Remanufacturing is regarded as a sustainable manufacturing paradigm of energy conservation and environment protection.To improve the efficiency of the remanufacturing process,this work investigates an integrated sched...Remanufacturing is regarded as a sustainable manufacturing paradigm of energy conservation and environment protection.To improve the efficiency of the remanufacturing process,this work investigates an integrated scheduling problem for disassembly and reprocessing in a remanufacturing process,where product structures and uncertainty are taken into account.First,a stochastic programming model is developed to minimize the maximum completion time(makespan).Second,a Q-learning based hybrid meta-heuristic(Q-HMH)is specially devised.In each iteration,a Q-learning method is employed to adaptively choose a premium algorithm from four candidate ones,including genetic algorithm(GA),artificial bee colony(ABC),shuffled frog-leaping algorithm(SFLA),and simulated annealing(SA)methods.At last,simulation experiments are carried out by using sixteen instances with different scales,and three state-of-the-art algorithms in literature and an exact solver CPLEX are chosen for comparisons.By analyzing the results with the average relative percentage deviation(RPD)metric,we find that Q-HMH outperforms its rivals by 9.79%-26.76%.The results and comparisons verify the excellent competitiveness of Q-HMH for solving the concerned problems.展开更多
The flow shop scheduling problem is important for the manufacturing industry.Effective flow shop scheduling can bring great benefits to the industry.However,there are few types of research on Distributed Hybrid Flow S...The flow shop scheduling problem is important for the manufacturing industry.Effective flow shop scheduling can bring great benefits to the industry.However,there are few types of research on Distributed Hybrid Flow Shop Problems(DHFSP)by learning assisted meta-heuristics.This work addresses a DHFSP with minimizing the maximum completion time(Makespan).First,a mathematical model is developed for the concerned DHFSP.Second,four Q-learning-assisted meta-heuristics,e.g.,genetic algorithm(GA),artificial bee colony algorithm(ABC),particle swarm optimization(PSO),and differential evolution(DE),are proposed.According to the nature of DHFSP,six local search operations are designed for finding high-quality solutions in local space.Instead of randomselection,Q-learning assists meta-heuristics in choosing the appropriate local search operations during iterations.Finally,based on 60 cases,comprehensive numerical experiments are conducted to assess the effectiveness of the proposed algorithms.The experimental results and discussions prove that using Q-learning to select appropriate local search operations is more effective than the random strategy.To verify the competitiveness of the Q-learning assistedmeta-heuristics,they are compared with the improved iterated greedy algorithm(IIG),which is also for solving DHFSP.The Friedman test is executed on the results by five algorithms.It is concluded that the performance of four Q-learning-assisted meta-heuristics are better than IIG,and the Q-learning-assisted PSO shows the best competitiveness.展开更多
The non-invasive evaluation of the heart through EectroCardioG-raphy(ECG)has played a key role in detecting heart disease.The analysis of ECG signals requires years of learning and experience to interpret and extract ...The non-invasive evaluation of the heart through EectroCardioG-raphy(ECG)has played a key role in detecting heart disease.The analysis of ECG signals requires years of learning and experience to interpret and extract useful information from them.Thus,a computerized system is needed to classify ECG signals with more accurate results effectively.Abnormal heart rhythms are called arrhythmias and cause sudden cardiac deaths.In this work,a Computerized Abnormal Heart Rhythms Detection(CAHRD)system is developed using ECG signals.It consists of four stages;preprocessing,feature extraction,feature optimization and classifier.At first,Pan and Tompkins algorithm is employed to detect the envelope of Q,R and S waves in the preprocessing stage.It uses a recursive filter to eliminate muscle noise,T-wave interference and baseline wander.As the analysis of ECG signal in the spatial domain does not provide a complete description of the signal,the feature extraction involves using frequency contents obtained from multiple wavelet filters;bi-orthogonal,Symlet and Daubechies at different resolution levels in the feature extraction stage.Then,Black Widow Optimization(BWO)is applied to optimize the hybrid wavelet features in the feature optimization stage.Finally,a kernel based Support Vector Machine(SVM)is employed to classify heartbeats into five classes.In SVM,Radial Basis Function(RBF),polynomial and linear kernels are used.A total of∼15000 ECG signals are obtained from the Massachusetts Institute of Technology-Beth Israel Hospital(MIT-BIH)arrhythmia database for performance evaluation of the proposed CAHRD system.Results show that the proposed CAHRD system proved to be a powerful tool for ECG analysis.It correctly classifies five classes of heartbeats with 99.91%accuracy using an RBF kernel with 2nd level wavelet coefficients.The CAHRD system achieves an improvement of∼6%over random projections with the ensemble SVM approach and∼2%over morphological and ECG segment based features with the RBF classifier.展开更多
In this study, we develop a new meta-heuristic-based approach to solve a multi-objective optimization problem, namely the reliability-redundancy allocation problem (RRAP). Further, we develop a new simulation process ...In this study, we develop a new meta-heuristic-based approach to solve a multi-objective optimization problem, namely the reliability-redundancy allocation problem (RRAP). Further, we develop a new simulation process to generate practical tools for designing reliable series-parallel systems. Because the?RRAP is an NP-hard problem, conventional techniques or heuristics cannot be used to find the optimal solution. We propose a genetic algorithm (GA)-based hybrid meta-heuristic algorithm, namely the hybrid genetic algorithm (HGA), to find the optimal solution. A simulation process based on the HGA is developed to obtain different alternative solutions that are required to generate application tools for optimal design of reliable series-parallel systems. Finally, a practical case study regarding security control of a gas turbine in the overspeed state is presented to validate the proposed algorithm.展开更多
Blasting is well-known as an effective method for fragmenting or moving rock in open-pit mines.To evaluate the quality of blasting,the size of rock distribution is used as a critical criterion in blasting operations.A...Blasting is well-known as an effective method for fragmenting or moving rock in open-pit mines.To evaluate the quality of blasting,the size of rock distribution is used as a critical criterion in blasting operations.A high percentage of oversized rocks generated by blasting operations can lead to economic and environmental damage.Therefore,this study proposed four novel intelligent models to predict the size of rock distribution in mine blasting in order to optimize blasting parameters,as well as the efficiency of blasting operation in open mines.Accordingly,a nature-inspired algorithm(i.e.,firefly algorithm-FFA)and different machine learning algorithms(i.e.,gradient boosting machine(GBM),support vector machine(SVM),Gaussian process(GP),and artificial neural network(ANN))were combined for this aim,abbreviated as FFA-GBM,FFA-SVM,FFA-GP,and FFA-ANN,respectively.Subsequently,predicted results from the abovementioned models were compared with each other using three statistical indicators(e.g.,mean absolute error,root-mean-squared error,and correlation coefficient)and color intensity method.For developing and simulating the size of rock in blasting operations,136 blasting events with their images were collected and analyzed by the Split-Desktop software.In which,111 events were randomly selected for the development and optimization of the models.Subsequently,the remaining 25 blasting events were applied to confirm the accuracy of the proposed models.Herein,blast design parameters were regarded as input variables to predict the size of rock in blasting operations.Finally,the obtained results revealed that the FFA is a robust optimization algorithm for estimating rock fragmentation in bench blasting.Among the models developed in this study,FFA-GBM provided the highest accuracy in predicting the size of fragmented rocks.The other techniques(i.e.,FFA-SVM,FFA-GP,and FFA-ANN)yielded lower computational stability and efficiency.Hence,the FFA-GBM model can be used as a powerful and precise soft computing tool that can be applied to practical engineering cases aiming to improve the quality of blasting and rock fragmentation.展开更多
Damage identification of the offshore floating wind turbine by vibration/dynamic signals is one of the important and new research fields in the Structural Health Monitoring(SHM). In this paper a new damage identific...Damage identification of the offshore floating wind turbine by vibration/dynamic signals is one of the important and new research fields in the Structural Health Monitoring(SHM). In this paper a new damage identification method is proposed based on meta-heuristic algorithms using the dynamic response of the TLP(Tension-Leg Platform) floating wind turbine structure. The Genetic Algorithms(GA), Artificial Immune System(AIS), Particle Swarm Optimization(PSO), and Artificial Bee Colony(ABC) are chosen for minimizing the object function, defined properly for damage identification purpose. In addition to studying the capability of mentioned algorithms in correctly identifying the damage, the effect of the response type on the results of identification is studied. Also, the results of proposed damage identification are investigated with considering possible uncertainties of the structure. Finally, for evaluating the proposed method in real condition, a 1/100 scaled experimental setup of TLP Floating Wind Turbine(TLPFWT) is provided in a laboratory scale and the proposed damage identification method is applied to the scaled turbine.展开更多
Cloud computing infrastructure has been evolving as a cost-effective platform for providing computational resources in the form of high-performance computing as a service(HPCaaS)to users for executing HPC applications...Cloud computing infrastructure has been evolving as a cost-effective platform for providing computational resources in the form of high-performance computing as a service(HPCaaS)to users for executing HPC applications.However,the broader use of the Cloud services,the rapid increase in the size,and the capacity of Cloud data centers bring a remarkable rise in energy consumption leading to a significant rise in the system provider expenses and carbon emissions in the environment.Besides this,users have become more demanding in terms of Quality-of-service(QoS)expectations in terms of execution time,budget cost,utilization,and makespan.This situation calls for the design of task scheduling policy,which ensures efficient task sequencing and allocation of computing resources to tasks to meet the trade-off between QoS promises and service provider requirements.Moreover,the task scheduling in the Cloud is a prevalent NP-Hard problem.Motivated by these concerns,this paper introduces and implements a QoS-aware Energy-Efficient Scheduling policy called as CSPSO,for scheduling tasks in Cloud systems to reduce the energy consumption of cloud resources and minimize the makespan of workload.The proposed multi-objective CSPSO policy hybridizes the search qualities of two robust metaheuristics viz.cuckoo search(CS)and particle swarm optimization(PSO)to overcome the slow convergence and lack of diversity of standard CS algorithm.A fitness-aware resource allocation(FARA)heuristic was developed and used by the proposed policy to allocate resources to tasks efficiently.A velocity update mechanism for cuckoo individuals is designed and incorporated in the proposed CSPSO policy.Further,the proposed scheduling policy has been implemented in the CloudSim simulator and tested with real supercomputing workload traces.The comparative analysis validated that the proposed scheduling policy can produce efficient schedules with better performance over other well-known heuristics and meta-heuristics scheduling policies.展开更多
It is one of the topics that have been studied extensively on maximum power point tracking(MPPT)recently.Traditional or soft computing methods are used for MPPT.Since soft computing approaches are more effective than ...It is one of the topics that have been studied extensively on maximum power point tracking(MPPT)recently.Traditional or soft computing methods are used for MPPT.Since soft computing approaches are more effective than traditional approaches,studies on MPPT have shifted in this direction.This study aims comparison of performance of seven meta-heuristic training algorithms in the neuro-fuzzy training for MPPT.The meta-heuristic training algorithms used are particle swarm optimization(PSO),harmony search(HS),cuckoo search(CS),artificial bee colony(ABC)algorithm,bee algorithm(BA),differential evolution(DE)and flower pollination algorithm(FPA).The antecedent and conclusion parameters of neuro-fuzzy are determined by these algorithms.The data of a 250 W photovoltaic(PV)is used in the applications.For effective MPPT,different neuro-fuzzy structures,different membership functions and different control parameter values are evaluated in detail.Related training algorithms are compared in terms of solution quality and convergence speed.The strengths and weaknesses of these algorithms are revealed.It is seen that the type and number of membership function,colony size,number of generations affect the solution quality and convergence speed of the training algorithms.As a result,it has been observed that CS and ABC algorithm are more effective than other algorithms in terms of solution quality and convergence in solving the related problem.展开更多
One of the most common kinds of cancer is breast cancer.The early detection of it may help lower its overall rates of mortality.In this paper,we robustly propose a novel approach for detecting and classifying breast c...One of the most common kinds of cancer is breast cancer.The early detection of it may help lower its overall rates of mortality.In this paper,we robustly propose a novel approach for detecting and classifying breast cancer regions in thermal images.The proposed approach starts with data preprocessing the input images and segmenting the significant regions of interest.In addition,to properly train the machine learning models,data augmentation is applied to increase the number of segmented regions using various scaling ratios.On the other hand,to extract the relevant features from the breast cancer cases,a set of deep neural networks(VGGNet,ResNet-50,AlexNet,and GoogLeNet)are employed.The resulting set of features is processed using the binary dipper throated algorithm to select the most effective features that can realize high classification accuracy.The selected features are used to train a neural network to finally classify the thermal images of breast cancer.To achieve accurate classification,the parameters of the employed neural network are optimized using the continuous dipper throated optimization algorithm.Experimental results show the effectiveness of the proposed approach in classifying the breast cancer cases when compared to other recent approaches in the literature.Moreover,several experiments were conducted to compare the performance of the proposed approach with the other approaches.The results of these experiments emphasized the superiority of the proposed approach.展开更多
The demand for adopting neural networks in resource-constrained embedded devices is continuously increasing.Quantization is one of the most promising solutions to reduce computational cost and memory storage on embedd...The demand for adopting neural networks in resource-constrained embedded devices is continuously increasing.Quantization is one of the most promising solutions to reduce computational cost and memory storage on embedded devices.In order to reduce the complexity and overhead of deploying neural networks on Integeronly hardware,most current quantization methods use a symmetric quantization mapping strategy to quantize a floating-point neural network into an integer network.However,although symmetric quantization has the advantage of easier implementation,it is sub-optimal for cases where the range could be skewed and not symmetric.This often comes at the cost of lower accuracy.This paper proposed an activation redistribution-based hybrid asymmetric quantizationmethod for neural networks.The proposedmethod takes data distribution into consideration and can resolve the contradiction between the quantization accuracy and the ease of implementation,balance the trade-off between clipping range and quantization resolution,and thus improve the accuracy of the quantized neural network.The experimental results indicate that the accuracy of the proposed method is 2.02%and 5.52%higher than the traditional symmetric quantization method for classification and detection tasks,respectively.The proposed method paves the way for computationally intensive neural network models to be deployed on devices with limited computing resources.Codes will be available on https://github.com/ycjcy/Hybrid-Asymmetric-Quantization.展开更多
The rational design of metal single-atom catalysts(SACs)for electrochemical nitrogen reduction reaction(NRR)is challenging.Two-dimensional metal-organic frameworks(2DMOFs)is a unique class of promising SACs.Up to now,...The rational design of metal single-atom catalysts(SACs)for electrochemical nitrogen reduction reaction(NRR)is challenging.Two-dimensional metal-organic frameworks(2DMOFs)is a unique class of promising SACs.Up to now,the roles of individual metals,coordination atoms,and their synergy effect on the electroanalytic performance remain unclear.Therefore,in this work,a series of 2DMOFs with different metals and coordinating atoms are systematically investigated as electrocatalysts for ammonia synthesis using density functional theory calculations.For a specific metal,a proper metal-intermediate atoms p-d orbital hybridization interaction strength is found to be a key indicator for their NRR catalytic activities.The hybridization interaction strength can be quantitatively described with the p-/d-band center energy difference(Δd-p),which is found to be a sufficient descriptor for both the p-d hybridization strength and the NRR performance.The maximum free energy change(ΔG_(max))andΔd-p have a volcanic relationship with OsC_(4)(Se)_(4)located at the apex of the volcanic curve,showing the best NRR performance.The asymmetrical coordination environment could regulate the band structure subtly in terms of band overlap and positions.This work may shed new light on the application of orbital engineering in electrocatalytic NRR activity and especially promotes the rational design for SACs.展开更多
In the mining industry,precise forecasting of rock fragmentation is critical for optimising blasting processes.In this study,we address the challenge of enhancing rock fragmentation assessment by developing a novel hy...In the mining industry,precise forecasting of rock fragmentation is critical for optimising blasting processes.In this study,we address the challenge of enhancing rock fragmentation assessment by developing a novel hybrid predictive model named GWO-RF.This model combines the grey wolf optimization(GWO)algorithm with the random forest(RF)technique to predict the D_(80)value,a critical parameter in evaluating rock fragmentation quality.The study is conducted using a dataset from Sarcheshmeh Copper Mine,employing six different swarm sizes for the GWO-RF hybrid model construction.The GWO-RF model’s hyperparameters are systematically optimized within established bounds,and its performance is rigorously evaluated using multiple evaluation metrics.The results show that the GWO-RF hybrid model has higher predictive skills,exceeding traditional models in terms of accuracy.Furthermore,the interpretability of the GWO-RF model is enhanced through the utilization of SHapley Additive exPlanations(SHAP)values.The insights gained from this research contribute to optimizing blasting operations and rock fragmentation outcomes in the mining industry.展开更多
The amount of oxygen blown into the converter is one of the key parameters for the control of the converter blowing process,which directly affects the tap-to-tap time of converter. In this study, a hybrid model based ...The amount of oxygen blown into the converter is one of the key parameters for the control of the converter blowing process,which directly affects the tap-to-tap time of converter. In this study, a hybrid model based on oxygen balance mechanism (OBM) and deep neural network (DNN) was established for predicting oxygen blowing time in converter. A three-step method was utilized in the hybrid model. First, the oxygen consumption volume was predicted by the OBM model and DNN model, respectively. Second, a more accurate oxygen consumption volume was obtained by integrating the OBM model and DNN model. Finally, the converter oxygen blowing time was calculated according to the oxygen consumption volume and the oxygen supply intensity of each heat. The proposed hybrid model was verified using the actual data collected from an integrated steel plant in China, and compared with multiple linear regression model, OBM model, and neural network model including extreme learning machine, back propagation neural network, and DNN. The test results indicate that the hybrid model with a network structure of 3 hidden layer layers, 32-16-8 neurons per hidden layer, and 0.1 learning rate has the best prediction accuracy and stronger generalization ability compared with other models. The predicted hit ratio of oxygen consumption volume within the error±300 m^(3)is 96.67%;determination coefficient (R^(2)) and root mean square error (RMSE) are0.6984 and 150.03 m^(3), respectively. The oxygen blow time prediction hit ratio within the error±0.6 min is 89.50%;R2and RMSE are0.9486 and 0.3592 min, respectively. As a result, the proposed model can effectively predict the oxygen consumption volume and oxygen blowing time in the converter.展开更多
Cation additives can efficiently enhance the total electrochemical capabilities of zinc-ion hybrid capacitors (ZHCs).However their energy storage mechanisms in zinc-based systems are still under debate.Herein,we modul...Cation additives can efficiently enhance the total electrochemical capabilities of zinc-ion hybrid capacitors (ZHCs).However their energy storage mechanisms in zinc-based systems are still under debate.Herein,we modulate the electrolyte and achieve dual-ion storage by adding magnesium ions.And we assemble several Zn//activated carbon devices with different electrolyte concentrations and investigate their electrochemical reaction dynamic behaviors.The zinc-ion capacitor with Mg^(2+)mixed solution delivers 82 mAh·g^(-1)capacity at 1 A·g^(-1) and maintains 91%of the original capacitance after 10000 cycling.It is superior to the other assembled zinc-ion devices in single-component electrolytes.The finding demonstrates that the double-ion storage mechanism enables the superior rate performance and long cycle lifetime of ZHCs.展开更多
Metal-organic framework(MOF)-derived carbon composites have been considered as the promising materials for energy storage.However,the construction of MOF-based composites with highly controllable mode via the liquid-l...Metal-organic framework(MOF)-derived carbon composites have been considered as the promising materials for energy storage.However,the construction of MOF-based composites with highly controllable mode via the liquid-liquid synthesis method has a great challenge because of the simultaneous heterogeneous nucleation on substrates and the self-nucleation of individual MOF nanocrystals in the liquid phase.Herein,we report a bidirectional electrostatic generated self-assembly strategy to achieve the precisely controlled coatings of single-layer nanoscale MOFs on a range of substrates,including carbon nanotubes(CNTs),graphene oxide(GO),MXene,layered double hydroxides(LDHs),MOFs,and SiO_(2).The obtained MOF-based nanostructured carbon composite exhibits the hierarchical porosity(V_(meso)/V_(micro)∶2.4),ultrahigh N content of 12.4 at.%and"dual electrical conductive networks."The assembled aqueous zinc-ion hybrid capacitor(ZIC)with the prepared nanocarbon composite as a cathode shows a high specific capacitance of 236 F g^(-1)at 0.5 A g^(-1),great rate performance of 98 F g^(-1)at 100 A g^(-1),and especially,an ultralong cycling stability up to 230000 cycles with the capacitance retention of 90.1%.This work develops a repeatable and general method for the controlled construction of MOF coatings on various functional substrates and further fabricates carbon composites for ZICs with ultrastability.展开更多
基金This work was in part supported by the Science and Technology Development Fund(FDCT),Macao SAR,(No.0019/2021/A)Shandong Province Outstanding Youth Innovation Team Project of Colleges and Universities(No.2020RWG011),National Natural Science Foundation of China(Nos.62173356 and 61703320)+2 种基金Natural Science Foundation of Shandong Province(No.ZR202111110025)Guangdong Basic and Applied Basic Research Foundation(No.2023A1515011531)Zhuhai Industry-University-Research Project with Hongkong and Macao(No.ZH22017002210014PWC).
文摘Remanufacturing is regarded as a sustainable manufacturing paradigm of energy conservation and environment protection.To improve the efficiency of the remanufacturing process,this work investigates an integrated scheduling problem for disassembly and reprocessing in a remanufacturing process,where product structures and uncertainty are taken into account.First,a stochastic programming model is developed to minimize the maximum completion time(makespan).Second,a Q-learning based hybrid meta-heuristic(Q-HMH)is specially devised.In each iteration,a Q-learning method is employed to adaptively choose a premium algorithm from four candidate ones,including genetic algorithm(GA),artificial bee colony(ABC),shuffled frog-leaping algorithm(SFLA),and simulated annealing(SA)methods.At last,simulation experiments are carried out by using sixteen instances with different scales,and three state-of-the-art algorithms in literature and an exact solver CPLEX are chosen for comparisons.By analyzing the results with the average relative percentage deviation(RPD)metric,we find that Q-HMH outperforms its rivals by 9.79%-26.76%.The results and comparisons verify the excellent competitiveness of Q-HMH for solving the concerned problems.
基金partially supported by the Guangdong Basic and Applied Basic Research Foundation(2023A1515011531)the National Natural Science Foundation of China under Grant 62173356+2 种基金the Science and Technology Development Fund(FDCT),Macao SAR,under Grant 0019/2021/AZhuhai Industry-University-Research Project with Hongkong and Macao under Grant ZH22017002210014PWCthe Key Technologies for Scheduling and Optimization of Complex Distributed Manufacturing Systems(22JR10KA007).
文摘The flow shop scheduling problem is important for the manufacturing industry.Effective flow shop scheduling can bring great benefits to the industry.However,there are few types of research on Distributed Hybrid Flow Shop Problems(DHFSP)by learning assisted meta-heuristics.This work addresses a DHFSP with minimizing the maximum completion time(Makespan).First,a mathematical model is developed for the concerned DHFSP.Second,four Q-learning-assisted meta-heuristics,e.g.,genetic algorithm(GA),artificial bee colony algorithm(ABC),particle swarm optimization(PSO),and differential evolution(DE),are proposed.According to the nature of DHFSP,six local search operations are designed for finding high-quality solutions in local space.Instead of randomselection,Q-learning assists meta-heuristics in choosing the appropriate local search operations during iterations.Finally,based on 60 cases,comprehensive numerical experiments are conducted to assess the effectiveness of the proposed algorithms.The experimental results and discussions prove that using Q-learning to select appropriate local search operations is more effective than the random strategy.To verify the competitiveness of the Q-learning assistedmeta-heuristics,they are compared with the improved iterated greedy algorithm(IIG),which is also for solving DHFSP.The Friedman test is executed on the results by five algorithms.It is concluded that the performance of four Q-learning-assisted meta-heuristics are better than IIG,and the Q-learning-assisted PSO shows the best competitiveness.
文摘The non-invasive evaluation of the heart through EectroCardioG-raphy(ECG)has played a key role in detecting heart disease.The analysis of ECG signals requires years of learning and experience to interpret and extract useful information from them.Thus,a computerized system is needed to classify ECG signals with more accurate results effectively.Abnormal heart rhythms are called arrhythmias and cause sudden cardiac deaths.In this work,a Computerized Abnormal Heart Rhythms Detection(CAHRD)system is developed using ECG signals.It consists of four stages;preprocessing,feature extraction,feature optimization and classifier.At first,Pan and Tompkins algorithm is employed to detect the envelope of Q,R and S waves in the preprocessing stage.It uses a recursive filter to eliminate muscle noise,T-wave interference and baseline wander.As the analysis of ECG signal in the spatial domain does not provide a complete description of the signal,the feature extraction involves using frequency contents obtained from multiple wavelet filters;bi-orthogonal,Symlet and Daubechies at different resolution levels in the feature extraction stage.Then,Black Widow Optimization(BWO)is applied to optimize the hybrid wavelet features in the feature optimization stage.Finally,a kernel based Support Vector Machine(SVM)is employed to classify heartbeats into five classes.In SVM,Radial Basis Function(RBF),polynomial and linear kernels are used.A total of∼15000 ECG signals are obtained from the Massachusetts Institute of Technology-Beth Israel Hospital(MIT-BIH)arrhythmia database for performance evaluation of the proposed CAHRD system.Results show that the proposed CAHRD system proved to be a powerful tool for ECG analysis.It correctly classifies five classes of heartbeats with 99.91%accuracy using an RBF kernel with 2nd level wavelet coefficients.The CAHRD system achieves an improvement of∼6%over random projections with the ensemble SVM approach and∼2%over morphological and ECG segment based features with the RBF classifier.
文摘In this study, we develop a new meta-heuristic-based approach to solve a multi-objective optimization problem, namely the reliability-redundancy allocation problem (RRAP). Further, we develop a new simulation process to generate practical tools for designing reliable series-parallel systems. Because the?RRAP is an NP-hard problem, conventional techniques or heuristics cannot be used to find the optimal solution. We propose a genetic algorithm (GA)-based hybrid meta-heuristic algorithm, namely the hybrid genetic algorithm (HGA), to find the optimal solution. A simulation process based on the HGA is developed to obtain different alternative solutions that are required to generate application tools for optimal design of reliable series-parallel systems. Finally, a practical case study regarding security control of a gas turbine in the overspeed state is presented to validate the proposed algorithm.
基金supported by the Center for Mining,Electro-Mechanical research of Hanoi University of Mining and Geology(HUMG),Hanoi,Vietnamfinancially supported by the Hunan Provincial Department of Education General Project(19C1744)+1 种基金Hunan Province Science Foundation for Youth Scholars of China fund(2018JJ3510)the Innovation-Driven Project of Central South University(2020CX040)。
文摘Blasting is well-known as an effective method for fragmenting or moving rock in open-pit mines.To evaluate the quality of blasting,the size of rock distribution is used as a critical criterion in blasting operations.A high percentage of oversized rocks generated by blasting operations can lead to economic and environmental damage.Therefore,this study proposed four novel intelligent models to predict the size of rock distribution in mine blasting in order to optimize blasting parameters,as well as the efficiency of blasting operation in open mines.Accordingly,a nature-inspired algorithm(i.e.,firefly algorithm-FFA)and different machine learning algorithms(i.e.,gradient boosting machine(GBM),support vector machine(SVM),Gaussian process(GP),and artificial neural network(ANN))were combined for this aim,abbreviated as FFA-GBM,FFA-SVM,FFA-GP,and FFA-ANN,respectively.Subsequently,predicted results from the abovementioned models were compared with each other using three statistical indicators(e.g.,mean absolute error,root-mean-squared error,and correlation coefficient)and color intensity method.For developing and simulating the size of rock in blasting operations,136 blasting events with their images were collected and analyzed by the Split-Desktop software.In which,111 events were randomly selected for the development and optimization of the models.Subsequently,the remaining 25 blasting events were applied to confirm the accuracy of the proposed models.Herein,blast design parameters were regarded as input variables to predict the size of rock in blasting operations.Finally,the obtained results revealed that the FFA is a robust optimization algorithm for estimating rock fragmentation in bench blasting.Among the models developed in this study,FFA-GBM provided the highest accuracy in predicting the size of fragmented rocks.The other techniques(i.e.,FFA-SVM,FFA-GP,and FFA-ANN)yielded lower computational stability and efficiency.Hence,the FFA-GBM model can be used as a powerful and precise soft computing tool that can be applied to practical engineering cases aiming to improve the quality of blasting and rock fragmentation.
文摘Damage identification of the offshore floating wind turbine by vibration/dynamic signals is one of the important and new research fields in the Structural Health Monitoring(SHM). In this paper a new damage identification method is proposed based on meta-heuristic algorithms using the dynamic response of the TLP(Tension-Leg Platform) floating wind turbine structure. The Genetic Algorithms(GA), Artificial Immune System(AIS), Particle Swarm Optimization(PSO), and Artificial Bee Colony(ABC) are chosen for minimizing the object function, defined properly for damage identification purpose. In addition to studying the capability of mentioned algorithms in correctly identifying the damage, the effect of the response type on the results of identification is studied. Also, the results of proposed damage identification are investigated with considering possible uncertainties of the structure. Finally, for evaluating the proposed method in real condition, a 1/100 scaled experimental setup of TLP Floating Wind Turbine(TLPFWT) is provided in a laboratory scale and the proposed damage identification method is applied to the scaled turbine.
文摘Cloud computing infrastructure has been evolving as a cost-effective platform for providing computational resources in the form of high-performance computing as a service(HPCaaS)to users for executing HPC applications.However,the broader use of the Cloud services,the rapid increase in the size,and the capacity of Cloud data centers bring a remarkable rise in energy consumption leading to a significant rise in the system provider expenses and carbon emissions in the environment.Besides this,users have become more demanding in terms of Quality-of-service(QoS)expectations in terms of execution time,budget cost,utilization,and makespan.This situation calls for the design of task scheduling policy,which ensures efficient task sequencing and allocation of computing resources to tasks to meet the trade-off between QoS promises and service provider requirements.Moreover,the task scheduling in the Cloud is a prevalent NP-Hard problem.Motivated by these concerns,this paper introduces and implements a QoS-aware Energy-Efficient Scheduling policy called as CSPSO,for scheduling tasks in Cloud systems to reduce the energy consumption of cloud resources and minimize the makespan of workload.The proposed multi-objective CSPSO policy hybridizes the search qualities of two robust metaheuristics viz.cuckoo search(CS)and particle swarm optimization(PSO)to overcome the slow convergence and lack of diversity of standard CS algorithm.A fitness-aware resource allocation(FARA)heuristic was developed and used by the proposed policy to allocate resources to tasks efficiently.A velocity update mechanism for cuckoo individuals is designed and incorporated in the proposed CSPSO policy.Further,the proposed scheduling policy has been implemented in the CloudSim simulator and tested with real supercomputing workload traces.The comparative analysis validated that the proposed scheduling policy can produce efficient schedules with better performance over other well-known heuristics and meta-heuristics scheduling policies.
文摘It is one of the topics that have been studied extensively on maximum power point tracking(MPPT)recently.Traditional or soft computing methods are used for MPPT.Since soft computing approaches are more effective than traditional approaches,studies on MPPT have shifted in this direction.This study aims comparison of performance of seven meta-heuristic training algorithms in the neuro-fuzzy training for MPPT.The meta-heuristic training algorithms used are particle swarm optimization(PSO),harmony search(HS),cuckoo search(CS),artificial bee colony(ABC)algorithm,bee algorithm(BA),differential evolution(DE)and flower pollination algorithm(FPA).The antecedent and conclusion parameters of neuro-fuzzy are determined by these algorithms.The data of a 250 W photovoltaic(PV)is used in the applications.For effective MPPT,different neuro-fuzzy structures,different membership functions and different control parameter values are evaluated in detail.Related training algorithms are compared in terms of solution quality and convergence speed.The strengths and weaknesses of these algorithms are revealed.It is seen that the type and number of membership function,colony size,number of generations affect the solution quality and convergence speed of the training algorithms.As a result,it has been observed that CS and ABC algorithm are more effective than other algorithms in terms of solution quality and convergence in solving the related problem.
文摘One of the most common kinds of cancer is breast cancer.The early detection of it may help lower its overall rates of mortality.In this paper,we robustly propose a novel approach for detecting and classifying breast cancer regions in thermal images.The proposed approach starts with data preprocessing the input images and segmenting the significant regions of interest.In addition,to properly train the machine learning models,data augmentation is applied to increase the number of segmented regions using various scaling ratios.On the other hand,to extract the relevant features from the breast cancer cases,a set of deep neural networks(VGGNet,ResNet-50,AlexNet,and GoogLeNet)are employed.The resulting set of features is processed using the binary dipper throated algorithm to select the most effective features that can realize high classification accuracy.The selected features are used to train a neural network to finally classify the thermal images of breast cancer.To achieve accurate classification,the parameters of the employed neural network are optimized using the continuous dipper throated optimization algorithm.Experimental results show the effectiveness of the proposed approach in classifying the breast cancer cases when compared to other recent approaches in the literature.Moreover,several experiments were conducted to compare the performance of the proposed approach with the other approaches.The results of these experiments emphasized the superiority of the proposed approach.
基金The Qian Xuesen Youth Innovation Foundation from China Aerospace Science and Technology Corporation(Grant Number 2022JY51).
文摘The demand for adopting neural networks in resource-constrained embedded devices is continuously increasing.Quantization is one of the most promising solutions to reduce computational cost and memory storage on embedded devices.In order to reduce the complexity and overhead of deploying neural networks on Integeronly hardware,most current quantization methods use a symmetric quantization mapping strategy to quantize a floating-point neural network into an integer network.However,although symmetric quantization has the advantage of easier implementation,it is sub-optimal for cases where the range could be skewed and not symmetric.This often comes at the cost of lower accuracy.This paper proposed an activation redistribution-based hybrid asymmetric quantizationmethod for neural networks.The proposedmethod takes data distribution into consideration and can resolve the contradiction between the quantization accuracy and the ease of implementation,balance the trade-off between clipping range and quantization resolution,and thus improve the accuracy of the quantized neural network.The experimental results indicate that the accuracy of the proposed method is 2.02%and 5.52%higher than the traditional symmetric quantization method for classification and detection tasks,respectively.The proposed method paves the way for computationally intensive neural network models to be deployed on devices with limited computing resources.Codes will be available on https://github.com/ycjcy/Hybrid-Asymmetric-Quantization.
基金supported by the National Natural Science Foundation of China(21905253,51973200,and 52122308)the Natural Science Foundation of Henan(202300410372)the National Supercomputing Center in Zhengzhou
文摘The rational design of metal single-atom catalysts(SACs)for electrochemical nitrogen reduction reaction(NRR)is challenging.Two-dimensional metal-organic frameworks(2DMOFs)is a unique class of promising SACs.Up to now,the roles of individual metals,coordination atoms,and their synergy effect on the electroanalytic performance remain unclear.Therefore,in this work,a series of 2DMOFs with different metals and coordinating atoms are systematically investigated as electrocatalysts for ammonia synthesis using density functional theory calculations.For a specific metal,a proper metal-intermediate atoms p-d orbital hybridization interaction strength is found to be a key indicator for their NRR catalytic activities.The hybridization interaction strength can be quantitatively described with the p-/d-band center energy difference(Δd-p),which is found to be a sufficient descriptor for both the p-d hybridization strength and the NRR performance.The maximum free energy change(ΔG_(max))andΔd-p have a volcanic relationship with OsC_(4)(Se)_(4)located at the apex of the volcanic curve,showing the best NRR performance.The asymmetrical coordination environment could regulate the band structure subtly in terms of band overlap and positions.This work may shed new light on the application of orbital engineering in electrocatalytic NRR activity and especially promotes the rational design for SACs.
基金Projects(42177164,52474121)supported by the National Science Foundation of ChinaProject(PBSKL2023A12)supported by the State Key Laboratory of Precision Blasting and Hubei Key Laboratory of Blasting Engineering,China。
文摘In the mining industry,precise forecasting of rock fragmentation is critical for optimising blasting processes.In this study,we address the challenge of enhancing rock fragmentation assessment by developing a novel hybrid predictive model named GWO-RF.This model combines the grey wolf optimization(GWO)algorithm with the random forest(RF)technique to predict the D_(80)value,a critical parameter in evaluating rock fragmentation quality.The study is conducted using a dataset from Sarcheshmeh Copper Mine,employing six different swarm sizes for the GWO-RF hybrid model construction.The GWO-RF model’s hyperparameters are systematically optimized within established bounds,and its performance is rigorously evaluated using multiple evaluation metrics.The results show that the GWO-RF hybrid model has higher predictive skills,exceeding traditional models in terms of accuracy.Furthermore,the interpretability of the GWO-RF model is enhanced through the utilization of SHapley Additive exPlanations(SHAP)values.The insights gained from this research contribute to optimizing blasting operations and rock fragmentation outcomes in the mining industry.
基金financially supported by the National Natural Science Foundation of China (Nos.51974023 and52374321)the funding of State Key Laboratory of Advanced Metallurgy,University of Science and Technology Beijing,China (No.41620007)。
文摘The amount of oxygen blown into the converter is one of the key parameters for the control of the converter blowing process,which directly affects the tap-to-tap time of converter. In this study, a hybrid model based on oxygen balance mechanism (OBM) and deep neural network (DNN) was established for predicting oxygen blowing time in converter. A three-step method was utilized in the hybrid model. First, the oxygen consumption volume was predicted by the OBM model and DNN model, respectively. Second, a more accurate oxygen consumption volume was obtained by integrating the OBM model and DNN model. Finally, the converter oxygen blowing time was calculated according to the oxygen consumption volume and the oxygen supply intensity of each heat. The proposed hybrid model was verified using the actual data collected from an integrated steel plant in China, and compared with multiple linear regression model, OBM model, and neural network model including extreme learning machine, back propagation neural network, and DNN. The test results indicate that the hybrid model with a network structure of 3 hidden layer layers, 32-16-8 neurons per hidden layer, and 0.1 learning rate has the best prediction accuracy and stronger generalization ability compared with other models. The predicted hit ratio of oxygen consumption volume within the error±300 m^(3)is 96.67%;determination coefficient (R^(2)) and root mean square error (RMSE) are0.6984 and 150.03 m^(3), respectively. The oxygen blow time prediction hit ratio within the error±0.6 min is 89.50%;R2and RMSE are0.9486 and 0.3592 min, respectively. As a result, the proposed model can effectively predict the oxygen consumption volume and oxygen blowing time in the converter.
基金financially supported by the National Natural Science Foundation of China (No.52172218)。
文摘Cation additives can efficiently enhance the total electrochemical capabilities of zinc-ion hybrid capacitors (ZHCs).However their energy storage mechanisms in zinc-based systems are still under debate.Herein,we modulate the electrolyte and achieve dual-ion storage by adding magnesium ions.And we assemble several Zn//activated carbon devices with different electrolyte concentrations and investigate their electrochemical reaction dynamic behaviors.The zinc-ion capacitor with Mg^(2+)mixed solution delivers 82 mAh·g^(-1)capacity at 1 A·g^(-1) and maintains 91%of the original capacitance after 10000 cycling.It is superior to the other assembled zinc-ion devices in single-component electrolytes.The finding demonstrates that the double-ion storage mechanism enables the superior rate performance and long cycle lifetime of ZHCs.
基金financial support from Project funded by National Natural Science Foundation of China(52172038,22179017)funding from Dalian University of Technology Open Fund for Large Scale Instrument Equipment
文摘Metal-organic framework(MOF)-derived carbon composites have been considered as the promising materials for energy storage.However,the construction of MOF-based composites with highly controllable mode via the liquid-liquid synthesis method has a great challenge because of the simultaneous heterogeneous nucleation on substrates and the self-nucleation of individual MOF nanocrystals in the liquid phase.Herein,we report a bidirectional electrostatic generated self-assembly strategy to achieve the precisely controlled coatings of single-layer nanoscale MOFs on a range of substrates,including carbon nanotubes(CNTs),graphene oxide(GO),MXene,layered double hydroxides(LDHs),MOFs,and SiO_(2).The obtained MOF-based nanostructured carbon composite exhibits the hierarchical porosity(V_(meso)/V_(micro)∶2.4),ultrahigh N content of 12.4 at.%and"dual electrical conductive networks."The assembled aqueous zinc-ion hybrid capacitor(ZIC)with the prepared nanocarbon composite as a cathode shows a high specific capacitance of 236 F g^(-1)at 0.5 A g^(-1),great rate performance of 98 F g^(-1)at 100 A g^(-1),and especially,an ultralong cycling stability up to 230000 cycles with the capacitance retention of 90.1%.This work develops a repeatable and general method for the controlled construction of MOF coatings on various functional substrates and further fabricates carbon composites for ZICs with ultrastability.