The diffusion-multiple method was used to determine the composition of Ti−6Al−4V−xMo−yZr alloy(0.45<x<12,0.5<y<14,wt.%),which can obtain an ultrafine α phase.Results show that Ti−6Al−4V−5Mo−7Zr alloy can ...The diffusion-multiple method was used to determine the composition of Ti−6Al−4V−xMo−yZr alloy(0.45<x<12,0.5<y<14,wt.%),which can obtain an ultrafine α phase.Results show that Ti−6Al−4V−5Mo−7Zr alloy can obtain an ultrafineαphase by using the α″phase assisted nucleation.The bimodal microstructure obtained with the heat-treatment process can confer the alloy with a good balance between the strength and plasticity.The deformation mechanism is the dislocation slip and the{1101}twinning in the primary α phase.The strengthening mechanism is α/β interface strengthening.The interface of(0001)α/(110)β has a platform−step structure,whereas(1120)α/(111)βinterface is flat with no steps.展开更多
The microstructure of the thin-walled tubes with high-strength aluminum alloy determines their final forming quality and performance. This type of tube can be manufactured by multi-pass hot power backward spinning pro...The microstructure of the thin-walled tubes with high-strength aluminum alloy determines their final forming quality and performance. This type of tube can be manufactured by multi-pass hot power backward spinning process as it can eliminate casting defects, refine microstructure and improve the plasticity of the tube. To analyze the microstructure distribution characteristics of the tube during the spinning process, a 3D coupled thermo-mechanical FE model coupled with the microstructure evolution model of the process was established under the ABAQUS environment. The microstructure evolution characteristics and laws of the tube for the whole spinning process were analyzed. The results show that the dynamic recrystallization is mainly produced in the spinning deformation zone and root area of the tube. In the first pass, the dynamic recrystallization phenomenon is not obvious in the tube. With the pass increasing, the trend of dynamic recrystallization volume percentage gradually increases and extends from the outer surface of the tube to the inner surface. The fine-grained area shows the states of concentration, dispersion, and re-concentration as the pass number increases. .展开更多
The high-throughput diffusion-multiple technique and thermodynamics databases were used to design new high-strength Ti alloys. The composition–microstructure–property relationships of the Ti64–xMo alloys were obtai...The high-throughput diffusion-multiple technique and thermodynamics databases were used to design new high-strength Ti alloys. The composition–microstructure–property relationships of the Ti64–xMo alloys were obtained. The phase fraction and composition of the α and β phases of the Ti64–xMo alloys were calculated using the Thermo-Calc software. After aging at 600℃, the Ti64–6 Mo alloy precipitated ultrafine α phases. This phenomenon was explained on the basis of the pseudo-spinodal mechanism by calculating the Gibbs energy curves of the α and β phases of the Ti64–xMo alloys at 600℃. Bulk forged Ti64–6 Mo alloy exhibited high strength and moderate plasticity after α/β-phase-field solution treatment plus aging. The tensile properties of the alloy were determined by the size and morphology of the primary and secondary α phases and by the β grain size.展开更多
Fretting wear damage of high-strength titanium fasteners has caused a large number of disastrous accidents.Traditionally,it is believed that both high strength and excellent ductility can reduce fretting wear damage.H...Fretting wear damage of high-strength titanium fasteners has caused a large number of disastrous accidents.Traditionally,it is believed that both high strength and excellent ductility can reduce fretting wear damage.However,whether strength and ductility are contradictory or not and their appropriate matching strategy under the external applied normal stress(Fw)are still confusing problems.Here,by analyzing the subsurface-microstructure deformation mechanism of several samples containing variousαprecipitate features,for the first time,we design strategies to improve fretting damage resistance under different matching relation between Fw and the tensile strength of materials(Rm).It is found that when Fw is greater than Rm or Fw is nearly equivalent to Rm,the deformation mechanism mainly manifests as serious grain fragmentation ofβandαGB constituents.Homogeneous deformation in large areas only reduces damage to a limited extent.It is crucial to improve the strength to resist cracking and wear,but it is of little significance to improve the ductility.However,when Fw is far less than Rm,coordinated deformation ability reflected by ductility plays a more important role.The deformation mechanism mainly manifests as localized deformation ofβandαGB constituents(kinking induced by twinning and spheroidizing).A unique composite structure of nano-grained/lamellar layer and localized deformation transition layer reduces fretting damage by five times compared with a single nanograined layer.Only when the strength is great enough,improving the plasticity can reduce wear.This study can provide a principle for designing fretting damage resistant alloys.展开更多
Significant springback occurs after tube rotary-draw-bending (RDB), especially for a high-strength Ti-3A1-2.5V tube (HSTT) due to its high ratio of yield strength to Young's modulus. The combination scheme of exp...Significant springback occurs after tube rotary-draw-bending (RDB), especially for a high-strength Ti-3A1-2.5V tube (HSTT) due to its high ratio of yield strength to Young's modulus. The combination scheme of explicit and implicit is preferred to predict the springback. This simulation strategy includes several numerical parameters, such as element type, number of elements through thickness (NEL), element size, etc. However, the influences of these parameters on spring- back prediction accuracy are not fully understood. Thus, taking the geometrical specification 9.525 mm × 0.508 mm ofa HSTT as the objective, the effects of numerical parameters on prediction accuracy and computation efficiency of springback simulation of HSTT RDB are investigated. The simulated springback results are compared with experimental ones. The main results are: (1) solid and continuum-shell elements predict the experimental results well; (2) for C3DSR elements, NEL of at least 3 is required to obtain reliable results and a relative error of 29% can occur as NEL is varied in the range of 1-3; (3) specifying damping factor typically works well in Abaqus/Emplicit simulation of springback and the springback results are sensitive to the magnitude of damping factor. In addition, the explanations of the effect rules are given and a guideline is added.展开更多
The rapid development of aviation and aerospace technologies has led to increased interest in the application of numerically controlled(NC) technology for bending light-weight titanium alloy tubes.In order to study an...The rapid development of aviation and aerospace technologies has led to increased interest in the application of numerically controlled(NC) technology for bending light-weight titanium alloy tubes.In order to study and develop advanced NC bending technology,it is necessary to understand the bending performance of medium strength TA18(Ti-3Al-2.5V,ASTM Gr.9) titanium alloy tubes during NC bending under different die sets.This paper focuses on the bending performance of medium strength TA18 tubes under different NC bending die sets,including the variations in the stress,strain,wall thickness,cross sectional deformation,and defects.The results show that adding a wiper die to the base die set decreases the radial,hoop,and tangential compressive stress and the tangential compressive strain,and adding a mandrel to the base die set also decreases these stresses,but increases the radial and hoop tensile stress and decreases the hoop compressive strain obviously,and brings about a three-dimensional tensile stress concentration where the mandrel provides support.For the NC bending of medium strength TA18 tubes,the flattening of cross section is more sensitive index than the thinning of wall thickness.Introducing a mandrel can improve the flattening of cross section obviously but it has a little worse effect on the thinning of wall thickness,and adding a wiper die to the base die set can inhibit the occurrence of the inside bulge but worsen the flattening of the cross section remarkably.Considering the above effects of the mandrel and wiper die on bending performance,it is reasonable to apply the die set comprising a bending die,clamp die,and pressure die for tubes with a small diameter and the die set including an appropriate mandrel additionally for tubes with a larger diameter,in order to bend the medium strength TA18 tubes with high quality and at low cost.展开更多
High-strength β titanium alloys represented by near β titanium alloy and metastable β titanium alloy are preferred materials for large-scale load-carrying structures.In order to achieve the precise regulation of mi...High-strength β titanium alloys represented by near β titanium alloy and metastable β titanium alloy are preferred materials for large-scale load-carrying structures.In order to achieve the precise regulation of microstructure in the deformation process, massive efforts have been made to study the flow behavior and microstructure evolution of βtitanium alloy in the hot deformation process. This paper reviews the flow behavior of high-strength titanium alloy,including the effects of initial microstructure, deformation process parameters, work hardening, and dynamic softening on flow stress. Furthermore, the effects of deformation process parameters on the apparent activation energy for deformation and strain rate sensitivity coefficient are analyzed. The discontinuous yield phenomenon is discussed,and the constitutive models of flow stress are summarized.Furthermore, some microstructural evolution models are reviewed. Finally, the development direction and difficulties of the flow behavior and constitutive model are pointed out.展开更多
Anisotropy of mechanical property is an important feature influencing the service performance of titanium(Ti)alloy tube component.In this work,it is found that the hot flow formed Ti alloy tube exhibits higher yield s...Anisotropy of mechanical property is an important feature influencing the service performance of titanium(Ti)alloy tube component.In this work,it is found that the hot flow formed Ti alloy tube exhibits higher yield strength along circumferential direction(CD),and larger elongation along rolling direction(RD),presenting significant anisotropy.Subsequently,the quantitative characteristics and underlying mechanism of the property anisotropy were revealed by analyzing the slip,damage and fracture behavior under the combined effects of the spun{0002}basal texture and fibrous microstructure for different loading directions.The results showed that the prismatic slip in primaryαgrain is the dominant deformation mechanism for both loading directions at the yielding stage.The prismatic slip is harder under CD loading,which makes CD loading present higher yield strength than RD loading.Additionally,the yield anisotropy can be quantified through the inverse ratio of the averaged Schmid Factor of the activated prismatic slip under different loading directions.As for the plasticity anisotropy,the harder and slower slip development under CD loading causes that the CD loading presents larger external force and normal stress on slip plane,thus leading to more significant cleavage fracture than RD loading.Moreover,the micro-crack path under RD loading is more tortuous than CD loading because the fibrous microstructure is elongated along RD,which may suppress the macro fracture under RD loading.These results suggest that weakening the texture and fibrous morphology of microstructure is critical to reduce the differences in slip,damage and fracture behavior along different directions,alleviate the property anisotropy and optimize the service performance of Ti alloy tube formed by hot flow forming.展开更多
The damage and fracture in hot spinning of titanium alloy is a very complex process under the combined effects of microstructure evolution and stress state.In this study,their dependences on processing parameters were...The damage and fracture in hot spinning of titanium alloy is a very complex process under the combined effects of microstructure evolution and stress state.In this study,their dependences on processing parameters were investigated by an integrated FE model considering microstructure and damage evolution,and revealing the effects of microstructure and stress states on damage evolution.The results show that the inner surface of workpiece with the largest voids volume fraction is the place with the greatest potential of fracture.This is mainly attributed to the superposition effects of positive stress triaxiality and the smallest dynamic recrystallization(DRX)fraction andβphase fraction at the inner surface.The damage degree is decreased gradually with the increase of initial spinning temperature and roller fillet radius.Meanwhile,it is first decreased and then increased with the increases of spinning pass and roller feed rate,which can be explained based on the variations ofβphase fraction,DRX fraction,stress state and tensile plastic strain with processing parameters.In addition,the dominant influencing mechanisms were identified and discussed.Finally,the thickness reduction without defect in the hot spinning of TA15 alloy tube is greatly increased by proposing an optimal processing scheme.展开更多
Heat-assisted rotary draw bending(HRDB)is a promising technique for manufacturing difficult-to-form tubular components comprising high-strength titanium tubes(HSTTs)with small bending radii.However,as a multidie const...Heat-assisted rotary draw bending(HRDB)is a promising technique for manufacturing difficult-to-form tubular components comprising high-strength titanium tubes(HSTTs)with small bending radii.However,as a multidie constrained and thermomechanical coupled process with many uncertainty factors,a high risk of several defects,such as cross-section distortion,over wall thinning,or even cracking,is present.Achieving the robust design optimization(RDO)of complex forming processes remains a nontrivial and challenging scientific issue.Herein,considering a high-strength Ti-3Al-2.5V titanium alloy tube as a case material,the five significant uncertainty factors in HRDB,i.e.,temperature distribution,tube geometrical characteristics,tube material parameters,tube/tool friction,and boost velocity had been analyzed.Subsequently,considering the preheating and HRDB of HSTT,a whole-process thermomechanical three-dimensional finite element model was established and validated for virtual experiments.Further,considering the maximum section distortion Q and maximum wall-thickness thinning t as the optimization objectives and the mean and variance of material and forming parameters,an RDO model was established.Finally,the Pareto optimal solutions were obtained using the nondominated sorting genetic algorithm II,and a minimum distance selection method was employed to obtain the satisfactory solution.Results show that the optimized solutions considering the uncertainty factors reduce the maximum section distortion rate of HSTT after bending by 38.1%and the maximum wallthickness thinning rate by 27.8%.展开更多
The main reason for the high strength in near-βtitanium alloys is the ultrafine precipitation of the acicular secondary a phase in theβmatrix.The purpose of this study is to use the pseudo-spinodal mechanism to obta...The main reason for the high strength in near-βtitanium alloys is the ultrafine precipitation of the acicular secondary a phase in theβmatrix.The purpose of this study is to use the pseudo-spinodal mechanism to obtain the ultrafine a phase for the design of a new high-strength near-γtitanium alloy.Thermodynamic calculations and TC21-(TC21+15 Mo)diffusion couple composition gradient experiments were used to demonstrate that TC21+3 Mo alloy can undergo a pseudo-spinodal decomposition to obtain the ultrafine a phase,resulting in a high-strength alloy.By adjusting the heat treatment process to obtain a bimodal microstructure,the alloy exhibits a good balance between ultimate tensile strength(1351 MPa)and plasticity(8.5%strain).Thus,it was demonstrated that the pseudospinodal mechanism combined with a high-throughput diffusion couple technique is an effective method for designing high-strength titanium alloys.展开更多
基金Projects(2016YFB0701301,2018YFB0704100)supported by the National Key Technologies R&D Program of ChinaProjects(51901251,51671218,51501229)supported by the National Natural Science Foundation of ChinaProject(2020JJ5750)supported by the Natural Science Foundation of Hunan Province,China。
文摘The diffusion-multiple method was used to determine the composition of Ti−6Al−4V−xMo−yZr alloy(0.45<x<12,0.5<y<14,wt.%),which can obtain an ultrafine α phase.Results show that Ti−6Al−4V−5Mo−7Zr alloy can obtain an ultrafineαphase by using the α″phase assisted nucleation.The bimodal microstructure obtained with the heat-treatment process can confer the alloy with a good balance between the strength and plasticity.The deformation mechanism is the dislocation slip and the{1101}twinning in the primary α phase.The strengthening mechanism is α/β interface strengthening.The interface of(0001)α/(110)β has a platform−step structure,whereas(1120)α/(111)βinterface is flat with no steps.
文摘The microstructure of the thin-walled tubes with high-strength aluminum alloy determines their final forming quality and performance. This type of tube can be manufactured by multi-pass hot power backward spinning process as it can eliminate casting defects, refine microstructure and improve the plasticity of the tube. To analyze the microstructure distribution characteristics of the tube during the spinning process, a 3D coupled thermo-mechanical FE model coupled with the microstructure evolution model of the process was established under the ABAQUS environment. The microstructure evolution characteristics and laws of the tube for the whole spinning process were analyzed. The results show that the dynamic recrystallization is mainly produced in the spinning deformation zone and root area of the tube. In the first pass, the dynamic recrystallization phenomenon is not obvious in the tube. With the pass increasing, the trend of dynamic recrystallization volume percentage gradually increases and extends from the outer surface of the tube to the inner surface. The fine-grained area shows the states of concentration, dispersion, and re-concentration as the pass number increases. .
基金financial support from the National Key Technologies R&D Program of China (Grant No. 2016YFB0701301 and 2018YFB0704100)National Natural Science Foundation of China (Grant No. 51671218 and 51501229)+1 种基金National Key Basic Research Program of China (973 Program) (Grant No. 2014CB644000)State Key Laboratory of Powder Metallurgy, Central South University, Changsha, China
文摘The high-throughput diffusion-multiple technique and thermodynamics databases were used to design new high-strength Ti alloys. The composition–microstructure–property relationships of the Ti64–xMo alloys were obtained. The phase fraction and composition of the α and β phases of the Ti64–xMo alloys were calculated using the Thermo-Calc software. After aging at 600℃, the Ti64–6 Mo alloy precipitated ultrafine α phases. This phenomenon was explained on the basis of the pseudo-spinodal mechanism by calculating the Gibbs energy curves of the α and β phases of the Ti64–xMo alloys at 600℃. Bulk forged Ti64–6 Mo alloy exhibited high strength and moderate plasticity after α/β-phase-field solution treatment plus aging. The tensile properties of the alloy were determined by the size and morphology of the primary and secondary α phases and by the β grain size.
基金supported by the National Natural Science Foundation of China(No.52105211)the Research Fund of the State Key Laboratory of Solidification Processing of NPU,China(No.2023-TS-04)the Fundamental Research Funds for the Central Universities of China(No.3102019JC001).
文摘Fretting wear damage of high-strength titanium fasteners has caused a large number of disastrous accidents.Traditionally,it is believed that both high strength and excellent ductility can reduce fretting wear damage.However,whether strength and ductility are contradictory or not and their appropriate matching strategy under the external applied normal stress(Fw)are still confusing problems.Here,by analyzing the subsurface-microstructure deformation mechanism of several samples containing variousαprecipitate features,for the first time,we design strategies to improve fretting damage resistance under different matching relation between Fw and the tensile strength of materials(Rm).It is found that when Fw is greater than Rm or Fw is nearly equivalent to Rm,the deformation mechanism mainly manifests as serious grain fragmentation ofβandαGB constituents.Homogeneous deformation in large areas only reduces damage to a limited extent.It is crucial to improve the strength to resist cracking and wear,but it is of little significance to improve the ductility.However,when Fw is far less than Rm,coordinated deformation ability reflected by ductility plays a more important role.The deformation mechanism mainly manifests as localized deformation ofβandαGB constituents(kinking induced by twinning and spheroidizing).A unique composite structure of nano-grained/lamellar layer and localized deformation transition layer reduces fretting damage by five times compared with a single nanograined layer.Only when the strength is great enough,improving the plasticity can reduce wear.This study can provide a principle for designing fretting damage resistant alloys.
基金the National Natural Science Foundation of China (No.51275415)Program for New Century Excellent Talents in University+1 种基金the fund of the State Key Laboratory of Solidifcation Processing in NWPUNatural Science Basic Research Plan in Shaanxi Province (No.2011JQ6004),and the 111 Project (No.B08040) for the support
文摘Significant springback occurs after tube rotary-draw-bending (RDB), especially for a high-strength Ti-3A1-2.5V tube (HSTT) due to its high ratio of yield strength to Young's modulus. The combination scheme of explicit and implicit is preferred to predict the springback. This simulation strategy includes several numerical parameters, such as element type, number of elements through thickness (NEL), element size, etc. However, the influences of these parameters on spring- back prediction accuracy are not fully understood. Thus, taking the geometrical specification 9.525 mm × 0.508 mm ofa HSTT as the objective, the effects of numerical parameters on prediction accuracy and computation efficiency of springback simulation of HSTT RDB are investigated. The simulated springback results are compared with experimental ones. The main results are: (1) solid and continuum-shell elements predict the experimental results well; (2) for C3DSR elements, NEL of at least 3 is required to obtain reliable results and a relative error of 29% can occur as NEL is varied in the range of 1-3; (3) specifying damping factor typically works well in Abaqus/Emplicit simulation of springback and the springback results are sensitive to the magnitude of damping factor. In addition, the explanations of the effect rules are given and a guideline is added.
基金supported by the Program for New Century Excellent Talents in University of China (NCET-08-0462)the Fund of the State Key Laboratory of Solidification Processing in NWPU (Grant No. KP200919)the 111 Project of China (B08040)
文摘The rapid development of aviation and aerospace technologies has led to increased interest in the application of numerically controlled(NC) technology for bending light-weight titanium alloy tubes.In order to study and develop advanced NC bending technology,it is necessary to understand the bending performance of medium strength TA18(Ti-3Al-2.5V,ASTM Gr.9) titanium alloy tubes during NC bending under different die sets.This paper focuses on the bending performance of medium strength TA18 tubes under different NC bending die sets,including the variations in the stress,strain,wall thickness,cross sectional deformation,and defects.The results show that adding a wiper die to the base die set decreases the radial,hoop,and tangential compressive stress and the tangential compressive strain,and adding a mandrel to the base die set also decreases these stresses,but increases the radial and hoop tensile stress and decreases the hoop compressive strain obviously,and brings about a three-dimensional tensile stress concentration where the mandrel provides support.For the NC bending of medium strength TA18 tubes,the flattening of cross section is more sensitive index than the thinning of wall thickness.Introducing a mandrel can improve the flattening of cross section obviously but it has a little worse effect on the thinning of wall thickness,and adding a wiper die to the base die set can inhibit the occurrence of the inside bulge but worsen the flattening of the cross section remarkably.Considering the above effects of the mandrel and wiper die on bending performance,it is reasonable to apply the die set comprising a bending die,clamp die,and pressure die for tubes with a small diameter and the die set including an appropriate mandrel additionally for tubes with a larger diameter,in order to bend the medium strength TA18 tubes with high quality and at low cost.
基金the project of National Key Laboratory for Precision Hot Processing of Metals,Harbin Institute of Technology(No.6142909190207)Shaanxi Key Laboratory of High-Performance Precision Forming Technology and Equipment(NSKL-HPFTE)(No.PETE-2019-KF01)。
文摘High-strength β titanium alloys represented by near β titanium alloy and metastable β titanium alloy are preferred materials for large-scale load-carrying structures.In order to achieve the precise regulation of microstructure in the deformation process, massive efforts have been made to study the flow behavior and microstructure evolution of βtitanium alloy in the hot deformation process. This paper reviews the flow behavior of high-strength titanium alloy,including the effects of initial microstructure, deformation process parameters, work hardening, and dynamic softening on flow stress. Furthermore, the effects of deformation process parameters on the apparent activation energy for deformation and strain rate sensitivity coefficient are analyzed. The discontinuous yield phenomenon is discussed,and the constitutive models of flow stress are summarized.Furthermore, some microstructural evolution models are reviewed. Finally, the development direction and difficulties of the flow behavior and constitutive model are pointed out.
基金financially supported by the National Natural Science Foundation of China(No.51875467,52005313)the National Science Fund for Distinguished Young Scholars of China(No.51625505)+1 种基金the Young Elite Scientists Sponsorship Program by CAST(No.2018QNRC001)the Research Fund of the State Key Laboratory of Solidification Processing(NPU)of China(No.2019TS-10)。
文摘Anisotropy of mechanical property is an important feature influencing the service performance of titanium(Ti)alloy tube component.In this work,it is found that the hot flow formed Ti alloy tube exhibits higher yield strength along circumferential direction(CD),and larger elongation along rolling direction(RD),presenting significant anisotropy.Subsequently,the quantitative characteristics and underlying mechanism of the property anisotropy were revealed by analyzing the slip,damage and fracture behavior under the combined effects of the spun{0002}basal texture and fibrous microstructure for different loading directions.The results showed that the prismatic slip in primaryαgrain is the dominant deformation mechanism for both loading directions at the yielding stage.The prismatic slip is harder under CD loading,which makes CD loading present higher yield strength than RD loading.Additionally,the yield anisotropy can be quantified through the inverse ratio of the averaged Schmid Factor of the activated prismatic slip under different loading directions.As for the plasticity anisotropy,the harder and slower slip development under CD loading causes that the CD loading presents larger external force and normal stress on slip plane,thus leading to more significant cleavage fracture than RD loading.Moreover,the micro-crack path under RD loading is more tortuous than CD loading because the fibrous microstructure is elongated along RD,which may suppress the macro fracture under RD loading.These results suggest that weakening the texture and fibrous morphology of microstructure is critical to reduce the differences in slip,damage and fracture behavior along different directions,alleviate the property anisotropy and optimize the service performance of Ti alloy tube formed by hot flow forming.
基金the funding support from the National Natural Science Foundation of China(No.51875467,92060107)National Science Fund for Distinguished Young Scholars of China(No.51625505)+2 种基金the Hong Kong Scholar Program(No.XJ2018010)the Young Elite Scientists Sponsorship Program by CAST(No.2018QNRC001)the Research Fund of the State Key Laboratory of Solidification Processing(NPU),China(Grant No.2019-TS-10)。
文摘The damage and fracture in hot spinning of titanium alloy is a very complex process under the combined effects of microstructure evolution and stress state.In this study,their dependences on processing parameters were investigated by an integrated FE model considering microstructure and damage evolution,and revealing the effects of microstructure and stress states on damage evolution.The results show that the inner surface of workpiece with the largest voids volume fraction is the place with the greatest potential of fracture.This is mainly attributed to the superposition effects of positive stress triaxiality and the smallest dynamic recrystallization(DRX)fraction andβphase fraction at the inner surface.The damage degree is decreased gradually with the increase of initial spinning temperature and roller fillet radius.Meanwhile,it is first decreased and then increased with the increases of spinning pass and roller feed rate,which can be explained based on the variations ofβphase fraction,DRX fraction,stress state and tensile plastic strain with processing parameters.In addition,the dominant influencing mechanisms were identified and discussed.Finally,the thickness reduction without defect in the hot spinning of TA15 alloy tube is greatly increased by proposing an optimal processing scheme.
基金supported by the National Natural Science Foundation of China(Grant No.51775441).
文摘Heat-assisted rotary draw bending(HRDB)is a promising technique for manufacturing difficult-to-form tubular components comprising high-strength titanium tubes(HSTTs)with small bending radii.However,as a multidie constrained and thermomechanical coupled process with many uncertainty factors,a high risk of several defects,such as cross-section distortion,over wall thinning,or even cracking,is present.Achieving the robust design optimization(RDO)of complex forming processes remains a nontrivial and challenging scientific issue.Herein,considering a high-strength Ti-3Al-2.5V titanium alloy tube as a case material,the five significant uncertainty factors in HRDB,i.e.,temperature distribution,tube geometrical characteristics,tube material parameters,tube/tool friction,and boost velocity had been analyzed.Subsequently,considering the preheating and HRDB of HSTT,a whole-process thermomechanical three-dimensional finite element model was established and validated for virtual experiments.Further,considering the maximum section distortion Q and maximum wall-thickness thinning t as the optimization objectives and the mean and variance of material and forming parameters,an RDO model was established.Finally,the Pareto optimal solutions were obtained using the nondominated sorting genetic algorithm II,and a minimum distance selection method was employed to obtain the satisfactory solution.Results show that the optimized solutions considering the uncertainty factors reduce the maximum section distortion rate of HSTT after bending by 38.1%and the maximum wallthickness thinning rate by 27.8%.
基金financially supported by the National Key Technologies R&D Program of China(No.2016YFB0701301)the National Natural Science Foundation of China(Nos.51901251,51671218 and 51501229)the State Key Laboratory of Powder Metallurgy Independent Project of China(No.621021907)。
文摘The main reason for the high strength in near-βtitanium alloys is the ultrafine precipitation of the acicular secondary a phase in theβmatrix.The purpose of this study is to use the pseudo-spinodal mechanism to obtain the ultrafine a phase for the design of a new high-strength near-γtitanium alloy.Thermodynamic calculations and TC21-(TC21+15 Mo)diffusion couple composition gradient experiments were used to demonstrate that TC21+3 Mo alloy can undergo a pseudo-spinodal decomposition to obtain the ultrafine a phase,resulting in a high-strength alloy.By adjusting the heat treatment process to obtain a bimodal microstructure,the alloy exhibits a good balance between ultimate tensile strength(1351 MPa)and plasticity(8.5%strain).Thus,it was demonstrated that the pseudospinodal mechanism combined with a high-throughput diffusion couple technique is an effective method for designing high-strength titanium alloys.