A precision centrifuge is an inertial navigation test equipment used for calibrating the characteristics of accelerometers with high overloading, and a two axis centrifuge can be used to generate either constant accel...A precision centrifuge is an inertial navigation test equipment used for calibrating the characteristics of accelerometers with high overloading, and a two axis centrifuge can be used to generate either constant acceleration or harmonic acceleration. The moving trajectory equation about the origin of the accelerometer coordinate system in a two axis centrifuge was directly deduced through homogeneous transformation. The acceleration vector of the origin in accelerometer coordinate system was achieved by making the second derivative of this trajectory equation. The acceleration components were acquired by decomposing this acceleration vector along the three axes of the accelerometer coordinate system. The correctness of the homogeneous transformation was verified through vector analysis.展开更多
Based on the theory of complex function and the principle of homogenization, harmonic dynamics stress of a radially infinite inhomogeneous medium with a circular cavity is investigated. Due to the symmetry, wave veloc...Based on the theory of complex function and the principle of homogenization, harmonic dynamics stress of a radially infinite inhomogeneous medium with a circular cavity is investigated. Due to the symmetry, wave velocity is assumed to have power-law variation in the radial direction only, and the shear modulus is constant. The Helmholtz equation with a variable coefficient is equivalently transformed into a standard Helmholtz equation with a general conformal transformation method(GCTM). The displacements and stress fields are proposed. Numerical results show that the wave number and the inhomogeneity parameter of the medium have significant effects on the dynamic stress concentration around the circular cavity. The dynamic stress concentration factor(DSCF) becomes singular when the inhomogeneity parameter of medium is close to zero.展开更多
The effect of solution treatment on the martensitic transformation behavior of a Ni43Co7Mn39Sn11 polycrystalline alloy fabricated by an arc melting method was investigated by scanning electron microscopy(SEM), energ...The effect of solution treatment on the martensitic transformation behavior of a Ni43Co7Mn39Sn11 polycrystalline alloy fabricated by an arc melting method was investigated by scanning electron microscopy(SEM), energy-dispersive X-ray spectroscopy(EDS), and differential scanning calorimetry(DSC). The examination indicates the presence of severe chemical segregation in the dendritic as-cast structure because of solidification. This chemical segregation completely impedes the intrinsic martensitic transformation. Annealing at 1223 K for 24 h is identified as the threshold annealing condition to eliminate the microstructural segregation and begin the martensitic transformation, as indicated by a broad and obscure feature. Annealing at 1273 K for 24–48 h is found to be effective at promoting notably the martensitic transformation, but the martensitic transformation exhibits a multiple-step feature. Complete homogeneity is achieved by annealing at 1273 K for 72 h, which produces a sharp, single-step martensitic transformation. The microstructural evolution and the valence electron concentrations of alloys(e/a ratio) are evaluated, which are reflective of the degree of compositional homogeneity of alloys, confirming that high annealing temperature and long holding time are vital to reveal the intrinsic martensitic behavior of this alloy. The adequately homogenized alloy displays a martensitic transformation at 292 K and an enthalpy of 11.2 J/g.展开更多
The displacement of the origin of the accelerometer coordinate system relative to the origin of the base coordinate system is calculated by homogeneous transformation. The second order derivative of this displacement ...The displacement of the origin of the accelerometer coordinate system relative to the origin of the base coordinate system is calculated by homogeneous transformation. The second order derivative of this displacement is the acceleration of the origin to the accelerometer coordinate system. By means of the attitude relationship between the base coordinate system and the accelerometer coordinate system, the acceleration components on the three coordinate axes is obtained. Utilizing the Coriolis rotation coordinate theorem, the three components are also calculated. The homogeneous transtbrmation method and vector differential method lead to identical results.展开更多
In order to measure three-axis intersection error, two crosshair targets were fixed in the inner axis frame of a three-axis turntable. Also a theodolite was used to point its telescope to the targets and to measure th...In order to measure three-axis intersection error, two crosshair targets were fixed in the inner axis frame of a three-axis turntable. Also a theodolite was used to point its telescope to the targets and to measure the horizontal angles when three axes were on equi-spaced angle positions. The calculation equations of the axis intersection were deduced from the mounting position of the theodolite, positions of two targets, angular positions of three axes, and the measured horizontal angles with the theodolite. Finally, a practical measurement is carried out on a horizontal three-axis turntable and error analysis is conducted.展开更多
To solve the homogeneous transformation equation of the form AX=XB in hand-eye calibration, where X represents an unknown transformation from the camera to the robot hand, and A and B denote the known movement transfo...To solve the homogeneous transformation equation of the form AX=XB in hand-eye calibration, where X represents an unknown transformation from the camera to the robot hand, and A and B denote the known movement transformations associated with the robot hand and the camera, respectively, this paper introduces a new linear decomposition algorithm which consists of singular value decomposition followed by the estimation of the optimal rotation matrix and the least squares equation to solve the rotation matrix of X. Without the requirements of traditional methods that A and B be rigid transformations with the same rotation angle, it enables the extension to non-rigid transformations for A and B. The details of our method are given, together with a short discussion of experimental results, showing that more precision and robustness can be achieved.展开更多
Aiming at the assembly accuracy of a large aircraft transport jig, the effect of component error and the error of work-piece surface on the work-piece position and orientation in the 3-2-1 fixturing scheme is studied ...Aiming at the assembly accuracy of a large aircraft transport jig, the effect of component error and the error of work-piece surface on the work-piece position and orientation in the 3-2-1 fixturing scheme is studied with the object pose space description method. The error mapping model between the connecting part of the front frame rack and its support base is modeled using the homogeneous transformation matrix(HTM) method. The probabilistic error is simulated using the Monte Carlo method. The measurement experiment was conducted by the laser tracker to verify the effectiveness of the approach, and the approach has been successfully applied to the production of transport jig.展开更多
A dual-CCD simulating human eyes and neck (DSHEN) vision system is putforward. Its structure and principle are introduced. The DSREN vision system can perform somemovements simulating human eyes and neck by means of f...A dual-CCD simulating human eyes and neck (DSHEN) vision system is putforward. Its structure and principle are introduced. The DSREN vision system can perform somemovements simulating human eyes and neck by means of four rotating joints, and realize preciseobject recognizing and distance measuring in all orientations. The mathematic model of the DSHENvision system is built, and its movement equation is solved. The coordinate error and measureprecision affected by the movement parameters are analyzed by means of intersection measuringmethod. So a theoretic foundation for further research on automatic object recognizing and precisetarget tracking is provided.展开更多
Light pen coordinate measuring system(LPCMS)is a kind of portable coordinate measuring technique based on vision metrology.In classical LPCMS,the measuring range is limited to the camera’s field of view.To overcome t...Light pen coordinate measuring system(LPCMS)is a kind of portable coordinate measuring technique based on vision metrology.In classical LPCMS,the measuring range is limited to the camera’s field of view.To overcome this defect,a new LPCMS is designed in this paper to fulfil whole space coordinate measurement.The camera is installed on a turntable instead of a tripod,so that the camera can rotate to track the movement of the light pen.The new system can be applied to large scale onsite measurement,and therefore it notably extends the application of LPCMS.To guarantee the accuracy of the new system,a method to calibrate the parameters of the tracking turntable is also proposed.Fixing the light pen at a stationary position,and changing the azimuth angles of the turntable’s two shafts,so that the camera can capture the images of the light pen from different view angles.According to the invariant spatial relationship between the camera and the pedestal of the tracking turntable,a system of nonlinear equations can be established to solve the parameters of the turntable.Experimental results show that the whole space coordinate measuring accuracy of the new system can reach 0.25 mm within 10 m.It can be concluded that the newly designed system can significantly expand the measuring range of LPCMS without losing too much accuracy.展开更多
The reductive transformation of CO_2 to energy related products including formic acid, CO, formamide, methanol and methylamine could be a promising option to supply renewable energy. In this aspect, ruthenium has foun...The reductive transformation of CO_2 to energy related products including formic acid, CO, formamide, methanol and methylamine could be a promising option to supply renewable energy. In this aspect, ruthenium has found wide application in hydrogenation of various carbonyl groups, and has successfully been applied to reductive transformation of CO_2 with high catalytic efficiency and excellent selectivity. In addition, ruthenium complexes have also served as effective photosensitizers for CO_2 photoreduction.Classified by reductive products, this review summarizes and updates advances in the Ru-catalyzed reduction of CO_2 along with catalyst development on the basis of mechanistic understanding at a molecular level.展开更多
This paper proposes a novel method for calibrating error coefficients of the quartz accelerometer faster on the dynamic centrifuge,which can generate a continuous dynamic acceleration excitation.Firstly,working princi...This paper proposes a novel method for calibrating error coefficients of the quartz accelerometer faster on the dynamic centrifuge,which can generate a continuous dynamic acceleration excitation.Firstly,working principle and structure of the dynamic centrifuge are analyzed,the error sources and the uncertainty of the dynamic centrifuge are expounded,and relevant coordinate systems are established.Then,according to the characteristics of the input specific forces and the propagating methods of the error sources,the accurate input specific forces acted on the input reference axes of accelerometer are obtained.Based on the calibration error model of the accelerometer,the corresponding dynamic calibration method is proposed.Finally,the second-order and high-order coefficients of the acceleration error model are calibrated,and the calibration precision of the coefficients is analyzed.Compared with traditional calibration methods,the method proposed in this paper not only greatly enhances the calibration efficiency by reducing the installing positions of the accelerometer,but also separates the centrifuge errors from the outputs of the accelerometer,which improves the accuracy and efficiency of the calibration method simultaneously.展开更多
Aiming at the workspace calculation problem of multi-joint serial manipulators,a surface enveloping and overlaying (SEO) method is presented to identify and visualize the manipulator workspace.The SEO method is compos...Aiming at the workspace calculation problem of multi-joint serial manipulators,a surface enveloping and overlaying (SEO) method is presented to identify and visualize the manipulator workspace.The SEO method is composed of two stages:the first stage is to choose reference points of the manipulator and calculate their boundary surfaces using the nth enveloping method;the second stage is to overlay these boundary surfaces to identify the final workspace.The SEO method is basically a combination of the analytic method and the numerical method.By delineating the graphic representation of the workspace step by step,the SEO method is easy to analyze the existence and the shape of voids and holes.The basic theory of the SEO method and formulas for workspace calculation are presented based on a 6R serial manipulator.By showing the workspace calculation results,the SEO method is proved working correctly.展开更多
A new scheme is proposed to model 3D angular motion of a revolving regular object with miniature, low-cost micro electro mechanical systems(MEMS) accelerometers(instead of gyroscope),which is employed in 3D mouse syst...A new scheme is proposed to model 3D angular motion of a revolving regular object with miniature, low-cost micro electro mechanical systems(MEMS) accelerometers(instead of gyroscope),which is employed in 3D mouse system.To sense 3D angular motion,the static property of MEMS accelerometer,sensitive to gravity acceleration,is exploited.With the three outputs of configured accelerometers,the proposed model is implemented to get the rotary motion of the rigid object.In order to validate the effectiveness of the proposed model,an input device is developed with the configuration of the scheme.Experimental results show that a simulated 3D cube can accurately track the rotation of the input device.The result indicates the feasibility and effectiveness of the proposed model in the 3D mouse system.展开更多
A systematic geometric model has been presented for calibration of a newly designed 5-axis turbine blade grinding machine. This machine is designed to serve a specific purpose to attain high accuracy and high efficien...A systematic geometric model has been presented for calibration of a newly designed 5-axis turbine blade grinding machine. This machine is designed to serve a specific purpose to attain high accuracy and high efficiency grinding of turbine blades by eliminating the hand grinding process. Although its topology is RPPPR (P: prismatic; R: rotary), its design is quite distinct from the competitive machine tools. As error quantification is the only way to investigate, maintain and improve its accuracy, calibra- tion is recommended for its performance assessment and acceptance testing. Systematic geometric error modeling technique is implemented and 52 position dependent and position independent errors are identified while considering the machine as five rigid bodies by eliminating the set-up errors of workpiece and cutting tool. 39 of them are found to have influential errors and are accommodated for finding the resultant effect between the cutting tool and the workpiece in workspace volume. Rigid body kinematics techniques and homogenous transformation matrices are used for error synthesis.展开更多
Fe3O4 nano-whiskers were synthesized via ultrasonic-aided reduction of FeCl2.4H2O with N2H4-H2O in concentrated NaOH solution. Phase identification and morphology observation were conducted by X-ray diffraction (XRD...Fe3O4 nano-whiskers were synthesized via ultrasonic-aided reduction of FeCl2.4H2O with N2H4-H2O in concentrated NaOH solution. Phase identification and morphology observation were conducted by X-ray diffraction (XRD) analysis, transmission electron microscopy (TEM) and field emission scanning electron microscopy (FE-SEM). Face scanning energy dispersive spectrum (face scanning EDS) and twodimensional fast Fourier transform (2DFFF) for element distribution were carried out for confirming composition homogeneity. From XRD and TEIVI, the synthesized Fe304 nano-whiskers are of cubic phase with average dimension of 20 nm~ 200 nm (average aspect ratio of 10). FE-SEM shows that the nanowhiskers without dispersion are interconnected into a network at a scale of 20μm. 2DFFT of the distribution of Fe and O from face scanning EDS confirms the composition homogeneity of the synthesized Fe3O4. Hydrazine hydrate determines the formation of the nano-whiskers, while the possible mechanism is the preferred growth along certain orientation with the aid of ultrasonic treatment.展开更多
文摘A precision centrifuge is an inertial navigation test equipment used for calibrating the characteristics of accelerometers with high overloading, and a two axis centrifuge can be used to generate either constant acceleration or harmonic acceleration. The moving trajectory equation about the origin of the accelerometer coordinate system in a two axis centrifuge was directly deduced through homogeneous transformation. The acceleration vector of the origin in accelerometer coordinate system was achieved by making the second derivative of this trajectory equation. The acceleration components were acquired by decomposing this acceleration vector along the three axes of the accelerometer coordinate system. The correctness of the homogeneous transformation was verified through vector analysis.
基金Project supported by the Earthquake Industry Special Science Research Foundation Project(No.201508026-02)the Natural Science Foundation of Heilongjiang Province of China(No.A201310)
文摘Based on the theory of complex function and the principle of homogenization, harmonic dynamics stress of a radially infinite inhomogeneous medium with a circular cavity is investigated. Due to the symmetry, wave velocity is assumed to have power-law variation in the radial direction only, and the shear modulus is constant. The Helmholtz equation with a variable coefficient is equivalently transformed into a standard Helmholtz equation with a general conformal transformation method(GCTM). The displacements and stress fields are proposed. Numerical results show that the wave number and the inhomogeneity parameter of the medium have significant effects on the dynamic stress concentration around the circular cavity. The dynamic stress concentration factor(DSCF) becomes singular when the inhomogeneity parameter of medium is close to zero.
基金financially supported by the China Postdoctoral Science Foundation (No. 2012M521764)the National Natural Science Foundation of China (No. 51201124)
文摘The effect of solution treatment on the martensitic transformation behavior of a Ni43Co7Mn39Sn11 polycrystalline alloy fabricated by an arc melting method was investigated by scanning electron microscopy(SEM), energy-dispersive X-ray spectroscopy(EDS), and differential scanning calorimetry(DSC). The examination indicates the presence of severe chemical segregation in the dendritic as-cast structure because of solidification. This chemical segregation completely impedes the intrinsic martensitic transformation. Annealing at 1223 K for 24 h is identified as the threshold annealing condition to eliminate the microstructural segregation and begin the martensitic transformation, as indicated by a broad and obscure feature. Annealing at 1273 K for 24–48 h is found to be effective at promoting notably the martensitic transformation, but the martensitic transformation exhibits a multiple-step feature. Complete homogeneity is achieved by annealing at 1273 K for 72 h, which produces a sharp, single-step martensitic transformation. The microstructural evolution and the valence electron concentrations of alloys(e/a ratio) are evaluated, which are reflective of the degree of compositional homogeneity of alloys, confirming that high annealing temperature and long holding time are vital to reveal the intrinsic martensitic behavior of this alloy. The adequately homogenized alloy displays a martensitic transformation at 292 K and an enthalpy of 11.2 J/g.
文摘The displacement of the origin of the accelerometer coordinate system relative to the origin of the base coordinate system is calculated by homogeneous transformation. The second order derivative of this displacement is the acceleration of the origin to the accelerometer coordinate system. By means of the attitude relationship between the base coordinate system and the accelerometer coordinate system, the acceleration components on the three coordinate axes is obtained. Utilizing the Coriolis rotation coordinate theorem, the three components are also calculated. The homogeneous transtbrmation method and vector differential method lead to identical results.
文摘In order to measure three-axis intersection error, two crosshair targets were fixed in the inner axis frame of a three-axis turntable. Also a theodolite was used to point its telescope to the targets and to measure the horizontal angles when three axes were on equi-spaced angle positions. The calculation equations of the axis intersection were deduced from the mounting position of the theodolite, positions of two targets, angular positions of three axes, and the measured horizontal angles with the theodolite. Finally, a practical measurement is carried out on a horizontal three-axis turntable and error analysis is conducted.
基金Project (No. 60703002) supported by the National Natural Science Foundation of China
文摘To solve the homogeneous transformation equation of the form AX=XB in hand-eye calibration, where X represents an unknown transformation from the camera to the robot hand, and A and B denote the known movement transformations associated with the robot hand and the camera, respectively, this paper introduces a new linear decomposition algorithm which consists of singular value decomposition followed by the estimation of the optimal rotation matrix and the least squares equation to solve the rotation matrix of X. Without the requirements of traditional methods that A and B be rigid transformations with the same rotation angle, it enables the extension to non-rigid transformations for A and B. The details of our method are given, together with a short discussion of experimental results, showing that more precision and robustness can be achieved.
基金Supported by National Key Technology Research and Development Program of China(No.2012BAF01B07)
文摘Aiming at the assembly accuracy of a large aircraft transport jig, the effect of component error and the error of work-piece surface on the work-piece position and orientation in the 3-2-1 fixturing scheme is studied with the object pose space description method. The error mapping model between the connecting part of the front frame rack and its support base is modeled using the homogeneous transformation matrix(HTM) method. The probabilistic error is simulated using the Monte Carlo method. The measurement experiment was conducted by the laser tracker to verify the effectiveness of the approach, and the approach has been successfully applied to the production of transport jig.
基金Aerospace Technology Support Foundation (No.HT2001-zjdx)Science and Technology Development Project of Hangzhou City(No.2001121C42)
文摘A dual-CCD simulating human eyes and neck (DSHEN) vision system is putforward. Its structure and principle are introduced. The DSREN vision system can perform somemovements simulating human eyes and neck by means of four rotating joints, and realize preciseobject recognizing and distance measuring in all orientations. The mathematic model of the DSHENvision system is built, and its movement equation is solved. The coordinate error and measureprecision affected by the movement parameters are analyzed by means of intersection measuringmethod. So a theoretic foundation for further research on automatic object recognizing and precisetarget tracking is provided.
基金State Administration of Science,Technology and Industry for the National Defense(No.JSJL2014206B001)。
文摘Light pen coordinate measuring system(LPCMS)is a kind of portable coordinate measuring technique based on vision metrology.In classical LPCMS,the measuring range is limited to the camera’s field of view.To overcome this defect,a new LPCMS is designed in this paper to fulfil whole space coordinate measurement.The camera is installed on a turntable instead of a tripod,so that the camera can rotate to track the movement of the light pen.The new system can be applied to large scale onsite measurement,and therefore it notably extends the application of LPCMS.To guarantee the accuracy of the new system,a method to calibrate the parameters of the tracking turntable is also proposed.Fixing the light pen at a stationary position,and changing the azimuth angles of the turntable’s two shafts,so that the camera can capture the images of the light pen from different view angles.According to the invariant spatial relationship between the camera and the pedestal of the tracking turntable,a system of nonlinear equations can be established to solve the parameters of the turntable.Experimental results show that the whole space coordinate measuring accuracy of the new system can reach 0.25 mm within 10 m.It can be concluded that the newly designed system can significantly expand the measuring range of LPCMS without losing too much accuracy.
基金supported by the National Key Research and Development Program(2016YFA0602900)the National Natural Science Foundation of China(21472103,21672119)+2 种基金the Natural Science Foundation of Tianjin Municipality(16JCZDJC39900)Specialized Research Fund for the Doctoral Program of Higher Education(20130031110013)MOE Innovation Team(IRT13022)of China
文摘The reductive transformation of CO_2 to energy related products including formic acid, CO, formamide, methanol and methylamine could be a promising option to supply renewable energy. In this aspect, ruthenium has found wide application in hydrogenation of various carbonyl groups, and has successfully been applied to reductive transformation of CO_2 with high catalytic efficiency and excellent selectivity. In addition, ruthenium complexes have also served as effective photosensitizers for CO_2 photoreduction.Classified by reductive products, this review summarizes and updates advances in the Ru-catalyzed reduction of CO_2 along with catalyst development on the basis of mechanistic understanding at a molecular level.
文摘This paper proposes a novel method for calibrating error coefficients of the quartz accelerometer faster on the dynamic centrifuge,which can generate a continuous dynamic acceleration excitation.Firstly,working principle and structure of the dynamic centrifuge are analyzed,the error sources and the uncertainty of the dynamic centrifuge are expounded,and relevant coordinate systems are established.Then,according to the characteristics of the input specific forces and the propagating methods of the error sources,the accurate input specific forces acted on the input reference axes of accelerometer are obtained.Based on the calibration error model of the accelerometer,the corresponding dynamic calibration method is proposed.Finally,the second-order and high-order coefficients of the acceleration error model are calibrated,and the calibration precision of the coefficients is analyzed.Compared with traditional calibration methods,the method proposed in this paper not only greatly enhances the calibration efficiency by reducing the installing positions of the accelerometer,but also separates the centrifuge errors from the outputs of the accelerometer,which improves the accuracy and efficiency of the calibration method simultaneously.
文摘Aiming at the workspace calculation problem of multi-joint serial manipulators,a surface enveloping and overlaying (SEO) method is presented to identify and visualize the manipulator workspace.The SEO method is composed of two stages:the first stage is to choose reference points of the manipulator and calculate their boundary surfaces using the nth enveloping method;the second stage is to overlay these boundary surfaces to identify the final workspace.The SEO method is basically a combination of the analytic method and the numerical method.By delineating the graphic representation of the workspace step by step,the SEO method is easy to analyze the existence and the shape of voids and holes.The basic theory of the SEO method and formulas for workspace calculation are presented based on a 6R serial manipulator.By showing the workspace calculation results,the SEO method is proved working correctly.
文摘A new scheme is proposed to model 3D angular motion of a revolving regular object with miniature, low-cost micro electro mechanical systems(MEMS) accelerometers(instead of gyroscope),which is employed in 3D mouse system.To sense 3D angular motion,the static property of MEMS accelerometer,sensitive to gravity acceleration,is exploited.With the three outputs of configured accelerometers,the proposed model is implemented to get the rotary motion of the rigid object.In order to validate the effectiveness of the proposed model,an input device is developed with the configuration of the scheme.Experimental results show that a simulated 3D cube can accurately track the rotation of the input device.The result indicates the feasibility and effectiveness of the proposed model in the 3D mouse system.
文摘A systematic geometric model has been presented for calibration of a newly designed 5-axis turbine blade grinding machine. This machine is designed to serve a specific purpose to attain high accuracy and high efficiency grinding of turbine blades by eliminating the hand grinding process. Although its topology is RPPPR (P: prismatic; R: rotary), its design is quite distinct from the competitive machine tools. As error quantification is the only way to investigate, maintain and improve its accuracy, calibra- tion is recommended for its performance assessment and acceptance testing. Systematic geometric error modeling technique is implemented and 52 position dependent and position independent errors are identified while considering the machine as five rigid bodies by eliminating the set-up errors of workpiece and cutting tool. 39 of them are found to have influential errors and are accommodated for finding the resultant effect between the cutting tool and the workpiece in workspace volume. Rigid body kinematics techniques and homogenous transformation matrices are used for error synthesis.
文摘Fe3O4 nano-whiskers were synthesized via ultrasonic-aided reduction of FeCl2.4H2O with N2H4-H2O in concentrated NaOH solution. Phase identification and morphology observation were conducted by X-ray diffraction (XRD) analysis, transmission electron microscopy (TEM) and field emission scanning electron microscopy (FE-SEM). Face scanning energy dispersive spectrum (face scanning EDS) and twodimensional fast Fourier transform (2DFFF) for element distribution were carried out for confirming composition homogeneity. From XRD and TEIVI, the synthesized Fe304 nano-whiskers are of cubic phase with average dimension of 20 nm~ 200 nm (average aspect ratio of 10). FE-SEM shows that the nanowhiskers without dispersion are interconnected into a network at a scale of 20μm. 2DFFT of the distribution of Fe and O from face scanning EDS confirms the composition homogeneity of the synthesized Fe3O4. Hydrazine hydrate determines the formation of the nano-whiskers, while the possible mechanism is the preferred growth along certain orientation with the aid of ultrasonic treatment.