期刊文献+
共找到13,322篇文章
< 1 2 250 >
每页显示 20 50 100
A landslide monitoring method using data from unmanned aerial vehicle and terrestrial laser scanning with insufficient and inaccurate ground control points 被引量:1
1
作者 Jiawen Zhou Nan Jiang +1 位作者 Congjiang Li Haibo Li 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第10期4125-4140,共16页
Non-contact remote sensing techniques,such as terrestrial laser scanning(TLS)and unmanned aerial vehicle(UAV)photogrammetry,have been globally applied for landslide monitoring in high and steep mountainous areas.These... Non-contact remote sensing techniques,such as terrestrial laser scanning(TLS)and unmanned aerial vehicle(UAV)photogrammetry,have been globally applied for landslide monitoring in high and steep mountainous areas.These techniques acquire terrain data and enable ground deformation monitoring.However,practical application of these technologies still faces many difficulties due to complex terrain,limited access and dense vegetation.For instance,monitoring high and steep slopes can obstruct the TLS sightline,and the accuracy of the UAV model may be compromised by absence of ground control points(GCPs).This paper proposes a TLS-and UAV-based method for monitoring landslide deformation in high mountain valleys using traditional real-time kinematics(RTK)-based control points(RCPs),low-precision TLS-based control points(TCPs)and assumed control points(ACPs)to achieve high-precision surface deformation analysis under obstructed vision and impassable conditions.The effects of GCP accuracy,GCP quantity and automatic tie point(ATP)quantity on the accuracy of UAV modeling and surface deformation analysis were comprehensively analyzed.The results show that,the proposed method allows for the monitoring accuracy of landslides to exceed the accuracy of the GCPs themselves by adding additional low-accuracy GCPs.The proposed method was implemented for monitoring the Xinhua landslide in Baoxing County,China,and was validated against data from multiple sources. 展开更多
关键词 Landslide monitoring data fusion Terrestrial laser scanning(TLS) Unmanned aerial vehicle(UAV) Model reconstruction
下载PDF
Contribution of the MERISE-Type Conceptual Data Model to the Construction of Monitoring and Evaluation Indicators of the Effectiveness of Training in Relation to the Needs of the Labor Market in the Republic of Congo
2
作者 Roch Corneille Ngoubou Basile Guy Richard Bossoto Régis Babindamana 《Open Journal of Applied Sciences》 2024年第8期2187-2200,共14页
This study proposes the use of the MERISE conceptual data model to create indicators for monitoring and evaluating the effectiveness of vocational training in the Republic of Congo. The importance of MERISE for struct... This study proposes the use of the MERISE conceptual data model to create indicators for monitoring and evaluating the effectiveness of vocational training in the Republic of Congo. The importance of MERISE for structuring and analyzing data is underlined, as it enables the measurement of the adequacy between training and the needs of the labor market. The innovation of the study lies in the adaptation of the MERISE model to the local context, the development of innovative indicators, and the integration of a participatory approach including all relevant stakeholders. Contextual adaptation and local innovation: The study suggests adapting MERISE to the specific context of the Republic of Congo, considering the local particularities of the labor market. Development of innovative indicators and new measurement tools: It proposes creating indicators to assess skills matching and employer satisfaction, which are crucial for evaluating the effectiveness of vocational training. Participatory approach and inclusion of stakeholders: The study emphasizes actively involving training centers, employers, and recruitment agencies in the evaluation process. This participatory approach ensures that the perspectives of all stakeholders are considered, leading to more relevant and practical outcomes. Using the MERISE model allows for: • Rigorous data structuring, organization, and standardization: Clearly defining entities and relationships facilitates data organization and standardization, crucial for effective data analysis. • Facilitation of monitoring, analysis, and relevant indicators: Developing both quantitative and qualitative indicators helps measure the effectiveness of training in relation to the labor market, allowing for a comprehensive evaluation. • Improved communication and common language: By providing a common language for different stakeholders, MERISE enhances communication and collaboration, ensuring that all parties have a shared understanding. The study’s approach and contribution to existing research lie in: • Structured theoretical and practical framework and holistic approach: The study offers a structured framework for data collection and analysis, covering both quantitative and qualitative aspects, thus providing a comprehensive view of the training system. • Reproducible methodology and international comparison: The proposed methodology can be replicated in other contexts, facilitating international comparison and the adoption of best practices. • Extension of knowledge and new perspective: By integrating a participatory approach and developing indicators adapted to local needs, the study extends existing research and offers new perspectives on vocational training evaluation. 展开更多
关键词 MERISE Conceptual data Model (MCD) monitoring Indicators Evaluation of Training Effectiveness Training-Employment Adequacy Labor Market Information Systems Analysis Adjustment of Training Programs EMPLOYABILITY Professional Skills
下载PDF
Real-time prediction of mechanical behaviors of underwater shield tunnel structure using machine learning method based on structural health monitoring data 被引量:2
3
作者 Xuyan Tan Weizhong Chen +2 位作者 Tao Zou Jianping Yang Bowen Du 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第4期886-895,共10页
Predicting the mechanical behaviors of structure and perceiving the anomalies in advance are essential to ensuring the safe operation of infrastructures in the long run.In addition to the incomplete consideration of i... Predicting the mechanical behaviors of structure and perceiving the anomalies in advance are essential to ensuring the safe operation of infrastructures in the long run.In addition to the incomplete consideration of influencing factors,the prediction time scale of existing studies is rough.Therefore,this study focuses on the development of a real-time prediction model by coupling the spatio-temporal correlation with external load through autoencoder network(ATENet)based on structural health monitoring(SHM)data.An autoencoder mechanism is performed to acquire the high-level representation of raw monitoring data at different spatial positions,and the recurrent neural network is applied to understanding the temporal correlation from the time series.Then,the obtained temporal-spatial information is coupled with dynamic loads through a fully connected layer to predict structural performance in next 12 h.As a case study,the proposed model is formulated on the SHM data collected from a representative underwater shield tunnel.The robustness study is carried out to verify the reliability and the prediction capability of the proposed model.Finally,the ATENet model is compared with some typical models,and the results indicate that it has the best performance.ATENet model is of great value to predict the realtime evolution trend of tunnel structure. 展开更多
关键词 Shied tunnel Machine learning monitoring Real-time prediction data analysis
下载PDF
Wearable Healthcare and Continuous Vital Sign Monitoring with IoT Integration
4
作者 Hamed Taherdoost 《Computers, Materials & Continua》 SCIE EI 2024年第10期79-104,共26页
Technical and accessibility issues in hospitals often prevent patients from receiving optimal mental and physical health care,which is essential for independent living,especially as societies age and chronic diseases ... Technical and accessibility issues in hospitals often prevent patients from receiving optimal mental and physical health care,which is essential for independent living,especially as societies age and chronic diseases like diabetes and cardiovascular disease become more common.Recent advances in the Internet of Things(IoT)-enabled wearable devices offer potential solutions for remote health monitoring and everyday activity recognition,gaining significant attention in personalized healthcare.This paper comprehensively reviews wearable healthcare technology integrated with the IoT for continuous vital sign monitoring.Relevant papers were extracted and analyzed using a systematic numerical review method,covering various aspects such as sports monitoring,disease detection,patient monitoring,and medical diagnosis.The review highlights the transformative impact of IoTenabled wearable devices in healthcare,facilitating real-time monitoring of vital signs,including blood pressure,temperature,oxygen levels,and heart rate.Results from the reviewed papers demonstrate high accuracy and efficiency in predicting health conditions,improving sports performance,enhancing patient care,and diagnosing diseases.The integration of IoT in wearable healthcare devices enables remote patient monitoring,personalized care,and efficient data transmission,ultimately transcending traditional boundaries of healthcare and leading to better patient outcomes. 展开更多
关键词 Wearable healthcare IoT integration patient care remote patient monitoring real-time data transmission health technology
下载PDF
Development of Spectral Features for Monitoring Rice Bacterial Leaf Blight Disease Using Broad-Band Remote Sensing Systems
5
作者 Jingcheng Zhang Xingjian Zhou +3 位作者 Dong Shen Qimeng Yu Lin Yuan Yingying Dong 《Phyton-International Journal of Experimental Botany》 SCIE 2024年第4期745-762,共18页
As an important rice disease, rice bacterial leaf blight (RBLB, caused by the bacterium Xanthomonas oryzae pv.oryzae), has become widespread in east China in recent years. Significant losses in rice yield occurred as ... As an important rice disease, rice bacterial leaf blight (RBLB, caused by the bacterium Xanthomonas oryzae pv.oryzae), has become widespread in east China in recent years. Significant losses in rice yield occurred as a result ofthe disease’s epidemic, making it imperative to monitor RBLB at a large scale. With the development of remotesensing technology, the broad-band sensors equipped with red-edge channels over multiple spatial resolutionsoffer numerous available data for large-scale monitoring of rice diseases. However, RBLB is characterized by rapiddispersal under suitable conditions, making it difficult to track the disease at a regional scale with a single sensorin practice. Therefore, it is necessary to identify or construct features that are effective across different sensors formonitoring RBLB. To achieve this goal, the spectral response of RBLB was first analyzed based on the canopyhyperspectral data. Using the relative spectral response (RSR) functions of four representative satellite or UAVsensors (i.e., Sentinel-2, GF-6, Planet, and Rededge-M) and the hyperspectral data, the corresponding broad-bandspectral data was simulated. According to a thorough band combination and sensitivity analysis, two novel spectralindices for monitoring RBLB that can be effective across multiple sensors (i.e., RBBRI and RBBDI) weredeveloped. An optimal feature set that includes the two novel indices and a classical vegetation index was formed.The capability of such a feature set in monitoring RBLB was assessed via FLDA and SVM algorithms. The resultdemonstrated that both constructed novel indices exhibited high sensitivity to the disease across multiple sensors.Meanwhile, the feature set yielded an overall accuracy above 90% for all sensors, which indicates its cross-sensorgenerality in monitoring RBLB. The outcome of this research permits disease monitoring with different remotesensing data over a large scale. 展开更多
关键词 Rice bacterial leaf blight analysis of spectral response multispectral data simulation vegetation indices cross-sensor disease monitoring
下载PDF
Development and prospect of downhole monitoring and data transmission technology for separated zone water injection 被引量:1
6
作者 LIU He ZHENG Lichen +4 位作者 YU Jiaqing MING Eryang YANG Qinghai JIA Deli CAO Gang 《Petroleum Exploration and Development》 2023年第1期191-201,共11页
This article outlines the development of downhole monitoring and data transmission technology for separated zone water injection in China.According to the development stages,the principles,operation processes,adaptabi... This article outlines the development of downhole monitoring and data transmission technology for separated zone water injection in China.According to the development stages,the principles,operation processes,adaptability and application status of traditional downhole data acquisition method,cable communications and testing technology,cable-controlled downhole parameter real-time monitoring communication method and downhole wireless communication technology are introduced in detail.Problems and challenges of existing technologies in downhole monitoring and data transmission technology are pointed out.According to the production requirement,the future development direction of the downhole monitoring and data transmission technology for separated zone water injection is proposed.For the large number of wells adopting cable measuring and adjustment technology,the key is to realize the digitalization of downhole plug.For the key monitoring wells,cable-controlled communication technology needs to be improved,and downhole monitoring and data transmission technology based on composite coiled tubing needs to be developed to make the operation more convenient and reliable.For large-scale application in oil fields,downhole wireless communication technology should be developed to realize automation of measurement and adjustment.In line with ground mobile communication network,a digital communication network covering the control center,water distribution station and oil reservoir should be built quickly to provide technical support for the digitization of reservoir development. 展开更多
关键词 separated zone water injection downhole monitoring data transmission cable communication vibration wave pressure wave flow wave
下载PDF
An Auxiliary Monitoring Method for Well Killing Based on Statistical Data
7
作者 Shuang Liang Fangyu Luo +2 位作者 Huihui Yu Jian Gao Xiaolin Shu 《Fluid Dynamics & Materials Processing》 EI 2023年第8期2109-2118,共10页
In the present study,a large set of data related to well killing is considered.Through a complete exploration of the whole process leading to well-killing,various factors affecting such a process are screened and sort... In the present study,a large set of data related to well killing is considered.Through a complete exploration of the whole process leading to well-killing,various factors affecting such a process are screened and sorted,and a correlation model is built accordingly in order to introduce an auxiliary method for well-killing monitoring based on statistical information.The available data show obvious differences due to the diverse control parameters related to different well-killing methods.Nevertheless,it is shown that a precise three-fold relationship exists between the reservoir parameters,the elapsed time and the effectiveness of the considered well-killing strategy.The proposed monitoring auxiliary method is intended to support risk assessment and optimization in the context of typical well-killing applications. 展开更多
关键词 Well-killing Big data monitoring
下载PDF
Trip Purposes of Automobile Users Inference Using Multi-day Traffic Monitoring Data
8
作者 Wen Zheng Wenquan Li +2 位作者 Qian Chen Yan Zheng Chenhao Zhang 《Journal of Harbin Institute of Technology(New Series)》 CAS 2023年第5期1-11,共11页
Determining trip purpose is an important link to explore travel rules. In this paper,we takea utomobile users in urban areas as the research object,combine unsupervised learning and supervised learningm ethods to anal... Determining trip purpose is an important link to explore travel rules. In this paper,we takea utomobile users in urban areas as the research object,combine unsupervised learning and supervised learningm ethods to analyze their travel characteristics,and focus on the classification and prediction of automobileu sers’trip purposes. However,previous studies on trip purposes mainly focused on questionnaires and GPSd ata,which cannot well reflect the characteristics of automobile travel. In order to avoid the multi-dayb ehavior variability and unobservable heterogeneity of individual characteristics ignored in traditional traffic questionnaires,traffic monitoring data from the Northern District of Qingdao are used,and the K-meansc lustering method is applied to estimate the trip purposes of automobile users. Then,Adaptive Boosting(AdaBoost)and Random Forest(RF)methods are used to classify and predict trip purposes. Finally,ther esult shows:(1)the purpose of automobile users can be mainly divided into four clusters,which includeC ommuting trips,Flexible life demand travel in daytime,Evening entertainment and leisure shopping,andT axi-based trips for the first three types of purposes,respectively;(2)the Random Forest method performss ignificantly better than AdaBoost in trip purpose prediction for higher accuracy;(3)the average predictiona ccuracy of Random Forest under hyper-parameters optimization reaches96.25%,which proves the feasibilitya nd rationality of the above clustering results. 展开更多
关键词 trip purpose automobile users traffic monitoring data K-means clustering ADABOOST random forest
下载PDF
Towards Cache-Assisted Hierarchical Detection for Real-Time Health Data Monitoring in IoHT
9
作者 Muhammad Tahir Mingchu Li +4 位作者 Irfan Khan Salman AAl Qahtani Rubia Fatima Javed Ali Khan Muhammad Shahid Anwar 《Computers, Materials & Continua》 SCIE EI 2023年第11期2529-2544,共16页
Real-time health data monitoring is pivotal for bolstering road services’safety,intelligence,and efficiency within the Internet of Health Things(IoHT)framework.Yet,delays in data retrieval can markedly hinder the eff... Real-time health data monitoring is pivotal for bolstering road services’safety,intelligence,and efficiency within the Internet of Health Things(IoHT)framework.Yet,delays in data retrieval can markedly hinder the efficacy of big data awareness detection systems.We advocate for a collaborative caching approach involving edge devices and cloud networks to combat this.This strategy is devised to streamline the data retrieval path,subsequently diminishing network strain.Crafting an adept cache processing scheme poses its own set of challenges,especially given the transient nature of monitoring data and the imperative for swift data transmission,intertwined with resource allocation tactics.This paper unveils a novel mobile healthcare solution that harnesses the power of our collaborative caching approach,facilitating nuanced health monitoring via edge devices.The system capitalizes on cloud computing for intricate health data analytics,especially in pinpointing health anomalies.Given the dynamic locational shifts and possible connection disruptions,we have architected a hierarchical detection system,particularly during crises.This system caches data efficiently and incorporates a detection utility to assess data freshness and potential lag in response times.Furthermore,we introduce the Cache-Assisted Real-Time Detection(CARD)model,crafted to optimize utility.Addressing the inherent complexity of the NP-hard CARD model,we have championed a greedy algorithm as a solution.Simulations reveal that our collaborative caching technique markedly elevates the Cache Hit Ratio(CHR)and data freshness,outshining its contemporaneous benchmark algorithms.The empirical results underscore the strength and efficiency of our innovative IoHT-based health monitoring solution.To encapsulate,this paper tackles the nuances of real-time health data monitoring in the IoHT landscape,presenting a joint edge-cloud caching strategy paired with a hierarchical detection system.Our methodology yields enhanced cache efficiency and data freshness.The corroborative numerical data accentuates the feasibility and relevance of our model,casting a beacon for the future trajectory of real-time health data monitoring systems. 展开更多
关键词 Real-time health data monitoring Cache-Assisted Real-Time Detection(CARD) edge-cloud collaborative caching scheme hierarchical detection Internet of Health Things(IoHT)
下载PDF
Correlation Analysis of Turbidity and Total Phosphorus in Water Quality Monitoring Data
10
作者 Wenwu Tan Jianjun Zhang +7 位作者 Xing Liu Jiang Wu Yifu Sheng Ke Xiao Li Wang Haijun Lin Guang Sun Peng Guo 《Journal on Big Data》 2023年第1期85-97,共13页
At present,water pollution has become an important factor affecting and restricting national and regional economic development.Total phosphorus is one of the main sources of water pollution and eutrophication,so the p... At present,water pollution has become an important factor affecting and restricting national and regional economic development.Total phosphorus is one of the main sources of water pollution and eutrophication,so the prediction of total phosphorus in water quality has good research significance.This paper selects the total phosphorus and turbidity data for analysis by crawling the data of the water quality monitoring platform.By constructing the attribute object mapping relationship,the correlation between the two indicators was analyzed and used to predict the future data.Firstly,the monthly mean and daily mean concentrations of total phosphorus and turbidity outliers were calculated after cleaning,and the correlation between them was analyzed.Secondly,the correlation coefficients of different times and frequencies were used to predict the values for the next five days,and the data trend was predicted by python visualization.Finally,the real value was compared with the predicted value data,and the results showed that the correlation between total phosphorus and turbidity was useful in predicting the water quality. 展开更多
关键词 Correlation analysis CLUSTER water quality predict water quality monitoring data
下载PDF
Fatigue Safety Assessment of Concrete Continuous Rigid Frame Bridge Based on Rain Flow Counting Method and Health Monitoring Data
11
作者 Yinghua Li Junyong He +1 位作者 Xiaoqing Zeng Yanxing Tang 《Journal of Architectural Environment & Structural Engineering Research》 2023年第3期31-40,共10页
The fatigue of concrete structures will gradually appear after being subjected to alternating loads for a long time,and the accidents caused by fatigue failure of bridge structures also appear from time to time.Aiming... The fatigue of concrete structures will gradually appear after being subjected to alternating loads for a long time,and the accidents caused by fatigue failure of bridge structures also appear from time to time.Aiming at the problem of degradation of long-span continuous rigid frame bridges due to fatigue and environmental effects,this paper suggests a method to analyze the fatigue degradation mechanism of this type of bridge,which combines long-term in-site monitoring data collected by the health monitoring system(HMS)and fatigue theory.In the paper,the authors mainly carry out the research work in the following aspects:First of all,a long-span continuous rigid frame bridge installed with HMS is used as an example,and a large amount of health monitoring data have been acquired,which can provide efficient information for fatigue in terms of equivalent stress range and cumulative number of stress cycles;next,for calculating the cumulative fatigue damage of the bridge structure,fatigue stress spectrum got by rain flow counting method,S-N curves and damage criteria are used for fatigue damage analysis.Moreover,it was considered a linear accumulation damage through the Palmgren-Miner rule for the counting of stress cycles.The health monitoring data are adopted to obtain fatigue stress data and the rain flow counting method is used to count the amplitude varying fatigue stress.The proposed fatigue reliability approach in the paper can estimate the fatigue damage degree and its evolution law of bridge structures well,and also can help bridge engineers do the assessment of future service duration. 展开更多
关键词 Long-span continuous rigid frame bridge Rain flow counting method Fatigue performance Health monitoring system Strain monitoring data
下载PDF
Review of large scale crop remote sensing monitoring based on MODIS data 被引量:1
12
作者 刘丹 杨风暴 +2 位作者 李大威 梁若飞 冯裴裴 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2016年第2期193-204,共12页
China has a vast territory with abundant crops,and how to collect crop information in China timely,objectively and accurately,is of great significance to the scientific guidance of agricultural development.In this pap... China has a vast territory with abundant crops,and how to collect crop information in China timely,objectively and accurately,is of great significance to the scientific guidance of agricultural development.In this paper,by selecting moderateresolution imaging spectroradiometer(MODIS)data as the main information source,on the basis of spectral and biological characteristics mechanism of the crop,and using the freely available advantage of hyperspectral temporal MODIS data,conduct large scale agricultural remote sensing monitoring research,develop applicable model and algorithm,which can achieve large scale remote sensing extraction and yield estimation of major crop type information,and improve the accuracy of crop quantitative remote sensing.Moreover,the present situation of global crop remote sensing monitoring based on MODIS data is analyzed.Meanwhile,the climate and environment grid agriculture information system using large-scale agricultural condition remote sensing monitoring has been attempted preliminary. 展开更多
关键词 moderate-resolution imaging spectroradiometer(MODIS)data remote sensing monitoring CROPS
下载PDF
Identification of Sewage Monitoring Data Based on Mathematical Statistics
13
作者 万玉山 邹涛 +3 位作者 李大伟 温馨 沈梦 陈艳秋 《Agricultural Science & Technology》 CAS 2017年第4期656-659,共4页
In order to reduce the enormous pressure to environmental monitoring work brought by the false sewage monitoring data, Grubbs method, box plot, t test and other methods are used to make depth analysis to the data, pro... In order to reduce the enormous pressure to environmental monitoring work brought by the false sewage monitoring data, Grubbs method, box plot, t test and other methods are used to make depth analysis to the data, providing a set of technological process to identify the sewage monitoring data, which is convenient and simple. 展开更多
关键词 Mathematical statistics monitoring data Technological process
下载PDF
Establishment and data analysis of sea-state monitoring system along Taiwan coast
14
作者 冯向波 王昊 严以新 《Marine Science Bulletin》 2012年第1期42-56,共15页
Taiwan Island is at the joint of Eurasian Continent and Pacific Plate, under threatening of typhoons and northeasterly strong winds. Consequently, enormous human lives and properties are lost every year. It is necessa... Taiwan Island is at the joint of Eurasian Continent and Pacific Plate, under threatening of typhoons and northeasterly strong winds. Consequently, enormous human lives and properties are lost every year. It is necessary to develop a coastal sea-state monitoring system. This paper introduces the coastal sea-state monitoring system (CSMS) along Taiwan coast. The COMC (Coastal Ocean Monitoring Center in National Cheng Kung University) built the Taiwan coastal sea-state monitoring system, which is modern and self-sufficient, consisting of data buoy, pile station, tide station, coastal weather station, and radar monitoring station. To assure the data quality, Data Quality Check Procedure (DQCP) and Standard Operation Procedure (SOP) were developed by the COMC. In further data analysis and data implementation of the observation, this paper also introduces some new methods that make the data with much more promising uses. These methods include empirical mode decomposition (EMD) used for the analysis of storm surge water level, wavelet transform used for the analysis of wave characteristics from nearshore X-band radar images, and data assimilation technique applied in wave nowcast operation. The coastal sea-state monitoring system has a great potential in providing ocean information to serve the society. 展开更多
关键词 coastal sea-state monitoring moored buoy wave monitoring of radar technique EMD wavelet transform data assimilation
下载PDF
Monitoring the change in horizontal stress with multi-wave time-lapse seismic response based on nonlinear elasticity theory 被引量:2
15
作者 Fu-Bin Chen Zhao-Yun Zong Xing-Yao Yin 《Petroleum Science》 SCIE EI CAS CSCD 2023年第2期815-826,共12页
Monitoring the change in horizontal stress from the geophysical data is a tough challenge, and it has a crucial impact on broad practical scenarios which involve reservoir exploration and development, carbon dioxide (... Monitoring the change in horizontal stress from the geophysical data is a tough challenge, and it has a crucial impact on broad practical scenarios which involve reservoir exploration and development, carbon dioxide (CO_(2)) injection and storage, shallow surface prospecting and deep-earth structure description. The change in in-situ stress induced by hydrocarbon production and localized tectonic movements causes the changes in rock mechanic properties (e.g. wave velocities, density and anisotropy) and further causes the changes in seismic amplitudes, phases and travel times. In this study, the nonlinear elasticity theory that regards the rock skeleton (solid phase) and pore fluid as an effective whole is used to characterize the effect of horizontal principal stress on rock overall elastic properties and the stress-dependent anisotropy parameters are therefore formulated. Then the approximate P-wave, SV-wave and SH-wave angle-dependent reflection coefficient equations for the horizontal-stress-induced anisotropic media are proposed. It is shown that, on the different reflectors, the stress-induced relative changes in reflectivities (i.e., relative difference) of elastic parameters (i.e., P- and S-wave velocities and density) are much less than the changes in contrasts of anisotropy parameters. Therefore, the effects of stress change on the reflectivities of three elastic parameters are reasonably neglected to further propose an AVO inversion approach incorporating P-, SH- and SV-wave information to estimate the change in horizontal principal stress from the corresponding time-lapse seismic data. Compared with the existing methods, our method eliminates the need for man-made rock-physical or fitting parameters, providing more stable predictive power. 1D test illustrates that the estimated result from time-lapse P-wave reflection data shows the most reasonable agreement with the real model, while the estimated result from SH-wave reflection data shows the largest bias. 2D test illustrates the feasibility of the proposed inversion method for estimating the change in horizontal stress from P-wave time-lapse seismic data. 展开更多
关键词 monitoring change in horizontal stress Multi-wave reflection coefficients Nonlinear elasticity theory Time-lapse seismic data
下载PDF
The State of the Art of Data Science and Engineering in Structural Health Monitoring 被引量:66
16
作者 Yuequan Bao Zhicheng Chen +3 位作者 Shiyin Wei Yang Xu Zhiyi Tang Hui Li 《Engineering》 SCIE EI 2019年第2期234-242,共9页
Structural health monitoring (SHM) is a multi-discipline field that involves the automatic sensing of structural loads and response by means of a large number of sensors and instruments, followed by a diagnosis of the... Structural health monitoring (SHM) is a multi-discipline field that involves the automatic sensing of structural loads and response by means of a large number of sensors and instruments, followed by a diagnosis of the structural health based on the collected data. Because an SHM system implemented into a structure automatically senses, evaluates, and warns about structural conditions in real time, massive data are a significant feature of SHM. The techniques related to massive data are referred to as data science and engineering, and include acquisition techniques, transition techniques, management techniques, and processing and mining algorithms for massive data. This paper provides a brief review of the state of the art of data science and engineering in SHM as investigated by these authors, and covers the compressive sampling-based data-acquisition algorithm, the anomaly data diagnosis approach using a deep learning algorithm, crack identification approaches using computer vision techniques, and condition assessment approaches for bridges using machine learning algorithms. Future trends are discussed in the conclusion. 展开更多
关键词 Structural HEALTH monitoring monitoring data COMPRESSIVE sampling MACHINE LEARNING Deep LEARNING
下载PDF
Technical development of operational in-situ marine monitoring and research on its key generic technologies in China 被引量:1
17
作者 Yunzhou Li Juncheng Wang 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2023年第10期117-126,共10页
In China,operational in-situ marine monitoring is the primary means of directly obtaining hydrological,meteorological,and oceanographic environmental parameters across sea areas,and it is essential for applications su... In China,operational in-situ marine monitoring is the primary means of directly obtaining hydrological,meteorological,and oceanographic environmental parameters across sea areas,and it is essential for applications such as forecast of marine environment,prevention and mitigation of disaster,exploitation of marine resources,marine environmental protection,and management of transportation safety.In this paper,we summarise the composition,development courses,and present operational status of three systems of operational in-situ marine monitoring,namely coastal marine automated network station,ocean data buoy and voluntary observing ship measuring and reporting system.Additionally,we discuss the technical development in these in-situ systems and achievements in the key generic technologies along with future development trends. 展开更多
关键词 marine observation technology operational in-situ marine monitoring C-MAN station ocean data buoy VOS measuring and reporting system achievements in the key technologies development trend
下载PDF
Analysis and application of automatic deformation monitoring data for buildings and structures of mining area 被引量:9
18
作者 XIAO Jie1, 2, 3, ZHANG Jin4 1. Institute of Geodesy and Geophysics, Chinese Academy of Sciences, Wuhan 430077, China 2. Key Laboratory of Dynamic Geodesy, Institute of Geodesy and Geophysics, Chinese Academy of Sciences, Wuhan 430077, China 3. Graduate School of Chinese Academy of Sciences, Beijing 100049, China 4. Department of Surveying and Mapping, Taiyuan University of Technology, Taiyuan 030024, China 《中国有色金属学会会刊:英文版》 CSCD 2011年第S3期516-522,共7页
The buildings and structures of mines were monitored automatically using modern surveying technology. Through the analysis of the monitoring data, the deformation characteristics were found out from three aspects cont... The buildings and structures of mines were monitored automatically using modern surveying technology. Through the analysis of the monitoring data, the deformation characteristics were found out from three aspects containing points, lines and regions, which play an important role in understanding the stable state of buildings and structures. The stability and deformation of monitoring points were analysed, and time-series data of monitoring points were denoised with wavelet analysis and Kalman filtering, and exponent function and periodic function were used to get the ideal deformation trend model of monitoring points. Through calculating the monitoring data obtained, analyzing the deformation trend, and cognizing the deformation regularity, it can better service mine safety production and decision-making. 展开更多
关键词 WAVELET ANALYSIS KALMAN FILTERING DEFORMATION monitoring data ANALYSIS MINE
下载PDF
Multi-mode process monitoring based on a novel weighted local standardization strategy and support vector data description 被引量:7
19
作者 赵付洲 宋冰 侍洪波 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第11期2896-2905,共10页
There are multiple operating modes in the real industrial process, and the collected data follow the complex multimodal distribution, so most traditional process monitoring methods are no longer applicable because the... There are multiple operating modes in the real industrial process, and the collected data follow the complex multimodal distribution, so most traditional process monitoring methods are no longer applicable because their presumptions are that sampled-data should obey the single Gaussian distribution or non-Gaussian distribution. In order to solve these problems, a novel weighted local standardization(WLS) strategy is proposed to standardize the multimodal data, which can eliminate the multi-mode characteristics of the collected data, and normalize them into unimodal data distribution. After detailed analysis of the raised data preprocessing strategy, a new algorithm using WLS strategy with support vector data description(SVDD) is put forward to apply for multi-mode monitoring process. Unlike the strategy of building multiple local models, the developed method only contains a model without the prior knowledge of multi-mode process. To demonstrate the proposed method's validity, it is applied to a numerical example and a Tennessee Eastman(TE) process. Finally, the simulation results show that the WLS strategy is very effective to standardize multimodal data, and the WLS-SVDD monitoring method has great advantages over the traditional SVDD and PCA combined with a local standardization strategy(LNS-PCA) in multi-mode process monitoring. 展开更多
关键词 multiple operating modes weighted local standardization support vector data description multi-mode monitoring
下载PDF
Integrating artificial intelligence and high-throughput phenotyping for crop improvement 被引量:1
20
作者 Mansoor Sheikh Farooq Iqra +3 位作者 Hamadani Ambreen Kumar A Pravin Manzoor Ikra Yong Suk Chung 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第6期1787-1802,共16页
Crop improvement is crucial for addressing the global challenges of food security and sustainable agriculture.Recent advancements in high-throughput phenotyping(HTP)technologies and artificial intelligence(AI)have rev... Crop improvement is crucial for addressing the global challenges of food security and sustainable agriculture.Recent advancements in high-throughput phenotyping(HTP)technologies and artificial intelligence(AI)have revolutionized the field,enabling rapid and accurate assessment of crop traits on a large scale.The integration of AI and machine learning algorithms with HTP data has unlocked new opportunities for crop improvement.AI algorithms can analyze and interpret large datasets,and extract meaningful patterns and correlations between phenotypic traits and genetic factors.These technologies have the potential to revolutionize plant breeding programs by providing breeders with efficient and accurate tools for trait selection,thereby reducing the time and cost required for variety development.However,further research and collaboration are needed to overcome the existing challenges and fully unlock the power of HTP and AI in crop improvement.By leveraging AI algorithms,researchers can efficiently analyze phenotypic data,uncover complex patterns,and establish predictive models that enable precise trait selection and crop breeding.The aim of this review is to explore the transformative potential of integrating HTP and AI in crop improvement.This review will encompass an in-depth analysis of recent advances and applications,highlighting the numerous benefits and challenges associated with HTP and AI. 展开更多
关键词 artificial intelligence crop improvement data analysis high-throughput phenotyping machine learning precision agriculture trait selection
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部