Electromagnetic forming tests were done at room temperature to reveal the influence of hydrogen content on the compressive properties of Ti-6Al-4V alloy at high strain rate. Microstructure was observed to reveal the m...Electromagnetic forming tests were done at room temperature to reveal the influence of hydrogen content on the compressive properties of Ti-6Al-4V alloy at high strain rate. Microstructure was observed to reveal the mechanism of hydrogen-enhanced compressive properties. The experimental results indicate that hydrogen has favorable effects on the compressive properties of Ti-6Al-4V alloy at high strain rate. Compression of Ti-6Al-4V alloy first increases up to a maximum and then decreases with the increase of hydrogen content at the same discharge energy under EMF tests. The compression increases by 47.0% when 0.2% (mass fraction) hydrogen is introduced into Ti-6Al-4V alloy. The optimal hydrogen content for cold formation of Ti–6Al–4V alloy under EMF was determined. The reasons for the hydrogen-induced compressive properties were discussed.展开更多
This work aims to investigate the effects of hydrogen content(in the range of 0%-0.5%,mass fraction)and stress state (tension and compression)on the room-temperature mechanical properties of Ti-6Al-4V alloy through me...This work aims to investigate the effects of hydrogen content(in the range of 0%-0.5%,mass fraction)and stress state (tension and compression)on the room-temperature mechanical properties of Ti-6Al-4V alloy through mechanical properties tests. The effects of hydrogen content on microstructure evolution of Ti-6Al-4V alloy is also examined by optical microscopy,X-ray diffractometry,transmission electron microscopy and scanning electron microscopy.The results show that hydrogen content and stress state have important effects on the room-temperature mechanical properties of Ti-6Al-4V alloy.Tensile strength and ultimate elongation decrease with increasing the hydrogen content,while compressive strength and ultimate reduction are improved after hydrogenation.The reason is that the intergranular deformation dominates at the state of tension.Hydrogen atoms in solid solution and hydrides at grain boundaries increase with increasing the hydrogen content and they can promote the initiation and propagation of cracks along grain boundaries.While the intragranular deformation dominates at the state of compression.The plastic beta phase and hydrides increase with increasing the hydrogen content and they improve the ultimate reduction and compressive strength.展开更多
By making castings that pick up gas from moisture in red sand molds,the porosity generated at different cooling rates was discussed during solidification of hypereutectic Al-25%Si alloy without and with phosphorus add...By making castings that pick up gas from moisture in red sand molds,the porosity generated at different cooling rates was discussed during solidification of hypereutectic Al-25%Si alloy without and with phosphorus additions. The effect of phosphorus addition on hydrogen content in the melt was also studied. It was observed that the phosphorus addition made hydrogen content in alloy melts present a “see-saw' tendency.In addition to primary silicon refinement,the phosphorus promoted gas porosity formed not only in slowly cooled sections, but also in rapidly cooled sections. There was a small difference in density of full dense sample between P-refined and unrefined castings, with a larger density associated with phosphorous addition. The change of the surface tension seemed more reasonable to explain the mechanism of porosity behavior.展开更多
The inductively coupled plasma chemical vapor deposition(ICP-CVD) deposited silicon nitride(SiN_(x)) thin film was evaluated for its application as the electrical insulating film for a capacitor device.In order to ach...The inductively coupled plasma chemical vapor deposition(ICP-CVD) deposited silicon nitride(SiN_(x)) thin film was evaluated for its application as the electrical insulating film for a capacitor device.In order to achieve highest possible dielectric strength of SiN_(x),the process parameters of ICP-CVD were carefully tuned to control hydrogen in SiN_(x) films by means of tuning N_(2)/SiH_(4) ratio and radio frequency(RF) power.Besides electrical measurements,the hydrogen content in the films was measured by dynamic secondary ion mass spectrometry(D-SIMS).Fourier transform infrared spectroscopy(FTIR) and micro Raman spectroscopy were used to characterize the SiN_(x) films by measuring Si-H and N-H bonds’ intensities.It was found that the more Si-H bonds lead to the higher dielectric strength.展开更多
Typical Q235 low-carbon steel samples with different hydrogen contents(0.0004,0.0008,and 0.0013 wt.%)were prepared by adjusting the environment humidity and moisture.The effects of hydrogen on interfacial heat transfe...Typical Q235 low-carbon steel samples with different hydrogen contents(0.0004,0.0008,and 0.0013 wt.%)were prepared by adjusting the environment humidity and moisture.The effects of hydrogen on interfacial heat transfer,contact behavior,and microstructure evolution were investigated using a novel droplet solidification technique.The results revealed that when the hydrogen content increases from 0.0004 to 0.0013 wt.%,the maximum heat flux between the molten steel and cooling substrate decreases from 8.01 to 6.19 MW/m^(2),and the total heat removed in the initial 2 s reduces from 10.30 to 8.27 MJ/m^(2).Moreover,the final contact angle between the molten steel and substrate increases from 103.741°to 113.697°,and the number of pores on the droplet bottom surface increases significantly from 21 to 210 with the increase in hydrogen.The surface roughness of the droplet bottom surface increases from 20.902 to 49.181 pm.In addition,the average grain size of the droplet increases from 14.778 to 33.548 pm with the increase in the hydrogen content.The interfacial contact condition becomes worse due to the escape of hydrogen from the steel matrix during the cooling process,which leads to the reduction in the interfacial heat transfer and the increase in the grain size.展开更多
An Xtreme Gradient Boosting(XGBoost)-based endpoint hydrogen content prediction model was proposed for the electroslag remelting process,the data collected in the field were pre-processed,and the characteristic variab...An Xtreme Gradient Boosting(XGBoost)-based endpoint hydrogen content prediction model was proposed for the electroslag remelting process,the data collected in the field were pre-processed,and the characteristic variables of the physical parameters related to the variation of hydrogen content in the electroslag remelting process were selected by machine learning analysis and metallurgical mechanism.The kernel ridge regression model,ridge regression model,XGBoost model,support vector regression model and gradient boosting regression model were developed and validated using the electroslag remelting data collected from the steel mills,and the model structure and parameters were adjusted several times.The prediction accuracy of hydrogen content was compared horizontally.The XGBoost model was validated for the test set with the following hit rates:70.59%,82.35% and 100% for the endpoint hits at the allowable hydrogen content error of ±0.05×10^(-6),±0.10×10^(-6) and ±0.50×10^(-6),respectively.展开更多
If a D T generator is used as a neutron source to simultaneously measure the content of carbon, hydrogen and oxygen in a multicomponent sample by NIPGA (Neutron Induced Prompt Gamma-ray Analysis), the 14 MeV neutron...If a D T generator is used as a neutron source to simultaneously measure the content of carbon, hydrogen and oxygen in a multicomponent sample by NIPGA (Neutron Induced Prompt Gamma-ray Analysis), the 14 MeV neutron flux can be regarded as a constant value. The relationship between the production of the hydrogen characteristic gamma-rays and its content is nonlinear. In this paper, we use MCNP (Monte Carlo N-Particle Transport code) to simulate the relationship and analyze it. In practical measurement of the characteristic gamma-ray, it's impossible to get the net count. Therefore, we use the experiment to obtain the relationship between the hydrogen content and the total count of its characteristic gamma-rays. If we use the relationship combined with the simulation result to calculate the hydrogen content, the metrical precision can be much increased. The deviation of hydrogen content between NIPGA and chemical analysis is less than 0.25%, which meets the requirement of coal industry.展开更多
In this paper, two kinds of methods of calculating the hydrogen content of a-Si:H thin film by means of the wagging mode and the stretching modes of infrared-transmission spectra , are investigated. The reason for the...In this paper, two kinds of methods of calculating the hydrogen content of a-Si:H thin film by means of the wagging mode and the stretching modes of infrared-transmission spectra , are investigated. The reason for the difference in these two calculation results is analyzed. If the contents of SiH2 and (SiH2)n are indicated in terms of a structure factor F=(I840+I880)/I2000, it is shown that the calculation results obtained from the two different methods are almost equal when the refractive index n is approximately 3.4 or the fitting thickness is between 0.71 and 0.89 mm in the case of a small F. It is shown that the ways of fabrication of thin film can influence silicon-hydrogen bonding configuration of a-Si:H film, and different ways of fabrication can lead to different contents of SiH2 and (SiH2)n. The uniformity of the thin film with a big F is bad. In this case, there is great difference between the thickness measured by the SurfCom408A surface profile apparatus and the thickness obtained by fitting the fringes; and the hydrogen contents of a-Si:H films obtained by means of the wagging mode and the stretching modes are different, too. But the fabrication of the MWECR CVD assisted by CAT CVD can effectively restrain the formation of SiH2 and (SiH2)n.展开更多
In the present work, the effects of chemical compositions on the hydrogen blistering and hydrogen induced cracking of A350LF2 steel with different S contents were studied. Four types of A350LF2 steels were evaluated b...In the present work, the effects of chemical compositions on the hydrogen blistering and hydrogen induced cracking of A350LF2 steel with different S contents were studied. Four types of A350LF2 steels were evaluated by immersing samples in H2S-saturated NACE solution. The hydrogen blistering, crack length rate(CLR), crack thickness rate(CTR) and crack sensitivity rate(CSR) were evaluated. The results show that there are many hydrogen blisters on the sample surface with S content of 0.021%, a few on the sample surface with S content of 0.019% and 0.012% and no one on the surface with S content of 0.002%. There were 12, 2 and 1 strips of cracks of longer than 0.3 mm on the evaluated cross sections with S content of 0.021%, 0.019% and 0.012%, respectively. There was no any crack in the sample with 0.002% S. The corrosion rate was also evaluated. The S content has no obvious influence on the corrosion rate.展开更多
The hydrogenation reaction of electrolyzed titanium, as the first step during hydrogenation-dehydrogenation for the preparation of titanium powder, was studied. The titanium hydride was prepared through the reaction b...The hydrogenation reaction of electrolyzed titanium, as the first step during hydrogenation-dehydrogenation for the preparation of titanium powder, was studied. The titanium hydride was prepared through the reaction between electrolyzed titanium and hydrogen at different hydrogenation temperatures and different time. The evolutions of hydrogen and oxygen contents, density, hardness and phase composition before and after hydrogenation were characterized under different hydrogenation conditions. The results show that the main phases of titanium hydride were TiHl.924, TiH1.971 and TiH2. Increasing the hydrogenation temperature could not enhance the hydrogen content but increase the oxygen content. The effect of the hydrogenation time on the hydrogen content was not obvious. The optimal parameters of the hydrogenation process were obtained: beating at 400℃ and holding for 2 h, by which the hydrogen content of 3.63% and oxygen content of 0.18% (mass fraction) can be obtained. In addition, the microstructure, orientations and tissues of electrolyzed titanium and titanium hydride were detected.展开更多
基金Project (51205102) supported by the National Natural Science Foundation of ChinaProject (2012M511401) supported by the China Postdoctoral Science FoundationProject (gf201101001) supported by the National Defense Key Disciplines Laboratory of Light Alloy Processing Science and Technology, Nanchang Hangkong University, China
文摘Electromagnetic forming tests were done at room temperature to reveal the influence of hydrogen content on the compressive properties of Ti-6Al-4V alloy at high strain rate. Microstructure was observed to reveal the mechanism of hydrogen-enhanced compressive properties. The experimental results indicate that hydrogen has favorable effects on the compressive properties of Ti-6Al-4V alloy at high strain rate. Compression of Ti-6Al-4V alloy first increases up to a maximum and then decreases with the increase of hydrogen content at the same discharge energy under EMF tests. The compression increases by 47.0% when 0.2% (mass fraction) hydrogen is introduced into Ti-6Al-4V alloy. The optimal hydrogen content for cold formation of Ti–6Al–4V alloy under EMF was determined. The reasons for the hydrogen-induced compressive properties were discussed.
文摘This work aims to investigate the effects of hydrogen content(in the range of 0%-0.5%,mass fraction)and stress state (tension and compression)on the room-temperature mechanical properties of Ti-6Al-4V alloy through mechanical properties tests. The effects of hydrogen content on microstructure evolution of Ti-6Al-4V alloy is also examined by optical microscopy,X-ray diffractometry,transmission electron microscopy and scanning electron microscopy.The results show that hydrogen content and stress state have important effects on the room-temperature mechanical properties of Ti-6Al-4V alloy.Tensile strength and ultimate elongation decrease with increasing the hydrogen content,while compressive strength and ultimate reduction are improved after hydrogenation.The reason is that the intergranular deformation dominates at the state of tension.Hydrogen atoms in solid solution and hydrides at grain boundaries increase with increasing the hydrogen content and they can promote the initiation and propagation of cracks along grain boundaries.While the intragranular deformation dominates at the state of compression.The plastic beta phase and hydrides increase with increasing the hydrogen content and they improve the ultimate reduction and compressive strength.
文摘By making castings that pick up gas from moisture in red sand molds,the porosity generated at different cooling rates was discussed during solidification of hypereutectic Al-25%Si alloy without and with phosphorus additions. The effect of phosphorus addition on hydrogen content in the melt was also studied. It was observed that the phosphorus addition made hydrogen content in alloy melts present a “see-saw' tendency.In addition to primary silicon refinement,the phosphorus promoted gas porosity formed not only in slowly cooled sections, but also in rapidly cooled sections. There was a small difference in density of full dense sample between P-refined and unrefined castings, with a larger density associated with phosphorous addition. The change of the surface tension seemed more reasonable to explain the mechanism of porosity behavior.
基金Project supported by the Natural Science Foundation of Jiangsu Higher Education Institutions of China(Grant Nos.19KJD140002 and 19KJB140008)the Key Projects of Ministry of Science and Technology of China(Grant No.SQ2020YFF0407077)+3 种基金Postgraduate Research&Practice Innovation Program of Jiangsu Province,China(Grant Nos.2020XKT786 and KYCX202337)the National Foreign Experts Bureau High-end Foreign Experts Project,China(Grant No.G20190114003)the Key Research and Development Program of Jiangsu Province,China(Grant No.BE2018063)the Scientific Research Program for Doctoral Teachers of JSNU(Grant No.9212218113)。
文摘The inductively coupled plasma chemical vapor deposition(ICP-CVD) deposited silicon nitride(SiN_(x)) thin film was evaluated for its application as the electrical insulating film for a capacitor device.In order to achieve highest possible dielectric strength of SiN_(x),the process parameters of ICP-CVD were carefully tuned to control hydrogen in SiN_(x) films by means of tuning N_(2)/SiH_(4) ratio and radio frequency(RF) power.Besides electrical measurements,the hydrogen content in the films was measured by dynamic secondary ion mass spectrometry(D-SIMS).Fourier transform infrared spectroscopy(FTIR) and micro Raman spectroscopy were used to characterize the SiN_(x) films by measuring Si-H and N-H bonds’ intensities.It was found that the more Si-H bonds lead to the higher dielectric strength.
基金The financial support for this work from the National Natural Science Foundation of China(52274342,52130408)the Hunan Scientific Technology Projects(Grant No.2020WK2003)+1 种基金the Natural Science Foundation of Hunan Province(2021JJ40731)the Postgraduate Scientific Research Innovation Project of Hunan Province(CX20220099)is gratefully acknowledged.
文摘Typical Q235 low-carbon steel samples with different hydrogen contents(0.0004,0.0008,and 0.0013 wt.%)were prepared by adjusting the environment humidity and moisture.The effects of hydrogen on interfacial heat transfer,contact behavior,and microstructure evolution were investigated using a novel droplet solidification technique.The results revealed that when the hydrogen content increases from 0.0004 to 0.0013 wt.%,the maximum heat flux between the molten steel and cooling substrate decreases from 8.01 to 6.19 MW/m^(2),and the total heat removed in the initial 2 s reduces from 10.30 to 8.27 MJ/m^(2).Moreover,the final contact angle between the molten steel and substrate increases from 103.741°to 113.697°,and the number of pores on the droplet bottom surface increases significantly from 21 to 210 with the increase in hydrogen.The surface roughness of the droplet bottom surface increases from 20.902 to 49.181 pm.In addition,the average grain size of the droplet increases from 14.778 to 33.548 pm with the increase in the hydrogen content.The interfacial contact condition becomes worse due to the escape of hydrogen from the steel matrix during the cooling process,which leads to the reduction in the interfacial heat transfer and the increase in the grain size.
基金the financial support by National Natural Science Foundation of China with Grant Nos.52174303 and 51874084Fundamental Research Funds for the Central Universities with Grant No.2125026Program of Introducing Talents of Discipline to Universities with Grant No.B21001.
文摘An Xtreme Gradient Boosting(XGBoost)-based endpoint hydrogen content prediction model was proposed for the electroslag remelting process,the data collected in the field were pre-processed,and the characteristic variables of the physical parameters related to the variation of hydrogen content in the electroslag remelting process were selected by machine learning analysis and metallurgical mechanism.The kernel ridge regression model,ridge regression model,XGBoost model,support vector regression model and gradient boosting regression model were developed and validated using the electroslag remelting data collected from the steel mills,and the model structure and parameters were adjusted several times.The prediction accuracy of hydrogen content was compared horizontally.The XGBoost model was validated for the test set with the following hit rates:70.59%,82.35% and 100% for the endpoint hits at the allowable hydrogen content error of ±0.05×10^(-6),±0.10×10^(-6) and ±0.50×10^(-6),respectively.
基金Supported by Innovation Fund for Small Technology-based Firms (99C26212210085)
文摘If a D T generator is used as a neutron source to simultaneously measure the content of carbon, hydrogen and oxygen in a multicomponent sample by NIPGA (Neutron Induced Prompt Gamma-ray Analysis), the 14 MeV neutron flux can be regarded as a constant value. The relationship between the production of the hydrogen characteristic gamma-rays and its content is nonlinear. In this paper, we use MCNP (Monte Carlo N-Particle Transport code) to simulate the relationship and analyze it. In practical measurement of the characteristic gamma-ray, it's impossible to get the net count. Therefore, we use the experiment to obtain the relationship between the hydrogen content and the total count of its characteristic gamma-rays. If we use the relationship combined with the simulation result to calculate the hydrogen content, the metrical precision can be much increased. The deviation of hydrogen content between NIPGA and chemical analysis is less than 0.25%, which meets the requirement of coal industry.
文摘In this paper, two kinds of methods of calculating the hydrogen content of a-Si:H thin film by means of the wagging mode and the stretching modes of infrared-transmission spectra , are investigated. The reason for the difference in these two calculation results is analyzed. If the contents of SiH2 and (SiH2)n are indicated in terms of a structure factor F=(I840+I880)/I2000, it is shown that the calculation results obtained from the two different methods are almost equal when the refractive index n is approximately 3.4 or the fitting thickness is between 0.71 and 0.89 mm in the case of a small F. It is shown that the ways of fabrication of thin film can influence silicon-hydrogen bonding configuration of a-Si:H film, and different ways of fabrication can lead to different contents of SiH2 and (SiH2)n. The uniformity of the thin film with a big F is bad. In this case, there is great difference between the thickness measured by the SurfCom408A surface profile apparatus and the thickness obtained by fitting the fringes; and the hydrogen contents of a-Si:H films obtained by means of the wagging mode and the stretching modes are different, too. But the fabrication of the MWECR CVD assisted by CAT CVD can effectively restrain the formation of SiH2 and (SiH2)n.
文摘In the present work, the effects of chemical compositions on the hydrogen blistering and hydrogen induced cracking of A350LF2 steel with different S contents were studied. Four types of A350LF2 steels were evaluated by immersing samples in H2S-saturated NACE solution. The hydrogen blistering, crack length rate(CLR), crack thickness rate(CTR) and crack sensitivity rate(CSR) were evaluated. The results show that there are many hydrogen blisters on the sample surface with S content of 0.021%, a few on the sample surface with S content of 0.019% and 0.012% and no one on the surface with S content of 0.002%. There were 12, 2 and 1 strips of cracks of longer than 0.3 mm on the evaluated cross sections with S content of 0.021%, 0.019% and 0.012%, respectively. There was no any crack in the sample with 0.002% S. The corrosion rate was also evaluated. The S content has no obvious influence on the corrosion rate.
基金Projects(51474245,51571214)supported by the National Natural Science Foundation of ChinaProjects(2015GK3004,2015JC3006)supported by the Science and Technology Project of Hunan Province,ChinaProject(P2014-07)supported by the Open Fund of State Key Laboratory of Materials Processing and Die&Mould Technology,China
文摘The hydrogenation reaction of electrolyzed titanium, as the first step during hydrogenation-dehydrogenation for the preparation of titanium powder, was studied. The titanium hydride was prepared through the reaction between electrolyzed titanium and hydrogen at different hydrogenation temperatures and different time. The evolutions of hydrogen and oxygen contents, density, hardness and phase composition before and after hydrogenation were characterized under different hydrogenation conditions. The results show that the main phases of titanium hydride were TiHl.924, TiH1.971 and TiH2. Increasing the hydrogenation temperature could not enhance the hydrogen content but increase the oxygen content. The effect of the hydrogenation time on the hydrogen content was not obvious. The optimal parameters of the hydrogenation process were obtained: beating at 400℃ and holding for 2 h, by which the hydrogen content of 3.63% and oxygen content of 0.18% (mass fraction) can be obtained. In addition, the microstructure, orientations and tissues of electrolyzed titanium and titanium hydride were detected.