Objective: To study the expression level of TRF1 (telomeric repeat binding factor 1) protein in human acute leukemia and relationship between expression level of TRF1 protein and telomerase, Methods: A quantitativ...Objective: To study the expression level of TRF1 (telomeric repeat binding factor 1) protein in human acute leukemia and relationship between expression level of TRF1 protein and telomerase, Methods: A quantitative Western±Blot technique was developed using anti±TRF1^33±277 monoclonal antibody and GST±TRFI purity protein as a standard to further determine the expression level of TRF1 protein in total proteins extracted from clinical specimens. Results: Bone marrow tissues of 20 acute leukemia patients were studied, 11 healthy donors' bone marrows were taken as a control. The expression level of TRF1 protein was significantly higher (P〈0.01) in normal bone marrow ((2.2174±0.462) μg/μl) than that of acute leukemia patients ((0.7544±0.343) μg/μl), But there was no remarkable difference between ALL and ANLL patients ((0.6184±0.285) μg/μl vs (0.8454±0.359) μg/μl, P〉0.05). After chemotherapy, TRFI expression level of patients with complete remission elevated ((0.7724±0.307)/μg/μl vs (1.6834±0,344)μg/μl, P〈0.01 ), but lower than that of normal ((2.2174±0.462)/μg/μl, P〈0.01). There was no significantly difference after chemotherapy ((0.7264±0.411) μg/μl vs (0.895±0.339) μg/μl,p〉0.05). TRF1 expression level of patients with complete remission is higher than that of patients without complete remission ((1,683±0.344)μg/μl vs (0.895±0.339)μg/μl P〈0.01). All samples were determined for telomerase activity. It was confirmed that the activity of telomerase in normal bone marrow was lower than that of acute leukemia patients ((0.125±0.078) μg/μl vs (0.765±0.284)μg/μl, P〈0.01). There was no significant difference of expression level ofTRF I protein between ALL and ANLL patients ((0.897±0.290) μg/μl vs (0.677±0.268) μg/μl, P〉0.05). After chemotherapy, telomerase activity of patients with complete remission decreased ((0.393±0.125) μg/μl), but was still higher than that of normal ((0.125±0.078) μg/μl, P〈0.01). Conclusion: The expression level of TRF1 protein has correlativity to the activity of telomerase (P〈0.001).展开更多
Objective: Detecting the expression and mutation of human telomeric repeat binding factor (hTRF1) in 10 malignant hematopoietic cell line cells on the base of determining its genomic structure and its four pseudoge...Objective: Detecting the expression and mutation of human telomeric repeat binding factor (hTRF1) in 10 malignant hematopoietic cell line cells on the base of determining its genomic structure and its four pseudogenes to clarify ifhTRF1 mutation is one of the factors of the activation of telomerase. Methods: hTRFlcDNA sequences were obtained from GenBank, its genome structure and pseudogenes were forecasted by BLAST and other biology information programs and then testified by sequencing. Real-time RT-PCR was used to detect the expression of h TRFlmRNA in 10 cell line cells, including myelogenous leukemia cell lines K562, HL-60, U-937, NB4, THP-I, HEL and Dami; lymphoblastic leukemia cell lines 6T-CEM, Jurkat and Raji. Telomerase activities of cells were detected by using telomeric repeat amplification (TRAP)-ELISA protocol. PCR and sequencing were used to detect mutation of each exon ofhTRF1 in 10 cell line cells. Results: hTRF1 gene, mapped to 8q13, was divided into 10 exons and spans 38.6 kb. Four processed pseudogenes ofhTRF1 located on chromosome 13, 18, 21 and X respectively, was named as ψhTRFI-13, ψhTRFI-18, ψhTRF1-21 and ψhTRFI-X respectively. All cell line cells showed positive telomerase activity. The expression of hTRF1 was significantly lower in malignant hematopoietic cell lines cells (0.0338, 0.0108-0.0749) than in normal mononuclear cells (0.0493, 0.0369-0.128) (P=0.004). But no significant mutation was found in all exons of hTRF1 in 10 cell line cells. Four variants were found in part ofintron 1, 2 and 8 ofhTRF1. Their infection on gene function is unknown and needs further studies. Conclusion: hTRF1 mutation is probably not one of the main factors for telomerase activation in malignant hematopoietic disease.展开更多
To examine the expression of human telomere reverse transcriptase (hTERT), p53 and proliferating cell nuclear antigen (PCNA) in cystitis glandulafis, 38 patients were divided into two grouips: group A (including...To examine the expression of human telomere reverse transcriptase (hTERT), p53 and proliferating cell nuclear antigen (PCNA) in cystitis glandulafis, 38 patients were divided into two grouips: group A (including 18 cases of papillary cystitis glandularis) and group B (including 20 subjects with normal bladder mucosa). All the cases were immunohistochemically examined by using antibodies specifically against p53 and PCNA, and hTERT was determined by in situ hybridization. hTERT was found in 6 cases (33.3%) and p53 was detected in 4 cases (22.2%) in group A, while they were not detected in group B. There were significant differences in hTERT and p53 expression between groups A and B (P〈0.05 for both). PCNA was detected in 7 cases (38.9%) in group A and 1 case (5.0%) in group B, and significant difference in PCNA expression was found between the two groups (P〈0.05). The expressions of hTERT, p53 and PCNA were significantly higher in group A than in group B, suggesting that papillary cystitis glandularis is predisposed to cancerous change, and p53, PCNA, hTERT may be related to the malignant alteration.展开更多
G-quadruplex ligands have been accepted as potential therapeutic agents for anticancer treatment. Thioflavin T (ThT), a highly selective G-quadruplex ligand, can bind G-quadruplex with a fluorescent light-up signal ...G-quadruplex ligands have been accepted as potential therapeutic agents for anticancer treatment. Thioflavin T (ThT), a highly selective G-quadruplex ligand, can bind G-quadruplex with a fluorescent light-up signal change and high specificity against DNA duplex. However, there are still different opinions that ThT induces/stabilizes G-quadruplex foldings/topologies in human telomere sequence. Here, a sensitive single-molecule nanopore technology was utilized to analyze the interactions between human telomeric DNA (Tel DNA) and ThT. Both translocation time and current blockade were measured to investigate the translocation behaviors. Furthermore, the effects of metal ion (K~ and Na~) and pH on the translocation behaviors were studied. Based on the single-molecule level analysis, there are some conclusions: (1) In the electrolyte solution containing 50 mmol/L I(Cl and 450 mmol/L NaCl, ThT can bind strongly with Tel DNA but nearly does not change the G-quadruplex form; (2) in the presence of high concentration K~, the ThT binding induces the structural change of hybrid G-quadruplex into antiparallel topology with an enhanced structural stability; (3) In either alkaline or acidic buffer, G-quadruplex form will change in certain degree. All above conclusions are helpful to deeply understand the interaction behaviors between Tel DNA and ThT. This nanopore platform, investigating G-quadruplex ligands at the single-molecule level, has great potential for the design of new drugs and sensors.展开更多
G-quadruplex secondary structures are four-stranded globular nucleic acid structures form in the specific DNA and RNA G-rich sequences with biological significance such as human telomeres,oncogene-promoter regions,rep...G-quadruplex secondary structures are four-stranded globular nucleic acid structures form in the specific DNA and RNA G-rich sequences with biological significance such as human telomeres,oncogene-promoter regions,replication initiation sites,and 5′and 3′-untranslated(UTR)regions.The non-canonical G-quadruplex secondary structures can readily form under physiologically relevant ionic conditions and are considered to be new molecular target for cancer therapeutics.This review discusses the essential progress in our lab related to the structures and functions of biologically relevant DNA G-quadruplexes in human gene promoters and telomeres,and the opportunities presented for the development of G-quadruplex-targeted smallmolecule drugs.展开更多
While 8-oxo-7,8-dihydro-2′-deoxyguanosine(dOG)on DNA G-quadruplex(G4)has been studied,the influence of 8-oxo-7,8-dihydro-guanosine(rOG)lesions on telomeric repeat-containing RNA(TERRA)G4 deserves an in-depth study.Th...While 8-oxo-7,8-dihydro-2′-deoxyguanosine(dOG)on DNA G-quadruplex(G4)has been studied,the influence of 8-oxo-7,8-dihydro-guanosine(rOG)lesions on telomeric repeat-containing RNA(TERRA)G4 deserves an in-depth study.The single-strand and guanine-rich characters of TERRA make it vulnerable to form rOG lesions.Our current study demonstrated that rOG located in the internal layer and external layer of TERRA impacted the G4 stability in different ways and perturbed RNA replication,as well as base-pair strength and stability.展开更多
文摘Objective: To study the expression level of TRF1 (telomeric repeat binding factor 1) protein in human acute leukemia and relationship between expression level of TRF1 protein and telomerase, Methods: A quantitative Western±Blot technique was developed using anti±TRF1^33±277 monoclonal antibody and GST±TRFI purity protein as a standard to further determine the expression level of TRF1 protein in total proteins extracted from clinical specimens. Results: Bone marrow tissues of 20 acute leukemia patients were studied, 11 healthy donors' bone marrows were taken as a control. The expression level of TRF1 protein was significantly higher (P〈0.01) in normal bone marrow ((2.2174±0.462) μg/μl) than that of acute leukemia patients ((0.7544±0.343) μg/μl), But there was no remarkable difference between ALL and ANLL patients ((0.6184±0.285) μg/μl vs (0.8454±0.359) μg/μl, P〉0.05). After chemotherapy, TRFI expression level of patients with complete remission elevated ((0.7724±0.307)/μg/μl vs (1.6834±0,344)μg/μl, P〈0.01 ), but lower than that of normal ((2.2174±0.462)/μg/μl, P〈0.01). There was no significantly difference after chemotherapy ((0.7264±0.411) μg/μl vs (0.895±0.339) μg/μl,p〉0.05). TRF1 expression level of patients with complete remission is higher than that of patients without complete remission ((1,683±0.344)μg/μl vs (0.895±0.339)μg/μl P〈0.01). All samples were determined for telomerase activity. It was confirmed that the activity of telomerase in normal bone marrow was lower than that of acute leukemia patients ((0.125±0.078) μg/μl vs (0.765±0.284)μg/μl, P〈0.01). There was no significant difference of expression level ofTRF I protein between ALL and ANLL patients ((0.897±0.290) μg/μl vs (0.677±0.268) μg/μl, P〉0.05). After chemotherapy, telomerase activity of patients with complete remission decreased ((0.393±0.125) μg/μl), but was still higher than that of normal ((0.125±0.078) μg/μl, P〈0.01). Conclusion: The expression level of TRF1 protein has correlativity to the activity of telomerase (P〈0.001).
文摘Objective: Detecting the expression and mutation of human telomeric repeat binding factor (hTRF1) in 10 malignant hematopoietic cell line cells on the base of determining its genomic structure and its four pseudogenes to clarify ifhTRF1 mutation is one of the factors of the activation of telomerase. Methods: hTRFlcDNA sequences were obtained from GenBank, its genome structure and pseudogenes were forecasted by BLAST and other biology information programs and then testified by sequencing. Real-time RT-PCR was used to detect the expression of h TRFlmRNA in 10 cell line cells, including myelogenous leukemia cell lines K562, HL-60, U-937, NB4, THP-I, HEL and Dami; lymphoblastic leukemia cell lines 6T-CEM, Jurkat and Raji. Telomerase activities of cells were detected by using telomeric repeat amplification (TRAP)-ELISA protocol. PCR and sequencing were used to detect mutation of each exon ofhTRF1 in 10 cell line cells. Results: hTRF1 gene, mapped to 8q13, was divided into 10 exons and spans 38.6 kb. Four processed pseudogenes ofhTRF1 located on chromosome 13, 18, 21 and X respectively, was named as ψhTRFI-13, ψhTRFI-18, ψhTRF1-21 and ψhTRFI-X respectively. All cell line cells showed positive telomerase activity. The expression of hTRF1 was significantly lower in malignant hematopoietic cell lines cells (0.0338, 0.0108-0.0749) than in normal mononuclear cells (0.0493, 0.0369-0.128) (P=0.004). But no significant mutation was found in all exons of hTRF1 in 10 cell line cells. Four variants were found in part ofintron 1, 2 and 8 ofhTRF1. Their infection on gene function is unknown and needs further studies. Conclusion: hTRF1 mutation is probably not one of the main factors for telomerase activation in malignant hematopoietic disease.
基金This project was supported by a grant from the Hubei Pro-vincial Natural Sciences Foundation (No 2005ABA164)
文摘To examine the expression of human telomere reverse transcriptase (hTERT), p53 and proliferating cell nuclear antigen (PCNA) in cystitis glandulafis, 38 patients were divided into two grouips: group A (including 18 cases of papillary cystitis glandularis) and group B (including 20 subjects with normal bladder mucosa). All the cases were immunohistochemically examined by using antibodies specifically against p53 and PCNA, and hTERT was determined by in situ hybridization. hTERT was found in 6 cases (33.3%) and p53 was detected in 4 cases (22.2%) in group A, while they were not detected in group B. There were significant differences in hTERT and p53 expression between groups A and B (P〈0.05 for both). PCNA was detected in 7 cases (38.9%) in group A and 1 case (5.0%) in group B, and significant difference in PCNA expression was found between the two groups (P〈0.05). The expressions of hTERT, p53 and PCNA were significantly higher in group A than in group B, suggesting that papillary cystitis glandularis is predisposed to cancerous change, and p53, PCNA, hTERT may be related to the malignant alteration.
基金financially supported by the National Natural Science Foundation of China(No. 21475091)the Science andTechnology Department of Sichuan Province(No. 2015GZ0301)
文摘G-quadruplex ligands have been accepted as potential therapeutic agents for anticancer treatment. Thioflavin T (ThT), a highly selective G-quadruplex ligand, can bind G-quadruplex with a fluorescent light-up signal change and high specificity against DNA duplex. However, there are still different opinions that ThT induces/stabilizes G-quadruplex foldings/topologies in human telomere sequence. Here, a sensitive single-molecule nanopore technology was utilized to analyze the interactions between human telomeric DNA (Tel DNA) and ThT. Both translocation time and current blockade were measured to investigate the translocation behaviors. Furthermore, the effects of metal ion (K~ and Na~) and pH on the translocation behaviors were studied. Based on the single-molecule level analysis, there are some conclusions: (1) In the electrolyte solution containing 50 mmol/L I(Cl and 450 mmol/L NaCl, ThT can bind strongly with Tel DNA but nearly does not change the G-quadruplex form; (2) in the presence of high concentration K~, the ThT binding induces the structural change of hybrid G-quadruplex into antiparallel topology with an enhanced structural stability; (3) In either alkaline or acidic buffer, G-quadruplex form will change in certain degree. All above conclusions are helpful to deeply understand the interaction behaviors between Tel DNA and ThT. This nanopore platform, investigating G-quadruplex ligands at the single-molecule level, has great potential for the design of new drugs and sensors.
文摘G-quadruplex secondary structures are four-stranded globular nucleic acid structures form in the specific DNA and RNA G-rich sequences with biological significance such as human telomeres,oncogene-promoter regions,replication initiation sites,and 5′and 3′-untranslated(UTR)regions.The non-canonical G-quadruplex secondary structures can readily form under physiologically relevant ionic conditions and are considered to be new molecular target for cancer therapeutics.This review discusses the essential progress in our lab related to the structures and functions of biologically relevant DNA G-quadruplexes in human gene promoters and telomeres,and the opportunities presented for the development of G-quadruplex-targeted smallmolecule drugs.
基金supported by the National Natural Science Foundation of China(nos.21722803,91853119,21572169,21721005,91753201,21877086 and 21672165)the Hubei Natural Science Foundation for Distinguished Young Scholars(2019CFA064)+2 种基金the National Major Scientific and Technological Special Project for“Significant New Drugs Development”(2017ZX09303013)the Fundamental Research Funds for the Central Universities(2042019kf0189)the Natural Science Innovation Foundation of Wuhan University.
文摘While 8-oxo-7,8-dihydro-2′-deoxyguanosine(dOG)on DNA G-quadruplex(G4)has been studied,the influence of 8-oxo-7,8-dihydro-guanosine(rOG)lesions on telomeric repeat-containing RNA(TERRA)G4 deserves an in-depth study.The single-strand and guanine-rich characters of TERRA make it vulnerable to form rOG lesions.Our current study demonstrated that rOG located in the internal layer and external layer of TERRA impacted the G4 stability in different ways and perturbed RNA replication,as well as base-pair strength and stability.