W–Cu refractory alloys are widely used in aerospace,aviation,electronics,power,and other fi elds.However,because of its large melting point diff erence between alloy elements,the conventional powder metallurgy method...W–Cu refractory alloys are widely used in aerospace,aviation,electronics,power,and other fi elds.However,because of its large melting point diff erence between alloy elements,the conventional powder metallurgy method required a long time of high temperature sintering is very likely to cause low density and abnormal grain size growth.Therefore,90W-10Cu refractory alloys were successfully prepared by hot oscillatory pressing(HOP)under diff erent sintering time in this work.Then the infl uence of sintering time on the microstructure,grain size,density,Vickers hardness,room-tensile property,and electrical conductivity of the W–Cu refractory alloy was systematically invested.The results showed that during the short sintering time(30–90 min),the density,Vickers hardness,tensile strength,and electrical conductivity of the W–Cu refractory alloy increased signifi cantly to 98.7%,163.29 HV 30,507.3 MPa,and 14.2%International Annealed Copper Standard with the sintering time increasing,respectively,while its grain size showed no obvious change.When the sintering time further increased to 120 min,the density was basically consistent with the sintering time of 90 min.Nevertheless,the prolonged high temperature sintering resulted in the grain growth of the samples,which caused the deterioration of the Vickers hardness,room-tensile strength,and conductivity properties of the W–Cu refractory alloy.At the same sintering time,the density,Vickers hardness,and electrical conductivity of the HOP sintered W–Cu refractory alloy were signifi cantly higher than those of the HP sintered sample.It was indicated that high density,fi ne-grain,and excellent properties W–Cu refractory alloys could be prepared by hot oscillatory pressing under appropriate sintering time.展开更多
Alumina whisker reinforced zirconia ceramic composite was prepared by both hot oscillatory pressing(HOP)and conventional hot pressing(HP).The results show that compared with HP,HOP can significantly increase the final...Alumina whisker reinforced zirconia ceramic composite was prepared by both hot oscillatory pressing(HOP)and conventional hot pressing(HP).The results show that compared with HP,HOP can significantly increase the final density and densification rate of the material.Analysis of densification kinetics reveals that the predominant densification mechanism transits from grain boundary sliding in the beginning to the diffusion in the later stage.The main effect of the oscillating pressure is to increase the densification rate in the process of grain boundary sliding.The current study suggests that HOP is a promising technique for densifying whisker reinforced ceramics.展开更多
基金supported by National Natural Science Foundation of China(51904277)the Open Fund of Sichuan Province Engineering Technology Research Center of Powder Metallurgy,Chengdu University(SC-FMYJ2023-02)+4 种基金Opening Foundation of Key Laboratory of Advanced Manufacture Technology for Automobile Parts,Ministry of Education(2022 KLMT05)the Open Fund of Hubei Key Laboratory of Mechanical Transmission and Manufacturing Engineering at Wuhan University of Science and Technology(MTMEOF2022B02)Fund of Key Laboratory of Advanced Materials of Ministry of Education(ADV22-20)Training Program for Young Backbone Teachers in Colleges and University of Henan Province(2020GGJS171)Fund of Zhengzhou University of Aeronautics Graduate Education Innovation Program of China(2022CX57).
文摘W–Cu refractory alloys are widely used in aerospace,aviation,electronics,power,and other fi elds.However,because of its large melting point diff erence between alloy elements,the conventional powder metallurgy method required a long time of high temperature sintering is very likely to cause low density and abnormal grain size growth.Therefore,90W-10Cu refractory alloys were successfully prepared by hot oscillatory pressing(HOP)under diff erent sintering time in this work.Then the infl uence of sintering time on the microstructure,grain size,density,Vickers hardness,room-tensile property,and electrical conductivity of the W–Cu refractory alloy was systematically invested.The results showed that during the short sintering time(30–90 min),the density,Vickers hardness,tensile strength,and electrical conductivity of the W–Cu refractory alloy increased signifi cantly to 98.7%,163.29 HV 30,507.3 MPa,and 14.2%International Annealed Copper Standard with the sintering time increasing,respectively,while its grain size showed no obvious change.When the sintering time further increased to 120 min,the density was basically consistent with the sintering time of 90 min.Nevertheless,the prolonged high temperature sintering resulted in the grain growth of the samples,which caused the deterioration of the Vickers hardness,room-tensile strength,and conductivity properties of the W–Cu refractory alloy.At the same sintering time,the density,Vickers hardness,and electrical conductivity of the HOP sintered W–Cu refractory alloy were signifi cantly higher than those of the HP sintered sample.It was indicated that high density,fi ne-grain,and excellent properties W–Cu refractory alloys could be prepared by hot oscillatory pressing under appropriate sintering time.
基金We thank the financial support from the National Natural Science Foundation of China(Grant Nos.52072344 and U1904180)Excellent Young Scientists Fund of Henan Province(Grant No.202300410369)Henan Province University Innovation Talents Support Program(Grant No.21HASTIT001).
文摘Alumina whisker reinforced zirconia ceramic composite was prepared by both hot oscillatory pressing(HOP)and conventional hot pressing(HP).The results show that compared with HP,HOP can significantly increase the final density and densification rate of the material.Analysis of densification kinetics reveals that the predominant densification mechanism transits from grain boundary sliding in the beginning to the diffusion in the later stage.The main effect of the oscillating pressure is to increase the densification rate in the process of grain boundary sliding.The current study suggests that HOP is a promising technique for densifying whisker reinforced ceramics.