期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
The kinetics of force-dependent hybridization and strand-peeling of short DNA fragments 被引量:1
1
作者 ZhouJie Yang GuoHua Yuan +2 位作者 WeiLi Zhai Jie Yan Hu Chen 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS CSCD 2016年第8期22-27,共6页
Deoxyribonucleic acid(DNA) carries the genetic information in all living organisms. It consists of two interwound single-stranded(ss) strands, forming a double-stranded(ds) DNA with a right-handed double-helical confo... Deoxyribonucleic acid(DNA) carries the genetic information in all living organisms. It consists of two interwound single-stranded(ss) strands, forming a double-stranded(ds) DNA with a right-handed double-helical conformation. The two strands are held together by highly specific basepairing interactions and are further stabilized by stacking between adjacent basepairs. A transition from a dsDNA to two separated ssDNA is called melting and the reverse transition is called hybridization. Applying a tensile force to a dsDNA can result in a particular type of DNA melting, during which one ssDNA strand is peeled away from the other. In this work, we studied the kinetics of strand-peeling and hybridization of short DNA under tensile forces. Our results show that the force-dependent strand-peeling and hybridization can be described with a simple two-state model. Importantly, detailed analysis of the force-dependent transition rates revealed that the transition state consists of several basepairs dsDNA. 展开更多
关键词 DNA hybridization magnetic tweezers Bell's model transition state theory single molecule manipulation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部