert software central composite design(CCD)based on response surface analysis.We built a regression prediction model and analyzed the ANOVA with the inspection results.With a target cladding layer width of 3.5 mm and height of 1.3 mm,the process parameters were optimized to obtain the best combination of process parameters.The microstructure,phases,and hardness variations of the cladding layer from experiments with optimal parameters were analyzed by the metallographic microscope,confocal microscope,and microhardness instrument.The experimental results indicate that laser power has a significant impact on the cladding layer width,followed by powder feed rate;scan speed has a significant impact on the cladding layer height,followed by powder feed rate.The HT200 substrate and 316L can metallurgically bond well,and the cladding layer structure consists of dendritic crystals,columnar crystals,and equiaxed crystals in sequence.The optimal process parameter combination satisfying the morphology requirements is laser power(A)of 1993 W,scan speed(B)of 8.949 mm/s,powder feed rate(C)of 1.408 r/min,with a maximum hardness of 1564.3 HV0.5,significantly higher than the hardness of the HT200 substrate.
基金Supported by National Natural Science Foundation of China (Grant No.52005154)Hebei Provincial Natural Science Foundation (Grant No.E2020202035)。
文摘To enrich material types applied to additive manufacturing and enlarge application scope of additive manufacturing in conformal cooling tools,M2 high-speed steel specimens were fabricated by selective laser melting(SLM).Effects of SLM parameters on the microstructure and mechanical properties of M2 high-speed steel were investigated.The results showed that substrate temperature and energy density had significant influence on the densification process of materials and defects control.Models to evaluate the effect of substrate temperature and energy density on hardness were studied.The optimized process parameters,laser power,scan speed,scan distance,and substrate temperature,for fabricated M2 are 220 W,960 mm/s,0.06 mm,and 200℃,respectively.Based on this,the hardness and tensile strength reached 60 HRC and 1000 MPa,respectively.Interlaminar crack formation and suppression mechanism and the relationship between temperature gradient and thermal stress were illustrated.The inhibition effect of substrate temperature on the cracks generated by residual stresses was also explained.AM showed great application potential in the field of special conformal cooling cutting tool preparation.
基金Shenzhen Municipal Science and Technology Innovation Commission Projects(Grant Nos.Y01336107,JCYJ20180504165824643,GJHZ20180411143506667,JC YJ20170817111811303 and KQTD20190929172505711)。
文摘This study is concerned with the surface integrity of Inconel 738LC parts manufactured by selective laser melting(SLM)followed by high-speed milling(HSM).In the investigation process of surface integrity,the study employs ultradepth three-dimensional microscopy,laser scanning confocal microscopy,scanning electron microscopy,electron backscatter diffractometry,and energy dispersive spectroscopy to characterize the evolution of material microstructure,work hardening,residual stress coupling,and anisotropic effect of the building direction on surface integrity of the samples.The results show that SLM/HSM hybrid manufacturing can be an effective method to obtain better surface quality with a thinner machining metamorphic layer.High-speed machining is adopted to reduce cutting force and suppress machining heat,which is an effective way to produce better surface mechanical properties during the SLM/HSM hybrid manufacturing process.In general,high-speed milling of the SLM-built Inconel 738LC samples offers better surface integrity,compared to simplex additive manufacturing or casting.
基金Project(2012AA040210)supported by the National High-Tech Research and Development Program of ChinaProject(510-C10293)supported by the Central Finance Special Fund to Support the Local University,ChinaProject(2010A090200048)supported by the Key Project of Industry,Education,Research of Guangdong Province and Ministry of Education,China
文摘The crack-free Ni60 A coating was fabricated on 45 steel substrate by laser cladding and the microstructure including solidification characteristics, phases constitution and phase distribution was systematically investigated. The high temperature friction and wear behavior of the cladding coating and substrate sliding against GCr15 ball under different loads was systematically evaluated. It was found that the coating has homogenous and fine microstructure consisting of γ(Ni) solid solution, a considerable amount of network Ni-Ni3 B eutectics, m^23C6 with the floret-shape structure and Cr B with the dark spot-shape structure uniformly distributing in interdendritic eutectics. The microhardness of the coating is about 2.6 times as much as that of the substrate. The coating produces higher friction values than the substrate under the same load condition, but the friction process on the coating keeps relatively stable. Wear rates of the coating are about 1/6.2 of that of the substrate under the higher load(300 g). Wear mechanism of the substrate includes adhesion wear, abrasive wear, severe plastic deformation and oxidation wear, while that of the coating is merely a combination of mild abrasive wear and moderate oxidation wear.
基金Project (51045004) supported by the National Natural Science Foundation of ChinaProject (2006AA03A219) supported by Hi-tech Research and Development Program of ChinaProject (YYYJ-0913) supported by Knowledge Innovation Project in Chinese Academy of Sciences
文摘Fe-based coating was produced on pure Ti substrate by the laser cladding technology. The composition and microstructure of the fabricated coating were analyzed by scanning electron microscopy (SEM), X-ray diffraction (XRD) and transmission electron microscopy (TEM) technique. The tribological properties were tested through sliding against AISI52100 steel ball at different normal loads and sliding speeds. Besides, the morphologies of the worn surfaces and wear debris were analyzed by scanning electron microscopy (SEM) and three dimensional (3D) non-contact surface mapping. The results show that the prepared Fe-based coating has a high hardness of about 860 HV0.2 and exhibits an average wear rate of (0.70-2.32)×10-6 mm3/(N-m), showing that the Fe-based coating can greatly improve the wear resistance of pure Ti substrate. The wear mechanism of the coating involves moderate adhesive and abrasive wear.
基金Projects (51101096, 51002093) supported by the National Natural Science Foundation of ChinaProject (1052nm05000) supported by Special Foundation of the Shanghai Science and Technology Commission for Nano-Materials ResearchProject (J51042) supported by Leading Academic Discipline Project of the Shanghai Education Commission, China
文摘A Y2O3 particle enhanced Ni/TiC composite coating was fabricated in-situ on a TC4 Ti alloy by laser surface cladding. The phase component, microstructure, composition distribution and properties of the composite layer were investigated. The composite layer has graded microstructures and compositions, due to the fast melting followed by rapid solidification and cooling during laser cladding. The TiC powders are completely dissolved into the melted layer during melting and segregated as fine dendrites when solidified. The size of TiC dendrites decreases with increasing depth. Y2O3 fine particles distribute in the whole clad layer. The Y2O3 particle enhanced Ni/TiC composite layer has a quite uniform hardness along depth with a maximum value of HV1380, which is 4 times higher than the initial hardness. The wear resistance of the Ti alloy is significantly improved after laser cladding due to the high hardness of the composite coating.
基金Project (59975046) supported by the National Natural Science Foundation of China
文摘Al2O3-13%TiO2 (mass fraction) coatings, prepared by laser cladding on nickel-based alloy, were heated using high frequency induction sources. The coating microstructure and the interface between bond coating and ceramic coating were characterized by SEM, XRD and EDS. The results show that two-layer substructure exists in the ceramic coating: one layer evolving from fully melted region where the sintered grains grow fully; another layer resembling the liquid-phase-sintered structure consisting of three-dimensional net where the melted Al2O3 particles are embedded in the TiO2-rich matrix. The mechanism of the two-layer substructure formation is also explained in terms of the melting and flattening behavior of the powders during laser cladding processing. The spinel compounds NiAl2O4 and acicular compounds Cr2O3 are discovered in the interface between bond coating and ceramic coating. It proves that the chemical reactions in the laser cladding process will significantly enhance the coating adhesion.
文摘The Hastelloy C22 coatings on Q235 steel substrate were produced by high power diode laser cladding technique. Their corrosion behaviors in static and cavitation hydrochloric, sulfuric and nitric acid solutions were investigated. The electrochemical results show that corrosion resistance of coatings in static acid solutions is higher than that in cavitation ones. In each case, coating corrosion resistance in descending order is in nitric, sulfuric and hydrochloric acid solutions. Obvious erosion-corrosion morphology and serious intercrystalline corrosion of coating are noticed in cavitation hydrochloric acid solution. This is mainly ascribed to the aggressive ions in hydrochloric acid solution and mechanical effect from cavitation bubbles collapse. While coating after corrosion test in cavitation nitric acid solution shows nearly unchanged surface morphology. The results indicate that the associated action of cavitation and property of acid solution determines the corrosion development of coating. Hastelloy C22 coating exhibits better corrosion resistance in oxidizing acid solution for the stable formation of dense oxide film on the surface.
基金Project(51341004)supported by the National Natural Science Foundation of ChinaProject(S050ITP7005)supported by the Shanghai Jiao Tong University Undergraduate Innovative Practice Program,China
文摘Inconel 718 superalloy is widely used in the aerospace and turbine industry. Segregation of niobium appears in the laser cladding Inconel 718 superalloy and consequently influences the phase transformation during the rapid solidification. In order to control the microstructure and improve the mechanical properties of the deposited coating, the the influence of solidification conditions on the segregation of niobium and the resultant formation of Nb-rich Laves phase was studied using the microstructure observation and EDS analysis. The results show that the cooling rate has considerable influence on the microstructure of the deposited coating. High cooling rate is beneficial for suppressing the segregation of Nb and reducing the formation of Laves phase, which is believed to be detrimental to the performance of the Inconel 718 alloy.
基金Key Research and Development Project of Shanxi Province(No.201603D121002-2)
文摘In consideration of the special environmental conditions of coal equipment in mining, the seamless steel tube of hy-draulic prop made of 20^# carbon steel was taken as the substrate, and 316L stainless steel powder was used to clad the sub-strate by a fiber-coupled semiconductor laser. The microstructure of the cladding layer was determined by metalloscope. The hardness, wear resistance and corrosion resistance of the cladding layer were measured. The results show that metallurgy bind-ing interface between the cladding layer and the substrate is obtained without defects such as cracks and pores. The hardness of the cladding layer is much higher than that of the matrix, and the wear resistance and corrosion resistance are simultaneously better. According to the analysis, it is summarized that the improvement in performance of the cladding layer is closely related to the change of microstructure and the thermal effect in the cladding process. The maximum hardness occurs in the equiaxed zone, and with the grain coarsening, the hardness reduces simultaneously. In addition, the precipitated phase, hard particles and trace elements also have a great influence on the properties of the cladding layer, and they will prevent the surface from ab-rasion and reduce the plastic deformation of the matrix. It is verified that the 316L stainless steel is suitable for the 20^# steel in laser cladding repairing process. Since this study focused on coal machine equipment parts, it has certain practical significance for the repair of hydraulic equipment.
文摘This paper presents the results of a study concerned with the surface hardening of Fe-based alloys and WC-8Co cemented carbide by inte- grating laser cladding and the electrospark deposition processes. Specimens of low carbon steel were processed firstly by laser cladding with Fe-based alloy powders and then by electrospark deposition with WC-SCo cemented carbide. It is shown that, for these two treatments, the electrospark coating possesses finer microstructure than the laser coating, and the thickness and surface hardness of the electrospark coating can be substantially increased.
文摘Particulate reinforced metal matrix composite(PR-MMC) has excellent properties such as good wear resistance,corrosion resistance and high temperature properties.Laser cladding is usually used to form PR-MMC on metal surface with various volume fractions of ceramic particles.Recent literatures showed that laser melting of powder mixture containing carbon and carbide-forming elements,was favorable for the formation of in-situ synthesized carbide particles.In this paper,rare earth oxide(RE2O3) was added into t...
基金supported by the National Natural Science Foundation of China (No. 51002093)Shanghai Science and Technology Development Foundation (No. 08QA14035)Shanghai Leading Academic Discipline Project (No. J51402)
文摘A Ni-based composite coating reinforced by in situ synthesized TiB2 and TiC particles was fabricated on Ti6A14V by laser cladding. An attempt was made to correlate the thermodynamic predictions and experimental observation. The micro- structure and the microhardness profile across the coating were investigated by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and a hardness tester. It is found that the coating mainly consists of a large number of reinforcements (black blocky TiB2, flower-like or equiaxial TiC, and fine acicular CrB) and the 7 matrix. The hardness of TiB2, TiC, and CrB reinforcements is much higher than that of the 7 matrix. The dispersive distribu- tion of such high hardness reinforcements causes the increase in hardness of the whole coating. The average value of the hard- ness is approximately Hv0.2 700 in the coating. The hardness of the coating is obviously higher than that of the substrate due to the dispersion strengthening of reinforcements.
基金supported by Shanghai Science and Technology Development Foundation(No.08QA14035)the Special Foundation of Shanghai Education Commission for Nano-Materials Research(No.0852nm01400)the Crucial Project of Shanghai Science and Technology Commission(No.08520513400),China
文摘Titanium-based composite coatings reinforced by in situ synthesized TiB and TiC particles between titanium and B4C were successfully fabricated on Ti6Al4V by laser cladding. Phase constituents of the coatings were predicted by thermodynamic calculations in the Ti-BnC-Al and Ti-B-C-Al systems, respectively, and were validated well by X-ray diffraction (XRD) analysis results. Microstructural and metallographic analyses were made by scanning electron microscopy (SEM) and electron probe micro-analysis (EPMA). The results show that the coatings are mainly composed of α-Ti cellular dendrites and the eutecticum in which a large number of needle-shaped TiB and a few equiaxial TiC particles are embedded. C is enriched in α-Ti cellular dendrites and far exceeds the theoretical maximum dissolubility, owing to the extension of saturation during laser cladding. The coatings have a good metallurgical bond with the substrate due to the existence of the dilution zone, in which a great amount of lamella β-Ti grains consisting of a thin needle-shaped martensitic microstructure are present and grow parallel to the heat flux direction; a few TiB and TiC reinforcements are observed at the boundaries of initial β-Ti grains.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61475117 and 51471084)the National Key Research and Development Program of China(Grant No.2017YFB1103604)the Tianjin Municipal Special Program of Talents Development for Excellent Youth Scholars,China(Grant No.TJTZJHQNBJRC-2-15)
文摘In order to study the effect of scanning speed on the electrochemical corrosion resistance of laser cladding TC4 alloy in artificial seawater, the x-ray diffraction analysis, microstructure of cross-section, microhardness variation, and impedance spectrum have been studied in comparison with the TC4 titanium alloy. The results show that the main phase of cladding coating is α-Ti, and the change of scanning speed has no obvious effect on it; therefore, the supersaturated α-Ti solid solution is formed, and the acicular α martensite is obtained. As the scanning speed increases, the microstructure of cladding coating is orthogonal basket-weave, the crystal surface spacing decreases, and the average microhardness of laser cladding TC4 alloy slightly increases. When the scanning speed increases to 10 mm/s, the microhardness is about 14.71%higher than that of the substrate, and the electrochemical corrosion resistance of laser cladding TC4 alloy is also improved,which is about 2.48 times more than the substrate. Grain refinement has a great effect on enhancing the anti-electrochemical corrosion.
基金supported by the Shanghai Science and Technology Development Foundation(No.08QA14035)the Special Foundation of Shanghai Education Commission for Nano-Materials Research(No.0852nm01400)the Crucial Project of Shanghai Science and Technology Commission(No.08520513400)
文摘Titanium-based composite coatings reinforced by in situ synthesized TiB and TiC particles were successfully fabricated on Ti6Al4V by laser cladding using Ti-B_4C-Al or Ti-B_4C-C-Al powders as the precursor materials.The microstructural and metallographic analyses were made by X-ray diffraction(XRD),optical microscope(OM),scanning electron microscopy(SEM),and electron probe microanalysis (EPMA).The results show that the coatings are mainly composed ofα-Ti cellular dendrites and a eutectic transformation product in which a large number of coarse and fine needle-shaped TiB and a few equiaxial TiC particles are homogeneously embedded.A thin dilution zone with a thickness of about 100μm is present at the interface,and it consists of a few TiB and TiC reinforcements and a large number of lamella grains growing parallel to the heat flux direction in which a thin needle-shaped microstructure exists due to the martensitic transformation. The microstructural evolution can be divided into four stages:precipitation and growth of primaryβ-Ti phase,formation of the binary eutecticumβ-Ti+TiB,formation of the ternary eutecticumβ-Ti+TiB+TiC,and solid transformation fromβ-Ti toα-Ti.