期刊文献+
共找到116篇文章
< 1 2 6 >
每页显示 20 50 100
NUMERICAL SIMULATION EXPERIMENTS BY NESTING HYDROLOGY MODEL DHSVM WITH REGIONAL CLIMATE MODEL RegCM2/CHINA 被引量:1
1
作者 王守荣 黄荣辉 +3 位作者 丁一汇 L.R.LEUNG M.S.WIGMOSTA L.W.VAIL 《Acta meteorologica Sinica》 SCIE 2002年第4期509-518,共10页
Based on improvement of a distributed hydrology-soil-vegetation model (DHSVM for short) and its application to North China,a nested regional climatic-hydrologic model system is developed by connecting DHSVM with RegCM... Based on improvement of a distributed hydrology-soil-vegetation model (DHSVM for short) and its application to North China,a nested regional climatic-hydrologic model system is developed by connecting DHSVM with RegCM2/China.The simulated climate scenarios,including control and 2×CO_2 outputs,are downscaled to 8 stations in Luanhe River and Sanggan River Basins to drive the hydrology model.According to simulation results,under double CO_2 scenarios,annual mean temperature and evapotranspiration will increase 2.8C and 29 mm,respectively; precipitation also increase but with different value for each basin,6 mm for Luanhe River Basin while 46 mm for Sanggan River Basin;runoff change for the two basins is different too,27 mm decrease for Luanhe River Basin while 26 mm increase for Sanggan River Basin.As a result,the runoff in future for Luanhe River Basin and Sanggan River Basin will be 74 mm and 71 mm, respectively,which is approximately a quarter of annual mean runoff(284 mm)of the whole country.Total streamflow for the two basins will decrease about 2.5×10~8m^3.All these indicate that the warm and dry trend will continue in the two river basins under double CO_2 scenarios.The nested model system,with both climatic and hydrologic prediction ability,could also be applied to other basins in China by parameter adjustment. 展开更多
关键词 regional climate model hydrology model nested simulation experiment prediction analysis
原文传递
IMPROVEMENTS OF A DISTRIBUTED HYDROLOGY MODEL DHSVM AND ITS CLIMATOLOGICAL-HYDROLOGICAL OFF-LINE SIMULATIONAL EXPERIMENTS
2
作者 王守荣 黄荣辉 +6 位作者 丁一汇 LEUNG L.R. WIGMOSTA M.S. VAIL L.W. 《Acta meteorologica Sinica》 SCIE 2002年第3期374-387,共14页
The advanced distributed hydrology-soil-vegetation model DHSVM,developed by Wigmosta et al.(1994)is introduced from US Pacific Northwest National Laboratory.To apply DHSVM in China for the first time some improvements... The advanced distributed hydrology-soil-vegetation model DHSVM,developed by Wigmosta et al.(1994)is introduced from US Pacific Northwest National Laboratory.To apply DHSVM in China for the first time some improvements have been made in terms of the basin characteristics: 1)to change evapotranspiration model,using the improved Penman-Monteith approach in place of the original one;2)to change the model structure,inserting datasets from 4 stations to grid cells for each river basin,instead of datasets from one or two stations;3)to develop new hydrology, vegetation and soil parameterization schemes for improving the simulated results,with focus on calculation and adjustment of 11 parameters,such as soil porosity (?),field capacity θ_(fc),leaf area index LAI,stochastic resistance γ_s,among the total 33 parameters.Then the improved DHSVM is driven by observed datasets for Luanhe River Basin and Sanggan River Basin,respectively.The simulated evapotranspiration(ET),runoff,snow water equivalent,water table,soil moisture and percolation are then gained as DHSVM outputs.The simulated ET shows that the highest peak appears in May or June instead of July or August.This is consistent with the real situations, owing to the improvement of ET model.The simulated runoff process and flood peak are quite consistent with the observed ones.The model efficiency values for Luanhe River and Sanggan River Basins are 0.89 and 0.82,respectively,which shows high simulating ability of the model system for both relatively humid and dry basins. 展开更多
关键词 improvements of hydrology model off-line simulation tests hydrologic modeling efficiency
原文传递
Comparative analysis of recent hydrological models and an attempt to generate new combined products for monitoring terrestrial water storage change
3
作者 Yang Lu Zhao Li +4 位作者 Qusen Chen Meilin He Ze Wang Jian Wang Weiping Jiang 《Geodesy and Geodynamics》 EI CSCD 2024年第6期616-626,共11页
Hydrological models are crucial for characterizing large-scale water quantity variations and correcting GNSS reference station vertical displacements.We evaluated the robustness of multiple models,such as the Global L... Hydrological models are crucial for characterizing large-scale water quantity variations and correcting GNSS reference station vertical displacements.We evaluated the robustness of multiple models,such as the Global Land Data Assimilation System (GLDAS),the Famine Early Warning System Network Land Data Assimilation System (FLDAS),the National Centers for Environmental Prediction (NCEP),and the WaterGAP Global Hydrology Model (WGHM).Inter-model and outer comparisons with Global Positioning System (GPS) coordinate time series,satellite gravity field Mascon solutions,and Global Precipitation Climatology Centre (GPCC) guide our assessment.Results confirm WGHM's 26% greater effectiveness in correcting nonlinear variations in GPS height time series compared to NCEP.In the Amazon River Basin,a 5-month lag between FLDAS,GLDAS,and satellite gravity results is observed.In eastern Asia and Australia,NCEP's Terrestrial Water Storage Changes (TWSC)-derived surface displacements correlate differently with precipitation compared to other models.Three combined hydrological models (H-VCE,H-EWM,and H-CVM) utilizing Variance Component Estimation (VCE),Entropy Weight Method (EWM),and Coefficient of Variation Method (CVM) are formulated.Correcting nonlinear variations with combined models enhances global GPS height scatter by 15%-17%.Correlation with precipitation increases by 25%-30%,and with satellite gravity,rises from 0.2 to 0.8 at maximum.The combined model eliminates time lag in the Amazon Basin TWSC analysis,exhibiting a four times higher signal-to-noise ratio than single models.H-VCE demonstrates the highest accuracy.In summary,the combined hydrological model minimizes discrepancies among individual models,significantly improving accuracy for monitoring large-scale TWSC. 展开更多
关键词 Hydrological model Variance component estimation GPS GPCC Satellite gravity field Mascon Terrestrial water storage changes Signal-to-noise ratio
下载PDF
Integrated Hydrological Modeling of the Godavari River Basin in Maharashtra Using the SWAT Model: Streamflow Simulation and Analysis
4
作者 Pallavi Saraf Dattatray Gangaram Regulwar 《Journal of Water Resource and Protection》 CAS 2024年第1期17-26,共10页
Hydrological modeling plays a crucial role in efficiently managing water resources and understanding the hydrologic behavior of watersheds. This study aims to simulate daily streamflow in the Godavari River Basin in M... Hydrological modeling plays a crucial role in efficiently managing water resources and understanding the hydrologic behavior of watersheds. This study aims to simulate daily streamflow in the Godavari River Basin in Maharashtra using the Soil and Water Assessment Tool (SWAT). SWAT is a process-based hydrological model used to predict water balance components, sediment levels, and nutrient contamination. In this research, we used integrated remote sensing and GIS data, including Digital Elevation Models (DEM), land use and land cover (LULC) maps, soil maps, and observed precipitation and temperature data, as input for developing the SWAT model to assess surface runoff in this large river basin. The Godavari River Basin under study was divided into 25 sub-basins, comprising 151 hydrological response units categorized by unique land cover, soil, and slope characteristics using the SWAT model. The model was calibrated and validated against observed runoff data for two time periods: 2003-2006 and 2007-2010 respectively. Model performance was assessed using the Nash-Sutcliffe efficiency (NSE) and the coefficient of determination (R2). The results show the effectiveness of the SWAT2012 model, with R2 value of 0.84 during calibration and 0.86 during validation. NSE values also ranged from 0.84 during calibration to 0.85 during validation. These findings enhance our understanding of surface runoff dynamics in the Godavari River Basin under study and highlight the suit-ability of the SWAT model for this region. 展开更多
关键词 Soil and Water Assessment Tool (SWAT) Streamflow Hydrological modeling RAINFALL RUNOFF
下载PDF
Multi-Model Approach for Assessing the Influence of Calibration Criteria on the Water Balance in Ouémé Basin
5
作者 Aymar Yaovi Bossa Mahutin Aristide Oluwatobi Kpossou +1 位作者 Jean Hounkpè Félicien Djigbo Badou 《Journal of Water Resource and Protection》 CAS 2024年第3期207-218,共12页
Hydrological models are very useful tools for evaluating water resources, and the hydroclimatic hazards associated with the water cycle. However, their calibration and validation require the use of performance criteri... Hydrological models are very useful tools for evaluating water resources, and the hydroclimatic hazards associated with the water cycle. However, their calibration and validation require the use of performance criteria which choice is not straightforward. This paper aims to evaluate the influence of the performance criteria on water balance components and water extremes using two global rainfall-runoff models (HBV and GR4J) over the Ouémé watershed at the Bonou and Savè outlets. Three (3) Efficacy criteria (Nash, coefficient of determination, and KGE) were considered for calibration and validation. The results show that the Nash criterion provides a good assessment of the simulation of the different parts of the hydrograph. KGE is better for simulating peak flows and water balance elements than other efficiency criteria. This study could serve as a basis for the choice of performance criteria in hydrological modelling. 展开更多
关键词 Hydrological modelling Performance Criteria Water Balance Ouémé Basin
下载PDF
Analysis of seasonal position variation for selected GNSS sites in Poland using loading modelling and GRACE data 被引量:1
6
作者 Marcin Rajner Tomasz Liwosz 《Geodesy and Geodynamics》 2017年第4期253-259,共7页
In this study we compared weekly GNSS position time series with modelled values of crustal deformations on the basis of Gravity Recovery and Climate Experiment (GRACE) data. The Global Navigation Satellite Systems ... In this study we compared weekly GNSS position time series with modelled values of crustal deformations on the basis of Gravity Recovery and Climate Experiment (GRACE) data. The Global Navigation Satellite Systems (GNSS) time series were taken from homogeneously reprocessed global network solutions within the International GNSS Service (IGS) Reprucessing 1 project and from regional solutions performed by Warsaw University of Technology (WUT) European Permanent Network (EPN) Local Analysis Center (LAC) within the EPN reprocessing project. Eight GNSS sites from the territory of Poland with observation timespans between 2.5 and 13 years were selected for this study. The Total Water Equivalent (TWE) estimation from GRACE data was used to compute deformations using the Green's function formalism. High frequency components were removed from GRACE data to avoid aliasing problems. Since GRACE observes mainly the mass transport in continental storage of water, we also compared GRACE deformations and the GNSS position time series, with the deformations computed on the basis of a hydrosphere model. We used the output of Water GAP Hydrology Model (WGHM) to compute deformations in the same manner as for the GRACE data. The WGHM gave slightly larger amplitudes than GNSS and GRACE. The atmospheric non-tidal loading effect was removed from GNSS position time series before comparing them with modelled deformations. The results confirmed that the major part of observed seasonal variations for GNSS vertical components can be attributed to the hy- drosphere loading. The results for these components agree very well both in the amplitude and phase. The decrease in standard deviation of the residual GNSS position time series for vertical components corrected for the hydrosphere loading reached maximally 36% and occurred for all but one stations for both global and regional solutions. For horizontal components the amplitudes are about three times smaller than for vertical components therefore the comparison is much more complicated and the conclusions are ambiguous. 展开更多
关键词 Mass transport Loading GRACE hydrology model GNSS time series
下载PDF
Applications of a Surface Runoff Model with Horton and Dunne Runoff for VIC 被引量:19
7
作者 谢正辉 苏凤阁 +3 位作者 曾庆存 郭裕福 梁旭 郝振纯 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2003年第2期165-172,共8页
Surface runoff is mainly generated by two mechanisms, infiltration excess (Horton) runoff and saturation excess (Dunne) runoff; and the spatial variability of soil properties, antecedent soil moisture, topography, and... Surface runoff is mainly generated by two mechanisms, infiltration excess (Horton) runoff and saturation excess (Dunne) runoff; and the spatial variability of soil properties, antecedent soil moisture, topography, and rainfall will result in different surface runoff generation mechanisms. For a large area (e.g., a model grid size of a regional climate model or a general circulation model), these runoff generation mechanisms are commonly present at different portions of a grid cell simultaneously. Missing one of the two major runoff generation mechanisms and failing to consider spatial soil variability can result in significant under/over estimation of surface runoff which can directly introduce large errors in soil moisture states over each model grid cell. Therefore, proper modeling of surface runoff is essential to a reasonable representation of feedbacks in a land-atmosphere system. This paper presents a new surface runoff parameterization with the Philip infiltration formulation that dynamically represents both the Horton and Dunne runoff generation mechanisms within a model grid cell. The parameterization takes into account the effects of soil heterogeneity on Horton and Dunne runoff. The new parameterization is implemented into the current version of the hydrologically based Variable Infiltration Capacity (VIC) land surface model and tested over one watershed in Pennsylvania, USA and over the Shiguanhe Basin in the Huaihe Watershed in China. Results show that the new parameterization plays a very important role in partitioning the water budget between surface runoff and soil moisture in the atmosphere-land coupling system, and has potential applications on large hydrological simulations and land-atmospheric interactions. It is further found that the Horton runoff mechanism should be considered within the context of subgrid-scale spatial variability of soil properties and precipitation. 展开更多
关键词 Horton runoff Dunne runoff subgrid-scale spatial variability soil heterogeneity land surface model hydrologic model soil moisture
下载PDF
Modelling Hydrological Consequences of Climate Change—Progress and Challenges 被引量:14
8
作者 Chong-yu XU Elin WIDEN Sven HALLDIN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2005年第6期789-797,共9页
The simulation of hydrological consequences of climate change has received increasing attention from the hydrology and land-surface modelling communities. There have been many studies of climate-change effects on hydr... The simulation of hydrological consequences of climate change has received increasing attention from the hydrology and land-surface modelling communities. There have been many studies of climate-change effects on hydrology and water resources which usually consist of three steps: (1) use of general circulation models (GCMs) to provide future global climate scenarios under the effect of increasing greenhouse gases, (2) use of downscaling techniques (both nested regional climate models, RCMs, and statistical methods) for "downscaling" the GCM output to the scales compatible with hydrological models, and (3) use of hydrologic models to simulate the effects of climate change on hydrological regimes at various scales. Great progress has been achieved in all three steps during the past few years, however, large uncertainties still exist in every stage of such study. This paper first reviews the present achievements in this field and then discusses the challenges for future studies of the hydrological impacts of climate change. 展开更多
关键词 climate change water-resources assessment water balance regional scale hydrological models REVIEW
下载PDF
Simulations of a Hydrological Model as Coupled to a Regional Climate Model 被引量:8
9
作者 曾新民 赵鸣 +4 位作者 苏炳凯 汤剑平 郑益群 桂祁军 周祖刚 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2003年第2期227-236,共10页
Considering a detailed hydrologic model in the land surface scheme helps to improve the simulation of regional hydro-climatology. A hydrologic model, which includes spatial heterogeneities in precipitation and infiltr... Considering a detailed hydrologic model in the land surface scheme helps to improve the simulation of regional hydro-climatology. A hydrologic model, which includes spatial heterogeneities in precipitation and infiltration, is constructed and incorporated into the land surface scheme BATS. Via the coupled-model (i.e., a regional climate model) simulations, the following major conclusions are obtained: the simulation of surface hydrology is sensitive to the inclusion of heterogeneities in precipitation and infiltration; the runoff ratio is increased after considering the infiltration heterogeneity, a result which is more consistent with the observations of surface moisture balance over humid areas; the introduction of the parameterization of infiltration heterogeneity can have a greater influence on the regional hydro-climatology than the precipitation heterogeneity; and the consideration of the impermeable fraction for the region reveals some features that are closer to the trend of aridification over northern China. 展开更多
关键词 hydrological model spatial heterogeneity moisture balance regional climate sensitivity test
下载PDF
A simulation-based two-stage interval-stochastic programming model for water resources management in Kaidu-Konqi watershed,China 被引量:6
10
作者 Yue HUANG Xi CHEN +2 位作者 YongPing LI AnMing BAO YongGang MA 《Journal of Arid Land》 SCIE 2012年第4期390-398,共9页
This study presented a simulation-based two-stage interval-stochastic programming (STIP) model to support water resources management in the Kaidu-Konqi watershed in Northwest China. The modeling system coupled a dis... This study presented a simulation-based two-stage interval-stochastic programming (STIP) model to support water resources management in the Kaidu-Konqi watershed in Northwest China. The modeling system coupled a distributed hydrological model with an interval two-stage stochastic programing (ITSP). The distributed hydrological model was used for establishing a rainfall-runoff forecast system, while random parameters were pro- vided by the statistical analysis of simulation outcomes water resources management planning in Kaidu-Konqi The developed STIP model was applied to a real case of watershed, where three scenarios with different water re- sources management policies were analyzed. The results indicated that water shortage mainly occurred in agri- culture, ecology and forestry sectors. In comparison, the water demand from municipality, industry and stock- breeding sectors can be satisfied due to their lower consumptions and higher economic values. Different policies for ecological water allocation can result in varied system benefits, and can help to identify desired water allocation plans with a maximum economic benefit and a minimum risk of system disruption under uncertainty. 展开更多
关键词 OPTIMIZATION two-stage stochastic programming UNCERTAINTY water resources management hydrological model Kaidu-Konqi watershed Tarim River Basin
下载PDF
Application of Developed Grid-GA Distributed Hydrologic Model in Semi-Humid and Semi-Arid Basin 被引量:5
11
作者 王莉莉 李致家 包红军 《Transactions of Tianjin University》 EI CAS 2010年第3期209-215,共7页
A grid and Green-Ampt based (Grid-GA)distributed hydrologic physical model was developed for flood simulation and forecasting in semi-humid and semi-arid basin. Based on topographical information of each grid cell e... A grid and Green-Ampt based (Grid-GA)distributed hydrologic physical model was developed for flood simulation and forecasting in semi-humid and semi-arid basin. Based on topographical information of each grid cell extracted fi'om the digital elevation model (DEM) and Green-Ampt infiltration method, the Grid-GA model takes into consideration the redistribution of water content, and consists of vegetation and root interception, evapotranspiration, runoff generation via the excess infiltration mechanism, runoff concentration, and flow routing. The downslope redis- tribution of soil moisture is explicitly calculated on a grid basis, and water exchange among grids within runoff routing along the river drainage networks is taken into consideration. The proposed model and Xin'anjiang model were ap- plied to the upper Lushi basin in the Luohe River, a tributary of the Yellow River, with an area of 4 716 km2 for flood simulation. Results show that both models perform well in flood simulation and can be used for flood forecasting in semi-humid and semi-arid region. 展开更多
关键词 distributed hydrologic model digital elevation model (DEM) Green-Ampt REDISTRIBUTION excess infil- tration mechanism semi-humid and semi-arid basin
下载PDF
Discretization Approach in Integrated Hydrologic Model for Surface and Groundwater Interaction 被引量:3
12
作者 ZHANG Jing Mark A ROSS Jeffery GEURINK 《Chinese Geographical Science》 SCIE CSCD 2012年第6期659-672,共14页
The commonly used discretization approaches for distributed hydrological models can be broadly categorized into four types,based on the nature of the discrete components:Regular Mesh,Triangular Irregular Networks(TINs... The commonly used discretization approaches for distributed hydrological models can be broadly categorized into four types,based on the nature of the discrete components:Regular Mesh,Triangular Irregular Networks(TINs),Representative Elementary Watershed(REWs) and Hydrologic Response Units(HRUs).In this paper,a new discretization approach for landforms that have similar hydrologic properties is developed and discussed here for the Integrated Hydrologic Model(IHM),a combining simulation of surface and groundwater processes,accounting for the interaction between the systems.The approach used in the IHM is to disaggregate basin parameters into discrete landforms that have similar hydrologic properties.These landforms may be impervious areas,related areas,areas with high or low clay or organic fractions,areas with significantly different depths-to-water-table,and areas with different types of land cover or different land uses.Incorporating discrete landforms within basins allows significant distributed parameter analysis,but requires an efficient computational structure.The IHM integration represents a new approach interpreting fluxes across the model interface and storages near the interface for transfer to the appropriate model component,accounting for the disparate discretization while rigidly maintaining mass conservation.The discretization approaches employed in IHM will provide some ideas and insights which are helpful to those researchers who have been working on the integrated models for surface-groundwater interaction. 展开更多
关键词 DISCRETIZATION distributed hydrological model Integrated Hydrologic model(IHM) INTERACTION
下载PDF
Hydrological characteristics and changes in the Nu-Salween River basin revealed with model-based reconstructed data 被引量:3
13
作者 YANG Fan LU Hui +6 位作者 YANG Kun HUANG Guang-wei LI Yi-shan WANG Wei LU Ping TIAN Fu-qiang HUANG Yu-gang 《Journal of Mountain Science》 SCIE CSCD 2021年第11期2982-3002,共21页
The Nu-Salween River(NSR),the longest free-flow river in Southeast Asia,plays an irreplaceable role in social development and ecological protection.The lower NSR region is particularly valuable as it is inhabited by a... The Nu-Salween River(NSR),the longest free-flow river in Southeast Asia,plays an irreplaceable role in social development and ecological protection.The lower NSR region is particularly valuable as it is inhabited by approximately 6.7 million people.The basin has limited hydraulic conservancy infrastructure and insufficient ability to cope with climate change risks.Studying the hydrological characteristics and changes in the basin provides the scientific basis for rational protection and development of the basin.However,owing to the limitation of observation data,previous studies have focused on the local area and neglected the study of the lower reaches,which is not enough to reflect the spatial characteristics of the entire basin.In this study,the ECMWF 5th generation reanalysis data(ERA5)and Multi-Source Weighted-Ensemble Precipitation(MSWEP)were applied to develop a geomorphology-based hydrological model(GBHM)for reconstructing hydrological datasets(i.e.GBHM-ERA5 and GBHM-MSWEP).The reconstructed datasets covering the complete basin were verified against the gauge observation and compared with other commonly used streamflow products,including Global Flood Awareness System v2.1,GloFAS-Reanalysis dataset v3.0,and linear optimal runoff aggregate(LORA).The comparison results revealed that GBHM-ERA5 is significantly better than the other four datasets and provides a good reproduction of the hydrological characteristics and trends of the NSR.Detailed analysis of GBHM-ERA5 revealed that:(1)A multi-year mean surface runoff represented 39%of precipitation over the basin during 1980–2018,which had low surface runoff in the upstream,while areas around the Three Parallel Rivers Area and the estuary had abundant surface runoff.(2)The surface runoff and discharge coefficient of variations in spring were larger than those in other seasons,and the inter-annual variation in the downstream was smaller than that in the upstream and midstream regions.(3)More than 70%of the basin areas showed a decreasing trend in the surface runoff,except for parts of Nagqu,south of Shan State in Myanmar,and Thailand,where surface runoff has an increasing trend.(4)The downstream discharge has dropped significantly at a rate of approximately 680 million cubic metresper year,and the decline rate is greater than that of upstream and midstream,especially in summer.This study provides a data basis for subsequent studies in the NSR basin and further elucidates the impact of climate change on the basin,which is beneficial to river planning and promotes international cooperation on the water-and eco-security of the basin. 展开更多
关键词 Nu-Salween River Distributed hydrologic model ERA5 Surface runoff DISCHARGE Climate Change
下载PDF
Effect of calibration data series length on performance and optimal parameters of hydrological model 被引量:3
14
作者 Chuan-zhe LI Hao WANG +3 位作者 Jia LIU Deng-hua YAN Fu-liang YU Lu ZHANG 《Water Science and Engineering》 EI CAS 2010年第4期378-393,共16页
In order to assess the effects of calibration data series length on the performance and optimal parameter values of a hydrological model in ungauged or data-limited catchments (data are non-continuous and fragmental ... In order to assess the effects of calibration data series length on the performance and optimal parameter values of a hydrological model in ungauged or data-limited catchments (data are non-continuous and fragmental in some catchments), we used non-continuous calibration periods for more independent streamflow data for SIMHYD (simple hydrology) model calibration. Nash-Sutcliffe efficiency and percentage water balance error were used as performance measures. The particle swarm optimization (PSO) method was used to calibrate the rainfall-runoff models. Different lengths of data series ranging from one year to ten years, randomly sampled, were used to study the impact of calibration data series length. Fifty-five relatively unimpaired catchments located all over Australia with daily precipitation, potential evapotranspiration, and streamflow data were tested to obtain more general conclusions. The results show that longer calibration data series do not necessarily result in better model performance. In general, eight years of data are sufficient to obtain steady estimates of model performance and parameters for the SIMHYD model. It is also shown that most humid catchments require fewer calibration data to obtain a good performance and stable parameter values. The model performs better in humid and semi-humid catchments than in arid catchments. Our results may have useful and interesting implications for the efficiency of using limited observation data for hydrological model calibration in different climates. 展开更多
关键词 calibration data series length model performance optimal parameter hydrological model data-limited catchment
下载PDF
Modelling the Effects of Land-use Change on Runoff and Sediment Yield in the Weicheng River Watershed, Southwest China 被引量:3
15
作者 ZHANG Xiao-ke FAN Ji-hui CHENG Gen-wei 《Journal of Mountain Science》 SCIE CSCD 2015年第2期434-445,共12页
As a major sediment area in the upper Yangtze River, Jialing River basin experienced substantial land-use changes, many water conservancy projects were constructed from the 1980 s onward to promote water and soil cons... As a major sediment area in the upper Yangtze River, Jialing River basin experienced substantial land-use changes, many water conservancy projects were constructed from the 1980 s onward to promote water and soil conservation. The water and sediment yield at the watershed outlet was strongly affected by these water conservation works, including ponds and reservoirs, which should be considered in the modelling. In this study, based on the observed data of the Weicheng River catchment, the relationships between precipitation, runoff, vegetation, topography and sediment yield were analyzed, a distributed runoff and sediment yield model(WSTD-SED) was developed, and the hydrological processes of different land-use scenarios were simulated by using the model. The main results are summarized as follows: 1) there is an alternating characteristic in river channels and reservoirs in the Jialing River hilly area, with scour occurring in wet years and deposit occurring in dry years. 2) Most of the sediment deposited in river channels and reservoirs is carried off by the largest flood in the year. 3) The model yielded plausible results for runoff and sediment yield dynamics without the need of calibration, and the WSTD-SED model could be usedto obtain qualitative estimates on the effects of land use change scenarios. 4) The modelling results suggest that a 10% increase in cropland(dry land) reforestation results in a 0.7% decrease in runoff and 1.5% decrease in sediment yield. 展开更多
关键词 Land-use change Hydrological modelling Reforestation scenario Runoff and sediment yield
下载PDF
Integrated hydrologic modeling in the inland Heihe River Basin, Northwest China 被引量:2
16
作者 YanBo Zhao ZhuoTong Nan +3 位作者 Hao Chen Xin Li Ramasamy Jayakumar WenJun Yu 《Research in Cold and Arid Regions》 CSCD 2013年第1期35-50,共16页
As a typical inland river basin in arid Northwest China, having distinct hydrological characteristics and severe and repre- sentative water problems, the Heihe River Basin (HRB) has attracted considerable research i... As a typical inland river basin in arid Northwest China, having distinct hydrological characteristics and severe and repre- sentative water problems, the Heihe River Basin (HRB) has attracted considerable research interest worldwide and in 2007 became a pilot basin of the G-WADI network of UNESCO/1HR Many research programs have been conducted in the HRB since the 1980s, producing rich knowledge and data about the basin, which will be very helpful to further studies. This paper reviews research efforts related to hydrologic modeling and ongoing model integration studies performed in the HRB in re- cent years. Recently, an observation network covering the whole area and a Web-based data-sharing system have been estab- lished which can greatly improve data acquisition. This paper tabulates modeling activities in past years, including model ap- plications, model modifications and enhancements, and model coupling efforts. Also described is a preliminary modeling in- tegration tool designed to quickly build new models, which has been developed for hydrologic modeling purposes. Challeng- es and issues confronted in current studies are discussed, pointing toward key research directions in the future. 展开更多
关键词 hydrologic modeling water resources management Heihe River Basin
下载PDF
Identification of Suitable Hydrologic Response Unit Thresholds for Soil and Water Assessment Tool Streamflow Modelling 被引量:1
17
作者 JIANG Liupeng ZHU Jinghai +6 位作者 CHEN Wei HU Yuanman YAO Jing YU Shuai JIA Guangliang HE Xingyuan WANG Anzhi 《Chinese Geographical Science》 SCIE CSCD 2021年第4期696-710,共15页
Use of a non-zero hydrologic response unit(HRU) threshold is an effective way of reducing unmanageable HRU numbers and simplifying computational cost in the Soil and Water Assessment Tool(SWAT) hydrologic modelling. H... Use of a non-zero hydrologic response unit(HRU) threshold is an effective way of reducing unmanageable HRU numbers and simplifying computational cost in the Soil and Water Assessment Tool(SWAT) hydrologic modelling. However, being less representative of watershed heterogeneity and increasing the level of model output uncertainty are inevitable when minor HRU combinations are disproportionately eliminated. This study examined 20 scenarios by running the model with various HRU threshold settings to understand the mechanism of HRU threshold effects on watershed representation as well as streamflow predictions and identify the appropriate HRU thresholds. Findings show that HRU numbers decrease sharply with increasing HRU thresholds. Among different HRU threshold scenarios, the composition of land-use, soil, and slope all contribute to notable variations which are directly related to the model input parameters and consequently affect the streamflow predictions. Results indicate that saturated hydraulic conductivity, average slope of the HRU, and curve number are the three key factors affecting stream discharge when changing the HRU thresholds. It is also found that HRU thresholds have little effect on monthly model performance, while evaluation statistics for daily discharges are more sensitive than monthly results. For daily streamflow predictions, thresholds of 5%/5%/5%(land-use/soil/slope) are the optimum HRU threshold level for the watershed to allow full consideration of model accuracy and efficiency in the present work. Besides, the results provide strategies for selecting appropriate HRU thresholds based on the modelling goal. 展开更多
关键词 hydrologic response unit hydrological model streamflow prediction upper Hunhe River watershed watershed representation uncertainty
下载PDF
Hydrological Response to Environment Change in Himalayan Watersheds: Assessment from Integrated Modeling Approach 被引量:1
18
作者 Zulfiqar AHMAD Arshad ASHRAF +1 位作者 Muhammad ZAHEER Humaira BASHIR 《Journal of Mountain Science》 SCIE CSCD 2015年第4期972-982,共11页
Land use changes such as deforestation,increase in cropping or grazing areas and built-up land, likely modify the water balance and land surface behavior in the Himalayan watersheds.An integrated approach of hydrologi... Land use changes such as deforestation,increase in cropping or grazing areas and built-up land, likely modify the water balance and land surface behavior in the Himalayan watersheds.An integrated approach of hydrological and hydraulic modeling was adopted for comparative analysis of hydrological pattern in three Himalayan watersheds i.e.Khanpur,Rawal and Simly situated in the Northern territory of Pakistan.The rainfall-runoff model SWAT- Soil and water assessment tool and Hydro CAD were calibrated for the selected watersheds.The correlation analysis of the precipitation data of two climate stations i.e.Murree and Islamabad, with the discharge data of three rivers was utilized to select best suitable input precipitation data for Hydro CAD rainfall-runoff modeling.The peak flood hydrograph were generated using Hydro CAD runoff to optimize the basin parameters like CN, runoff volume, peak flows of the three watersheds.The hydrological response of the Rawal watershed was studied as a case study to different scenarios of land use change using SWAT model.The scenario of high deforestation indicated a decline of about 6.3% in the groundwater recharge tostream while increase of 7.1% in the surface runoff has been observed under the scenario of growth in urbanization in the recent decades.The integrated modeling approach proved helpful in investigating the hydrological behavior under changing environment at watershed level in the Himalayan region. 展开更多
关键词 Hydrological modeling DEFORESTATION Soan River Simly Khanpur watershed Land use
下载PDF
Optimization of the Hydrological Model Using Multi-objective Particle Swarm Optimization Algorithm 被引量:2
19
作者 黄晓敏 雷晓辉 +1 位作者 王宇晖 朱连勇 《Journal of Donghua University(English Edition)》 EI CAS 2011年第5期519-522,共4页
An application of multi-objective particle swarm optimization (MOPSO) algorithm for optimization of the hydrological model (HYMOD) is presented in this paper. MOPSO algorithm is used to find non-dominated solution... An application of multi-objective particle swarm optimization (MOPSO) algorithm for optimization of the hydrological model (HYMOD) is presented in this paper. MOPSO algorithm is used to find non-dominated solutions with two objectives: high flow Nash-Sutcliffe efficiency and low flow Nash- Sutcliffe efficiency. The two sets' coverage rate and Pareto front spacing metric are two criterions to analyze the performance of the algorithms. MOPSO algorithm surpasses multi-objective shuffled complex evolution metcopolis (MOSCEM_UA) algorithr~, in terms of the two sets' coverage rate. But when we come to Pareto front spacing rate, the non-dominated solutions of MOSCEM_ UA algorithm are better-distributed than that of MOPSO algorithm when the iteration is set to 40 000. In addition, there are obvious conflicts between the two objectives. But a compromise solution can be acquired by adopting the MOPSO algorithm. 展开更多
关键词 multi-objective particle swarm optimization (MOPSO) hydrological model (HYMOD) multi-objective optimization
下载PDF
Model based decision support system for land use changes and socio-economic assessments 被引量:1
20
作者 YU Yang CHEN Xi +4 位作者 Philipp HUTTNER Marie HINNENTHAL Andreas BRIEDEN SUN Lingxiao Markus DISSE 《Journal of Arid Land》 SCIE CSCD 2018年第2期169-182,共14页
Hydrological models are often linked with other models in cognate sciences to understand the interactions among climate, earth, water, ecosystem, and human society. This paper presents the development and implementati... Hydrological models are often linked with other models in cognate sciences to understand the interactions among climate, earth, water, ecosystem, and human society. This paper presents the development and implementation of a decision support system(DSS) that links the outputs of hydrological models with real-time decision making on social-economic assessments and land use management. Discharge and glacier geometry changes were simulated with hydrological model, water availability in semiarid environments. Irrigation and ecological water were simulated by a new commercial software MIKE HYDRO. Groundwater was simulated by MODFLOW. All the outputs of theses hydrological models were taken as inputs into the DSS in three types of links: regression equations, stationary data inputs, or dynamic data inputs as the models running parallel in the simulation periods. The DSS integrates the hydrological data, geographic data, social and economic statistical data, and establishes the relationships with equations, conditional statements and fuzzy logics. The programming is realized in C++. The DSS has four remarkable features:(1) editable land use maps to assist decision-making;(2) conjunctive use of surface and groundwater resources;(3) interactions among water, earth, ecosystem, and humans; and(4) links with hydrological models. The overall goal of the DSS is to combine the outputs of scientific models, knowledge of experts, and perspectives of stakeholders, into a computer-based system, which allows sustainability impact assessment within regional planning; and to understand ecosystem services and integrate them into land and water management. 展开更多
关键词 decision support system hydrological modeling ecosystem services land management socio-economic indicator Tarim River Basin
下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部