期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Different El Niño Flavors and Associated Atmospheric Teleconnections as Simulated in a Hybrid Coupled Model
1
作者 Junya HU Hongna WANG +1 位作者 Chuan GAO Rong-Hua ZHANG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第5期864-880,共17页
A previously developed hybrid coupled model(HCM)is composed of an intermediate tropical Pacific Ocean model and a global atmospheric general circulation model(AGCM),denoted as HCMAGCM.In this study,different El Ni... A previously developed hybrid coupled model(HCM)is composed of an intermediate tropical Pacific Ocean model and a global atmospheric general circulation model(AGCM),denoted as HCMAGCM.In this study,different El Niño flavors,namely the Eastern-Pacific(EP)and Central-Pacific(CP)types,and the associated global atmospheric teleconnections are examined in a 1000-yr control simulation of the HCMAGCM.The HCMAGCM indicates profoundly different characteristics among EP and CP El Niño events in terms of related oceanic and atmospheric variables in the tropical Pacific,including the amplitude and spatial patterns of sea surface temperature(SST),zonal wind stress,and precipitation anomalies.An SST budget analysis indicates that the thermocline feedback and zonal advective feedback dominantly contribute to the growth of EP and CP El Niño events,respectively.Corresponding to the shifts in the tropical rainfall and deep convection during EP and CP El Niño events,the model also reproduces the differences in the extratropical atmospheric responses during the boreal winter.In particular,the EP El Niño tends to be dominant in exciting a poleward wave train pattern to the Northern Hemisphere,while the CP El Niño tends to preferably produce a wave train similar to the Pacific North American(PNA)pattern.As a result,different climatic impacts exist in North American regions,with a warm-north and cold-south pattern during an EP El Niño and a warm-northeast and cold-southwest pattern during a CP El Niño,respectively.This modeling result highlights the importance of internal natural processes within the tropical Pacific as they relate to the genesis of ENSO diversity because the active ocean–atmosphere coupling is allowed only in the tropical Pacific within the framework of the HCMAGCM. 展开更多
关键词 hybrid coupled model tropical Pacific Ocean global atmosphere Eastern/Central-Pacific El Niño atmospheric teleconnections
下载PDF
A Hybrid Coupled Model for the Pacific Ocean–Atmosphere System.Part I: Description and Basic Performance 被引量:7
2
作者 ZHANG Rong-Hua 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2015年第3期301-318,共18页
A hybrid coupled model (HCM) is constructed for El Nifio-Southern Oscillation (ENSO)-related modeling studies over almost the entire Pacific basin.An ocean general circulation model is coupled to a statistical atm... A hybrid coupled model (HCM) is constructed for El Nifio-Southern Oscillation (ENSO)-related modeling studies over almost the entire Pacific basin.An ocean general circulation model is coupled to a statistical atmospheric model for interannual wind stress anomalies to represent their dominant coupling with sea surface temperatures.In addition,various relevant forcing and feedback processes exist in the region and can affect ENSO in a significant way; their effects are simply represented using historical data and are incorporated into the HCM,including stochastic forcing of atmospheric winds,and feedbacks associated with freshwater flux,ocean biology-induced heating (OBH),and tropical instability waves (TIWs).In addition to its computational efficiency,the advantages of making use of such an HCM enable these related forcing and feedback processes to be represented individually or collectively,allowing their modulating effects on ENSO to be examined in a clean and clear way.In this paper,examples are given to illustrate the ability of the HCM to depict the mean ocean state,the circulation pathways connecting the subtropics and tropics in the western Pacific,and interannual variability associated with ENSO.As satellite data are taken to parameterize processes that are not explicitly represented in the HCM,this work also demonstrates an innovative method of using remotely sensed data for climate modeling.Further model applications related with ENSO modulations by extratropical influences and by various forcings and feedbacks will be presented in Part Ⅱ of this study. 展开更多
关键词 hybrid coupled model ocean-atmosphere coupling ENSO FORCING feedback satellite data
下载PDF
A Hybrid Coupled Ocean-Atmosphere Model and ENSO Prediction Study
3
作者 吴爱明 倪允琪 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 1999年第3期405-418,共14页
A hybrid coupled ocean-atmosphere model is designed, which consists of a global AGCM and a simple anomaly ocean model in the tropical Pacific. Retroactive experimental predictions initiated in each season from 1979 to... A hybrid coupled ocean-atmosphere model is designed, which consists of a global AGCM and a simple anomaly ocean model in the tropical Pacific. Retroactive experimental predictions initiated in each season from 1979 to 1994 are performed. Analyses indicate that: (1) The overall predictive capability of this model for SSTA over the central-eastern tropical Pacific can reach one year, and the error is not larger than 0.8 degrees C. (2) The prediction skill depends greatly on the season when forecasts start. However, the phenomenon of SPB (spring prediction barrier) is not found in the model. (3) The ensemble forecast method can effectively improve prediction results. A new initialization scheme is discussed. 展开更多
关键词 hybrid coupled ocean-atmosphere model ENSO prediction seasonal dependence ensemble forecast
下载PDF
THE EFFECTS OF TIBETAN PLATEAU ON THE ANOMALOUS VARIATION OF ASIAN MONSOON IN A COUPLED OCEAN-ATMOSPHERE SYSTEM 被引量:3
4
作者 吴爱明 倪允琪 《Acta meteorologica Sinica》 SCIE 1999年第1期21-34,共14页
Experimental predictions with a hybrid coupled ocean-atmosphere model(L9R15 AGCM-ZC ocean model)were performed for the 1986/87 El Nino event and the 1988/89 La Nina event with and without the Tibetan Plateau respectiv... Experimental predictions with a hybrid coupled ocean-atmosphere model(L9R15 AGCM-ZC ocean model)were performed for the 1986/87 El Nino event and the 1988/89 La Nina event with and without the Tibetan Plateau respectively(called TP FORC and NTP FORC hereinafter). Comparison shows that,to some extent,the existence of the Tibetan Plateau orography weakens or restrains(strengthens or facilitates)the formation of the anomalous circulation of Asian monsoon during El Nino(La Nina)period.Opposite results are found in the uncoupled AGCM simulation. 展开更多
关键词 hybrid coupled ocean-atmosphere model orography of the Tibetan Plateau anomalous circulation of Asian monsoon
原文传递
INFLUENCE OF TIBETAN PLATEAU ON AIR-SEA INTERACTION OVER TROPICAL PACIFIC IN OCEAN-ATMOSPHERIC COUPLED SYSTEM
5
作者 吴爱明 倪允琪 《Acta meteorologica Sinica》 SCIE 1998年第3期257-274,共18页
A hybrid coupled ocean-atmosphere model is designed,which consists of a global atmospheric general circulation model(L9R15 AGCM)and a simple ocean model(ZC ocean model over tropical Pacific).Using the model,experiment... A hybrid coupled ocean-atmosphere model is designed,which consists of a global atmospheric general circulation model(L9R15 AGCM)and a simple ocean model(ZC ocean model over tropical Pacific).Using the model,experimental predictions are performed for the 1986/87 El Nino event and the 1988/89 La Nina event with and without the Tibetan Plateau respectively(called TP FORC and NTP FORC hereinafter).It is found as follows:(1)The coupled system can successfully predict the El Nino or La Nina event even if the Tibetan Plateau orography is not included in the model.The patterns of SSTA and wind anomalies in the model without the Tibetan Plateau are similar to those with the Tibetan Plateau,which further verifies the fact that ENSO process is mainly caused by the air-sea interaction in tropical Pacific.(2)However.the existence of the Tibetan Plateau exerts its influences on the intensity and duration of El Nino(or La Nina). It is unfavorable to the development and maintenance of westerly anomalies,so to some extent, restrains the development of El Nino,but favors the development of La Nina.(3)Effects of the Tibetan Plateau orography on the wind anomalies in the coupled system are different from those in uncoupled AGCM simulation. 展开更多
关键词 hybrid coupled ocean-atmosphere model Tibetan Plateau orography tropical Pacific El Nino/La Nina
原文传递
Counteracting effects on ENSO induced by ocean chlorophyll interannual variability and tropical instability wave-scale perturbations in the tropical Pacific
6
作者 Rong-Hua ZHANG Feng TIAN +2 位作者 Qidong SHI Xiujun WANG Tongwen WU 《Science China Earth Sciences》 SCIE EI CAS CSCD 2024年第2期387-404,共18页
Large perturbations in chlorophyll(Chl)are observed to coexist at interannual and tropical instability wave(TIW)scales in the tropical Pacific;at present,their combined effects on El Ni?o-Southern Oscillation(ENSO)thr... Large perturbations in chlorophyll(Chl)are observed to coexist at interannual and tropical instability wave(TIW)scales in the tropical Pacific;at present,their combined effects on El Ni?o-Southern Oscillation(ENSO)through ocean biologyinduced heating(OBH)feedbacks are not understood well.Here,a hybrid coupled model(HCM)for the atmosphere and ocean physics-biogeochemistry(AOPB)in the tropical Pacific is adopted to quantify how ENSO can be modulated by Chl perturbations at interannual and TIW scales,individually or collectively,respectively.The HCM-based sensitivity experiments demonstrate a counteracting effect on ENSO:the bio-climate feedback due to large-scale Chl interannual variability acts to damp ENSO through its impact on upper-ocean stratification and vertical mixing,whereas that due to TIW-scale Chl perturbations tends to amplify ENSO.Because ENSO simulations are sensitively dependent on the ways Chl effects are represented at these different scales,it is necessary to adequately take into account these related differential Chl effects in climate modeling.A bias source for ENSO simulations is illustrated that is related with the Chl effects in the tropical Pacific,adding in a new insight into interactions between the climate system and ocean ecosystem on different scales in the region.These results reveal a level of complexity of ENSO modulations resulting from Chl effects at interannual and TIW scales,which are associated with ocean biogeochemical processes and their interactions with physical processes in the tropical Pacific. 展开更多
关键词 Ocean chlorophyll Bio-climate feedbacks Interannual variability Tropical instability waves Counteracting effects A hybrid coupled model
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部