We present a study on the dynamic stability of porous functionally graded(PFG)beams under hygro-thermal loading.The variations of the properties of the beams across the beam thicknesses are described by the power-law ...We present a study on the dynamic stability of porous functionally graded(PFG)beams under hygro-thermal loading.The variations of the properties of the beams across the beam thicknesses are described by the power-law model.Unlike most studies on this topic,we consider both the bending deformation of the beams and the hygro-thermal load as size-dependent,simultaneously,by adopting the equivalent differential forms of the well-posed nonlocal strain gradient integral theory(NSGIT)which are strictly equipped with a set of constitutive boundary conditions(CBCs),and through which both the stiffness-hardening and stiffness-softening effects of the structures can be observed with the length-scale parameters changed.All the variables presented in the differential problem formulation are discretized.The numerical solution of the dynamic instability region(DIR)of various bounded beams is then developed via the generalized differential quadrature method(GDQM).After verifying the present formulation and results,we examine the effects of different parameters such as the nonlocal/gradient length-scale parameters,the static force factor,the functionally graded(FG)parameter,and the porosity parameter on the DIR.Furthermore,the influence of considering the size-dependent hygro-thermal load is also presented.展开更多
Dwellings in a Mediterranean climate, such as that of Chile’s Central Valley, must provide hygro-thermal comfort both during the cold winters, and the hot days and cool summer nights. Straw, once a material common in...Dwellings in a Mediterranean climate, such as that of Chile’s Central Valley, must provide hygro-thermal comfort both during the cold winters, and the hot days and cool summer nights. Straw, once a material common in Chile’s indigenous and vernacular architecture, could meet these demands when coupled with sufficient thermal mass in the form of earth renders and floor finishes. This article presents measurements of dry bulb temperatures and relative humidity, both in physical test chambers and Chilean straw bale homes. The results of these measurements confirm that straw bale construction could provide hygro-thermal comfort with heating demands 28% less than those of constructions that meet the Chilean thermal building regulations. Straw bale, therefore, could provide a viable solution for comfortable, energy efficient, rural dwellings in Chile’s Central Valley. Whilst over 40 private straw bale projects have been completed in Chile to date, restrictions applying to projects receiving government subsidies prevent this technology being available to those who need it most.展开更多
基金Project supported by the National Natural Science Foundation of China(No.12172169)the Natural Sciences and Engineering Research Council of Canada(No.NSERC RGPIN-2023-03227)。
文摘We present a study on the dynamic stability of porous functionally graded(PFG)beams under hygro-thermal loading.The variations of the properties of the beams across the beam thicknesses are described by the power-law model.Unlike most studies on this topic,we consider both the bending deformation of the beams and the hygro-thermal load as size-dependent,simultaneously,by adopting the equivalent differential forms of the well-posed nonlocal strain gradient integral theory(NSGIT)which are strictly equipped with a set of constitutive boundary conditions(CBCs),and through which both the stiffness-hardening and stiffness-softening effects of the structures can be observed with the length-scale parameters changed.All the variables presented in the differential problem formulation are discretized.The numerical solution of the dynamic instability region(DIR)of various bounded beams is then developed via the generalized differential quadrature method(GDQM).After verifying the present formulation and results,we examine the effects of different parameters such as the nonlocal/gradient length-scale parameters,the static force factor,the functionally graded(FG)parameter,and the porosity parameter on the DIR.Furthermore,the influence of considering the size-dependent hygro-thermal load is also presented.
文摘Dwellings in a Mediterranean climate, such as that of Chile’s Central Valley, must provide hygro-thermal comfort both during the cold winters, and the hot days and cool summer nights. Straw, once a material common in Chile’s indigenous and vernacular architecture, could meet these demands when coupled with sufficient thermal mass in the form of earth renders and floor finishes. This article presents measurements of dry bulb temperatures and relative humidity, both in physical test chambers and Chilean straw bale homes. The results of these measurements confirm that straw bale construction could provide hygro-thermal comfort with heating demands 28% less than those of constructions that meet the Chilean thermal building regulations. Straw bale, therefore, could provide a viable solution for comfortable, energy efficient, rural dwellings in Chile’s Central Valley. Whilst over 40 private straw bale projects have been completed in Chile to date, restrictions applying to projects receiving government subsidies prevent this technology being available to those who need it most.