We developed a one-dimensional hybrid model to simulate the DC/RF combined driven capacitively coupled plasma for argon discharges. The numerical results are used to analyze the influence of the DC source on the plasm...We developed a one-dimensional hybrid model to simulate the DC/RF combined driven capacitively coupled plasma for argon discharges. The numerical results are used to analyze the influence of the DC source on the plasma density distribution, ion energy distributions (IEDs) and ion angle distributions (IADs) on both the RF and DC electrodes. The increase in DC voltage drives more high-energy ions to the electrode applied to the DC source, which makes the IEDs at the DC electrode shift towards higher energy, and the peaks in the IADs shift towards small angle regions. At the same time, it also decreases the ion energy at the RF electrode and enlarges the incident angles of the ions, which strike the RF electrode.展开更多
PETREL, a winged hybrid-driven underwater glider is a novel and practical marine survey platform which combines the features of legacy underwater glider and conventional AUV (autonomous underwater vehicle). It can b...PETREL, a winged hybrid-driven underwater glider is a novel and practical marine survey platform which combines the features of legacy underwater glider and conventional AUV (autonomous underwater vehicle). It can be treated as a multi-rigid-body system with a floating base and a particular hydrodynamic profile. In this paper, theorems on linear and angular momentum are used to establish the dynamic equations of motion of each rigid body and the effect of translational and rotational motion of internal masses on the attitude control are taken into consideration. In addition, due to the unique external shape with fixed wings and deflectable rudders and the dual-drive operation in thrust and glide modes, the approaches of building dynamic model of conventional AUV and hydrodynamic model of submarine are introduced, and the tailored dynamic equations of the hybrid glider are formulated. Moreover, the behaviors of motion in glide and thrust operation are analyzed based on the simulation and the feasibility of the dynamic model is validated by data from lake field trials.展开更多
Hybrid-driven underwater glider is a new type of tmmanned underwater vehicle, which combines the advantages of autonomous underwater vehicles and traditional underwater gliders. The autonomous underwater vehicles have...Hybrid-driven underwater glider is a new type of tmmanned underwater vehicle, which combines the advantages of autonomous underwater vehicles and traditional underwater gliders. The autonomous underwater vehicles have good maneuverability and can travel with a high speed, while the traditional underwater gliders are highlighted by low power consumption, long voyage, long endurance and good stealth characteristics. The hybrid-driven underwater gliders can realize variable motion profiles by their own buoyancy-driven and propeller propulsion systems. Stability of the mechanical system determines the performance of the system. In this paper, the Petrel-II hybrid-driven underwater glider developed by Tianjin University is selected as the research object and the stability of hybrid-driven underwater glider unitedly controlled by buoyancy and propeller has been targeted and evidenced. The dimensionless equations of the hybrid-driven underwater glider are obtained when the propeller is working. Then, the steady speed and steady glide path angle under steady-state motion have also been achieved. The steady-state operating conditions can be calculated when the hybrid-driven underwater glider reaches the desired steady-state motion. And the steady- state operating conditions are relatively conservative at the lower bound of the velocity range compared with the range of the velocity derived from the method of the composite Lyapunov function. By calculating the hydrodynamic coefficients of the Petrel-II hybrid-driven underwater glider, the simulation analysis has been conducted. In addition, the results of the field trials conducted in the South China Sea and the Danjiangkou Reservoir of China have been presented to illustrate the validity of the analysis and simulations.and to show the feasibility of the method of the composite Lyapunov function which verifies the stability of the Petrel-II hybrid-driven underwater glider.展开更多
The hybrid beamforming is a promising technology for the millimeter wave MIMO system,which provides high spectrum efficiency,high data rate transmission,and a good balance between transmission performance and hardware...The hybrid beamforming is a promising technology for the millimeter wave MIMO system,which provides high spectrum efficiency,high data rate transmission,and a good balance between transmission performance and hardware complexity.The most existing beamforming systems transmit multiple streams by formulating multiple orthogonal beams.However,the Neural network Hybrid Beamforming(NHB)adopts a totally different strategy,which combines multiple streams into one and transmits by employing a high-order non-orthogonal modulation strategy.Driven by the Deep Learning(DL)hybrid beamforming,in this work,we propose a DL-driven nonorthogonal hybrid beamforming for the single-user multiple streams scenario.We first analyze the beamforming strategy of NHB and prove it with better Bit Error Rate(BER)performance than the orthogonal hybrid beamforming even with the optimal power allocation.Inspired by the NHB,we propose a new DL-driven beamforming scheme to simulate the NHB behavior,which avoids time-consuming neural network training and achieves better BERs than traditional hybrid beamforming.Moreover,our simulation results demonstrate that the DL-driven nonorthogonal beamforming outperforms its traditional orthogonal beamforming counterpart in the presence of subconnected schemes and imperfect Channel State Information(CSI).展开更多
This paper mainly analyzes a hybrid position/force control strategy and experiment of a six-cable driven parallel manipulator for a forty-meter aperture radio telescope. Through the establishments of a kinematic model...This paper mainly analyzes a hybrid position/force control strategy and experiment of a six-cable driven parallel manipulator for a forty-meter aperture radio telescope. Through the establishments of a kinematic model, a catenary model and a cable-force characteristics model, a basic method is presented based on preventing the pseudo-drag problem of a flexible cable and realizing the hybrid position/force control for a six-cable driven parallel manipulator, and a hybrid position/force control system is developed. Some specific experiments in two typical velocities for astronomical observations are carried out. Experimental results show that the tracking accuracy is related to the speed of the movement. The desired tracking accuracy of the support system is achieved through an effective hybrid position/force control strategy, the cable forces are controlled effectively, and the pseudo-drag problem of flexible cable is solved. This study establishes the foundation of achieving the harmonious movement of the six-cable driven parallel manipulator, A-B rotating platform and the Stewart fine tuninz olatform.展开更多
A novel direct-drive type wind power generation system based on hybrid excitation synchronous machine(HESM)is introduced in this paper.The generator is connected to an uncontrollable rectifier,and a fully controlled...A novel direct-drive type wind power generation system based on hybrid excitation synchronous machine(HESM)is introduced in this paper.The generator is connected to an uncontrollable rectifier,and a fully controlled voltage-sourceinverter is used to connect the system to utility grid.An intermediate DC bus exists between the rectifier and inverter.A new control strategy is proposed which achieves the maximum power point tracking(MPPT) with the control of excitation current of HESM and stabilizes the DC link voltage with the control of inverter output current simultaneously.Specially-designed buck circuit is used to control the excitation current of HESM,and grid voltage-oriented vector control strategy is employed to realize the decoupling of the inverter output power.Simulation results and experiment in 3 kW lab prototype show an excellent static and dynamic performance of the proposed system.展开更多
The concept of virtual slider crank mechanism is proposed and decoupled to obtain parameters of controllable five bar mechanism without any principle error for any given trajectory. The model is simple and easy to sol...The concept of virtual slider crank mechanism is proposed and decoupled to obtain parameters of controllable five bar mechanism without any principle error for any given trajectory. The model is simple and easy to solve. This method has no convergence,flexible workspace and singularity of the mechanism problem. Through this method,we don’ t need any curve to fit the trajectory point. Using MATLAB program to calculate,the computation time can be reduced to less than 3% of the original. Finally,an example is given to illustrate the method which is meanwhile compared with the traditional five bar design method.展开更多
Extensive penetration of distribution energy resources(DERs)brings increasing uncertainties to distribution networks.Accurate topology identification is a critical basis to guarantee robust distribution network operat...Extensive penetration of distribution energy resources(DERs)brings increasing uncertainties to distribution networks.Accurate topology identification is a critical basis to guarantee robust distribution network operation.Many algorithms that estimate distribution network topology have already been employed.Unfortunately,most are based on data-driven alone method and are hard to deal with ever-changing distribution network physical structures.Under these backgrounds,this paper proposes a data-model hybrid driven topology identification scheme for distribution networks.First,a data-driven method based on a deep belief network(DBN)and random forest(RF)algorithm is used to realize the distribution network topology rough identification.Then,the rough identification results in the previous step are used to make a model of distribution network topology.The model transforms the topology identification problem into a mixed integer programming problem to correct the rough topology further.Performance of the proposed method is verified in an IEEE 33-bus test system and modified 292-bus system.展开更多
基金supported by the Scientific Foundation from Ministry of Education of China (No.N090305004)Doctor Startup Foundation Program of Liaoning Province (No.20111008)
文摘We developed a one-dimensional hybrid model to simulate the DC/RF combined driven capacitively coupled plasma for argon discharges. The numerical results are used to analyze the influence of the DC source on the plasma density distribution, ion energy distributions (IEDs) and ion angle distributions (IADs) on both the RF and DC electrodes. The increase in DC voltage drives more high-energy ions to the electrode applied to the DC source, which makes the IEDs at the DC electrode shift towards higher energy, and the peaks in the IADs shift towards small angle regions. At the same time, it also decreases the ion energy at the RF electrode and enlarges the incident angles of the ions, which strike the RF electrode.
基金supported by the National Natural Science Foundation of China(Grant Nos. 50835006 and 51005161)the Science & Technology Support Planning Foundation of Tianjin(Grant No. 09ZCKFGX03000)the Natural Science Foundation of Tianjin(Grant No. 09JCZDJC23400)
文摘PETREL, a winged hybrid-driven underwater glider is a novel and practical marine survey platform which combines the features of legacy underwater glider and conventional AUV (autonomous underwater vehicle). It can be treated as a multi-rigid-body system with a floating base and a particular hydrodynamic profile. In this paper, theorems on linear and angular momentum are used to establish the dynamic equations of motion of each rigid body and the effect of translational and rotational motion of internal masses on the attitude control are taken into consideration. In addition, due to the unique external shape with fixed wings and deflectable rudders and the dual-drive operation in thrust and glide modes, the approaches of building dynamic model of conventional AUV and hydrodynamic model of submarine are introduced, and the tailored dynamic equations of the hybrid glider are formulated. Moreover, the behaviors of motion in glide and thrust operation are analyzed based on the simulation and the feasibility of the dynamic model is validated by data from lake field trials.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.51475319 and 51722508)the National Key R&D Plan(Grant No.2016YFC0301100)Aoshan Talents Program of Qingdao National Laboratory for Marine Science and Technology
文摘Hybrid-driven underwater glider is a new type of tmmanned underwater vehicle, which combines the advantages of autonomous underwater vehicles and traditional underwater gliders. The autonomous underwater vehicles have good maneuverability and can travel with a high speed, while the traditional underwater gliders are highlighted by low power consumption, long voyage, long endurance and good stealth characteristics. The hybrid-driven underwater gliders can realize variable motion profiles by their own buoyancy-driven and propeller propulsion systems. Stability of the mechanical system determines the performance of the system. In this paper, the Petrel-II hybrid-driven underwater glider developed by Tianjin University is selected as the research object and the stability of hybrid-driven underwater glider unitedly controlled by buoyancy and propeller has been targeted and evidenced. The dimensionless equations of the hybrid-driven underwater glider are obtained when the propeller is working. Then, the steady speed and steady glide path angle under steady-state motion have also been achieved. The steady-state operating conditions can be calculated when the hybrid-driven underwater glider reaches the desired steady-state motion. And the steady- state operating conditions are relatively conservative at the lower bound of the velocity range compared with the range of the velocity derived from the method of the composite Lyapunov function. By calculating the hydrodynamic coefficients of the Petrel-II hybrid-driven underwater glider, the simulation analysis has been conducted. In addition, the results of the field trials conducted in the South China Sea and the Danjiangkou Reservoir of China have been presented to illustrate the validity of the analysis and simulations.and to show the feasibility of the method of the composite Lyapunov function which verifies the stability of the Petrel-II hybrid-driven underwater glider.
基金This work is supported by Sichuan Science and Technology Program(NO.2021YFG0127).
文摘The hybrid beamforming is a promising technology for the millimeter wave MIMO system,which provides high spectrum efficiency,high data rate transmission,and a good balance between transmission performance and hardware complexity.The most existing beamforming systems transmit multiple streams by formulating multiple orthogonal beams.However,the Neural network Hybrid Beamforming(NHB)adopts a totally different strategy,which combines multiple streams into one and transmits by employing a high-order non-orthogonal modulation strategy.Driven by the Deep Learning(DL)hybrid beamforming,in this work,we propose a DL-driven nonorthogonal hybrid beamforming for the single-user multiple streams scenario.We first analyze the beamforming strategy of NHB and prove it with better Bit Error Rate(BER)performance than the orthogonal hybrid beamforming even with the optimal power allocation.Inspired by the NHB,we propose a new DL-driven beamforming scheme to simulate the NHB behavior,which avoids time-consuming neural network training and achieves better BERs than traditional hybrid beamforming.Moreover,our simulation results demonstrate that the DL-driven nonorthogonal beamforming outperforms its traditional orthogonal beamforming counterpart in the presence of subconnected schemes and imperfect Channel State Information(CSI).
基金Supported by the National Basic Research Program of China ( No. 2007CB714007) , the National Natural Science Foundation of China ( No. 50975149) , and the Important National Science & Technology Specific Projects of China (No. 2009ZX04014-.035, 2009ZX04001-042-02).
文摘This paper mainly analyzes a hybrid position/force control strategy and experiment of a six-cable driven parallel manipulator for a forty-meter aperture radio telescope. Through the establishments of a kinematic model, a catenary model and a cable-force characteristics model, a basic method is presented based on preventing the pseudo-drag problem of a flexible cable and realizing the hybrid position/force control for a six-cable driven parallel manipulator, and a hybrid position/force control system is developed. Some specific experiments in two typical velocities for astronomical observations are carried out. Experimental results show that the tracking accuracy is related to the speed of the movement. The desired tracking accuracy of the support system is achieved through an effective hybrid position/force control strategy, the cable forces are controlled effectively, and the pseudo-drag problem of flexible cable is solved. This study establishes the foundation of achieving the harmonious movement of the six-cable driven parallel manipulator, A-B rotating platform and the Stewart fine tuninz olatform.
基金Project supported by Delta Power Electronic Science and Education Development (Grant No.DRES2007002)
文摘A novel direct-drive type wind power generation system based on hybrid excitation synchronous machine(HESM)is introduced in this paper.The generator is connected to an uncontrollable rectifier,and a fully controlled voltage-sourceinverter is used to connect the system to utility grid.An intermediate DC bus exists between the rectifier and inverter.A new control strategy is proposed which achieves the maximum power point tracking(MPPT) with the control of excitation current of HESM and stabilizes the DC link voltage with the control of inverter output current simultaneously.Specially-designed buck circuit is used to control the excitation current of HESM,and grid voltage-oriented vector control strategy is employed to realize the decoupling of the inverter output power.Simulation results and experiment in 3 kW lab prototype show an excellent static and dynamic performance of the proposed system.
基金supported by National Innovation Training Project(201710959044)Anhui Province Quality Engineering Project(2016jyxm0336)Anhui Province Educational Department University Natural Science Research Project(KJ2017A523)
文摘The concept of virtual slider crank mechanism is proposed and decoupled to obtain parameters of controllable five bar mechanism without any principle error for any given trajectory. The model is simple and easy to solve. This method has no convergence,flexible workspace and singularity of the mechanism problem. Through this method,we don’ t need any curve to fit the trajectory point. Using MATLAB program to calculate,the computation time can be reduced to less than 3% of the original. Finally,an example is given to illustrate the method which is meanwhile compared with the traditional five bar design method.
文摘Extensive penetration of distribution energy resources(DERs)brings increasing uncertainties to distribution networks.Accurate topology identification is a critical basis to guarantee robust distribution network operation.Many algorithms that estimate distribution network topology have already been employed.Unfortunately,most are based on data-driven alone method and are hard to deal with ever-changing distribution network physical structures.Under these backgrounds,this paper proposes a data-model hybrid driven topology identification scheme for distribution networks.First,a data-driven method based on a deep belief network(DBN)and random forest(RF)algorithm is used to realize the distribution network topology rough identification.Then,the rough identification results in the previous step are used to make a model of distribution network topology.The model transforms the topology identification problem into a mixed integer programming problem to correct the rough topology further.Performance of the proposed method is verified in an IEEE 33-bus test system and modified 292-bus system.