1 Introduction The Kangdian axis is an important polymetallic metallogenic belt in Southwest China,and it is also an area with a lot of hydrothermal uranium mineralization(Wang Hongjun,et al.,2009.The basic
Through the finite-element modeling. a quantitative analysis of paleogeothermal evolution after the main volcanic eruption at Cretaceous period for the Xiangshan uranium ore-field. East China. has been presented. Rese...Through the finite-element modeling. a quantitative analysis of paleogeothermal evolution after the main volcanic eruption at Cretaceous period for the Xiangshan uranium ore-field. East China. has been presented. Researches reveal that the energy from the volcanic lava could affect the geothermal field for only three million years after their eruption. and could not provide heat for the Xiangshan uranium ore-foming hydrothermal system because the time gap between the volcanic activities and the uranium mineralizations is longer than 40 million years. The evidences show that the heat energy for the ore-forming system came from anomalously high paleogeothermal gradient in the study area during the mineralization period.展开更多
The central Zhuguang Mountains in Hunan Province is located at the junction of the three provinces,namely Hunan,Jiangxi,and Guangdong,where the famous Lujing uranium ore field lies.The uranium deposits occurring in th...The central Zhuguang Mountains in Hunan Province is located at the junction of the three provinces,namely Hunan,Jiangxi,and Guangdong,where the famous Lujing uranium ore field lies.The uranium deposits occurring in this area are all granite-related and they can be divided into three types,namely endogranitic ones,perigranitic ones,and contact zone types.The endogranitic uranium deposits are mainly controlled by the structural alteration zones developing within granites,with fragmentation,hematitization,and alkali metasomatism as their main mineralization characteristics.The perigranitic uranium deposits are mainly produced in the carbonaceous,siliceous,and argillaceous composite layers of epimetamorphic rocks and are controlled by fractured zones formed due to interlayer compression.The contact zone type uranium deposits mainly occur in the contact parts between the granites and favorable horizons.They have developed in favorable sections where multiple sets of structures are combined and intersected.The main metallogenic regularities of uranium in the central Zhuguang Mountains are as follows.The basic conditions for the uranium mineralization in this area include the framework consisting of regional deep large faults and their associated multi-set multi-direction favorable metallogenic structures,multi-cycle and multi-stage uranium-rich rock masses,and uranium-rich folded basement.Meanwhile,the uranium deposits in this area are closely related to granites in terms of genesis and space and they are formed in different structural parts subject to the same metallization.Furthermore,based on the summary of the characteristics and regularities of uranium mineralization in this area,the controlling factors of different types of uranium deposits in the area were explored and six metallogenic target areas were predicted.All these will provide references for the exploration of uranium deposits in this area.展开更多
The No. 302 uranium deposit, located in Guangdong Province, is a typical granite-type uranium ore deposit. REE geochemical characteristics of the wall rocks, pitchblende, altered rocks, calcite and fluorite from this ...The No. 302 uranium deposit, located in Guangdong Province, is a typical granite-type uranium ore deposit. REE geochemical characteristics of the wall rocks, pitchblende, altered rocks, calcite and fluorite from this deposit have been systematically studied in this paper. The result showed that the alkali-metasomatic granites and other altered rocks have the same REE distribution patterns as Indosinian granites. It is indicated that the hydrothermal ore-forming solution had altered the Indosinian granites, and ore-forming materials may directly originate from the Indosinian granites. Calcite and fluorite of different stages are the products derived from the same source but different stages. The evolution and degassing of the mineralizing solution might induce LREE enrichment to varying degree. Mantle fluid and a large volume of mineralizer may be the crucial factors controlling uranium mineralization, and the hydrothermal solution with mineralizer played an important role in U transport and concentration. Meanwhile, the degassing of CO2 might promote U and REE precipitation.展开更多
The Qianjiadian uranium deposit is located in the Kailu Depression of Songliao Basin.It is a large-scale in-situ leachable uranium deposit of sandstone type and provides a typical case of the uranium deposits in the S...The Qianjiadian uranium deposit is located in the Kailu Depression of Songliao Basin.It is a large-scale in-situ leachable uranium deposit of sandstone type and provides a typical case of the uranium deposits in the Songliao Basin.Here we analyze the impact of oil and gas on reduction alteration,and factors including low grade mineralization.The Qianjiadian uranium deposit is characterized as a typical rolltype deposit with interlayers in oxidized zone.The occurrence of reductive low-permeability sandstone in uranium reservoirs controls the morphology of the uranium-rich orebody.We propose a metallogenic model involving multi-stage superposition characterized by“primary sediment enrichment-interlayer oxidation-superimposed transformation”.Our model would be helpful for formulating guidelines in the exploration for sandstone-type uranium deposits in the Songliao Basin.展开更多
Three uranium provinces are recognized in China, the Southeast China uranium province, the Northeast China-Inner Mongolia uranium province and the Northwest China (Xinjiang) uranium province. The latter two promise go...Three uranium provinces are recognized in China, the Southeast China uranium province, the Northeast China-Inner Mongolia uranium province and the Northwest China (Xinjiang) uranium province. The latter two promise good potential for uranium resources and are major exploration target areas in recent years. There are two major types of uranium deposits: the Phanerozoic hydrothermal type (vein type) and the Meso-Cenozoic sandstone type in different proportions in the three uranium provinces. The most important reason or prerequisite for the formation of these uranium provinces is that Precambrian uranium-enriched old basement or its broken parts (median massifs) exists or once existed in these regions, and underwent strong tectonomagmatic activation during Phanerozoic time. Uranium was mobilized from the old basement and migrated upwards to the upper structural level together with the acidic magma originating from anatexis and the primary fluids, which were then mixed with meteoric water and resulted in the formation of Phanerozoic hydrothermal uranium deposits under extensional tectonic environments. Erosion of uraniferous rocks and pre-existing uranium deposits during the Meso-Cenozoic brought about the removal of uranium into young sedimentary basins. When those basins were uplifted and slightly deformed by later tectonic activity, roll-type uranium deposits were formed as a result of redox in permeable sandstone strata.展开更多
The sandstone-hosted uranium deposits in the SW Songliao Basin differ from typical sandstone-hosted uranium deposits in terms of the geological features of the ore-deposits,including the geometry of the orebodies,mine...The sandstone-hosted uranium deposits in the SW Songliao Basin differ from typical sandstone-hosted uranium deposits in terms of the geological features of the ore-deposits,including the geometry of the orebodies,mineral assemblage and petrography.Detailed drill core and microscopic observations,scanning electron microscopy(SEM),electron microprobe analysis(EMPA),heavy mineral concentrates,and fluid inclusion studies of the Upper Cretaceous Yaojia Formation,i.e.,the uranium-bearing layer,were integrated to investigate the roles of hydrothermal fluids in the formation of these uranium deposits.We found that the kaolinite alteration is developed in the mineralized zones,but it is less common in the peripheral areas.The fluid inclusions are hydrothermal fluids with a medium-low temperature(67 to 179 ℃) and a high salinity(5.9 wt.% to 20.1 wt.%).According to the analyses,three kinds of hydrothermal fluids,i.e.,the acid fluid,the groundwater heated by the mafic magma,and the alkaline fluid rich in Ca^(2+) and CO_(3)^(2-),were identified.The fluids might have low U content,but they have participated in the formation of the uranium deposits successively.Kaolinite formed by the acid-hydrothermal fluid absorbed large amounts of uranium.Subsequently,the thermal energy from the hydrothermal fluids changed the intrastratal redox environment and increased the solubility of the uranium minerals in the fluid.The alkaline-hydrothermal fluid rich in Ca^(2+) and C0_(3)^(2-) facilitated the formation of stable Ca-U(Ⅵ)-CO_(3) complex,which led to the enrichment of soluble uranium in solution,and final precipitation as pitchblende,brannerite and Ti-bearing uranium minerals in the uranium ores.展开更多
基金supported by the China Nuclear Industry Geological Bureau Foundation (No.201637 and 201638)
文摘1 Introduction The Kangdian axis is an important polymetallic metallogenic belt in Southwest China,and it is also an area with a lot of hydrothermal uranium mineralization(Wang Hongjun,et al.,2009.The basic
文摘Through the finite-element modeling. a quantitative analysis of paleogeothermal evolution after the main volcanic eruption at Cretaceous period for the Xiangshan uranium ore-field. East China. has been presented. Researches reveal that the energy from the volcanic lava could affect the geothermal field for only three million years after their eruption. and could not provide heat for the Xiangshan uranium ore-foming hydrothermal system because the time gap between the volcanic activities and the uranium mineralizations is longer than 40 million years. The evidences show that the heat energy for the ore-forming system came from anomalously high paleogeothermal gradient in the study area during the mineralization period.
基金funded by the project titled Prospect Survey and Exploration Demonstration of Hardrock Mineral Resources such as Uranium and Thorium(12120115014101)initiated by the Tianjin Center of China Geological Survey.The data and achievements cited in this paper are mainly from relevant scientific research,geological survey,and mineral exploration projects undertaken by the No.302 Brigade of Hunan Nuclear Industry Geology Bureau in recent years.
文摘The central Zhuguang Mountains in Hunan Province is located at the junction of the three provinces,namely Hunan,Jiangxi,and Guangdong,where the famous Lujing uranium ore field lies.The uranium deposits occurring in this area are all granite-related and they can be divided into three types,namely endogranitic ones,perigranitic ones,and contact zone types.The endogranitic uranium deposits are mainly controlled by the structural alteration zones developing within granites,with fragmentation,hematitization,and alkali metasomatism as their main mineralization characteristics.The perigranitic uranium deposits are mainly produced in the carbonaceous,siliceous,and argillaceous composite layers of epimetamorphic rocks and are controlled by fractured zones formed due to interlayer compression.The contact zone type uranium deposits mainly occur in the contact parts between the granites and favorable horizons.They have developed in favorable sections where multiple sets of structures are combined and intersected.The main metallogenic regularities of uranium in the central Zhuguang Mountains are as follows.The basic conditions for the uranium mineralization in this area include the framework consisting of regional deep large faults and their associated multi-set multi-direction favorable metallogenic structures,multi-cycle and multi-stage uranium-rich rock masses,and uranium-rich folded basement.Meanwhile,the uranium deposits in this area are closely related to granites in terms of genesis and space and they are formed in different structural parts subject to the same metallization.Furthermore,based on the summary of the characteristics and regularities of uranium mineralization in this area,the controlling factors of different types of uranium deposits in the area were explored and six metallogenic target areas were predicted.All these will provide references for the exploration of uranium deposits in this area.
基金This work was funded jointly by the Important Research 0rientation Project under the Knowledge Innovation Program sponsored by the Chinese Academy of Sciences(Grant No.KZCX3-SW-125)the National 0utstanding Young Scientists Science Foundation of China(Grant No.49925309).
文摘The No. 302 uranium deposit, located in Guangdong Province, is a typical granite-type uranium ore deposit. REE geochemical characteristics of the wall rocks, pitchblende, altered rocks, calcite and fluorite from this deposit have been systematically studied in this paper. The result showed that the alkali-metasomatic granites and other altered rocks have the same REE distribution patterns as Indosinian granites. It is indicated that the hydrothermal ore-forming solution had altered the Indosinian granites, and ore-forming materials may directly originate from the Indosinian granites. Calcite and fluorite of different stages are the products derived from the same source but different stages. The evolution and degassing of the mineralizing solution might induce LREE enrichment to varying degree. Mantle fluid and a large volume of mineralizer may be the crucial factors controlling uranium mineralization, and the hydrothermal solution with mineralizer played an important role in U transport and concentration. Meanwhile, the degassing of CO2 might promote U and REE precipitation.
基金Financial support for this study was provided by New Energy Technology Development and Application Research(grant No.2019A-4809(JT)).
文摘The Qianjiadian uranium deposit is located in the Kailu Depression of Songliao Basin.It is a large-scale in-situ leachable uranium deposit of sandstone type and provides a typical case of the uranium deposits in the Songliao Basin.Here we analyze the impact of oil and gas on reduction alteration,and factors including low grade mineralization.The Qianjiadian uranium deposit is characterized as a typical rolltype deposit with interlayers in oxidized zone.The occurrence of reductive low-permeability sandstone in uranium reservoirs controls the morphology of the uranium-rich orebody.We propose a metallogenic model involving multi-stage superposition characterized by“primary sediment enrichment-interlayer oxidation-superimposed transformation”.Our model would be helpful for formulating guidelines in the exploration for sandstone-type uranium deposits in the Songliao Basin.
文摘Three uranium provinces are recognized in China, the Southeast China uranium province, the Northeast China-Inner Mongolia uranium province and the Northwest China (Xinjiang) uranium province. The latter two promise good potential for uranium resources and are major exploration target areas in recent years. There are two major types of uranium deposits: the Phanerozoic hydrothermal type (vein type) and the Meso-Cenozoic sandstone type in different proportions in the three uranium provinces. The most important reason or prerequisite for the formation of these uranium provinces is that Precambrian uranium-enriched old basement or its broken parts (median massifs) exists or once existed in these regions, and underwent strong tectonomagmatic activation during Phanerozoic time. Uranium was mobilized from the old basement and migrated upwards to the upper structural level together with the acidic magma originating from anatexis and the primary fluids, which were then mixed with meteoric water and resulted in the formation of Phanerozoic hydrothermal uranium deposits under extensional tectonic environments. Erosion of uraniferous rocks and pre-existing uranium deposits during the Meso-Cenozoic brought about the removal of uranium into young sedimentary basins. When those basins were uplifted and slightly deformed by later tectonic activity, roll-type uranium deposits were formed as a result of redox in permeable sandstone strata.
基金supported by the National Natural Science Foundation of China (Nos. U2067202, 41772068, 42172098)the Natural Science Foundation of Jiangxi Province (No. 20202BAB213017)+1 种基金the Joint Innovation Fund of China Uranium Industry Co., LTD and East China University of Technology (No. NRE2021-02)Open Foundation of State Key Laboratory of Nuclear Resources and Environment (No. JELRGBDT202007)。
文摘The sandstone-hosted uranium deposits in the SW Songliao Basin differ from typical sandstone-hosted uranium deposits in terms of the geological features of the ore-deposits,including the geometry of the orebodies,mineral assemblage and petrography.Detailed drill core and microscopic observations,scanning electron microscopy(SEM),electron microprobe analysis(EMPA),heavy mineral concentrates,and fluid inclusion studies of the Upper Cretaceous Yaojia Formation,i.e.,the uranium-bearing layer,were integrated to investigate the roles of hydrothermal fluids in the formation of these uranium deposits.We found that the kaolinite alteration is developed in the mineralized zones,but it is less common in the peripheral areas.The fluid inclusions are hydrothermal fluids with a medium-low temperature(67 to 179 ℃) and a high salinity(5.9 wt.% to 20.1 wt.%).According to the analyses,three kinds of hydrothermal fluids,i.e.,the acid fluid,the groundwater heated by the mafic magma,and the alkaline fluid rich in Ca^(2+) and CO_(3)^(2-),were identified.The fluids might have low U content,but they have participated in the formation of the uranium deposits successively.Kaolinite formed by the acid-hydrothermal fluid absorbed large amounts of uranium.Subsequently,the thermal energy from the hydrothermal fluids changed the intrastratal redox environment and increased the solubility of the uranium minerals in the fluid.The alkaline-hydrothermal fluid rich in Ca^(2+) and C0_(3)^(2-) facilitated the formation of stable Ca-U(Ⅵ)-CO_(3) complex,which led to the enrichment of soluble uranium in solution,and final precipitation as pitchblende,brannerite and Ti-bearing uranium minerals in the uranium ores.