Senecavirus A(SVA)has a positive-sense,single-stranded RNA genome.Its 5´untranslated region harbors an internal ribosome entry site(IRES),comprising 10 larger or smaller stem-loop structures(including a pseudokno...Senecavirus A(SVA)has a positive-sense,single-stranded RNA genome.Its 5´untranslated region harbors an internal ribosome entry site(IRES),comprising 10 larger or smaller stem-loop structures(including a pseudoknot)that have been demonstrated to be well conserved.However,it is still unclear whether each stem-loop subdomain,such as a single stem or loop,is also highly conserved.To clarify this issue in the present study,a set of 29 SVA cDNA clones were constructed by site-directed mutagenesis(SDM)on the IRES.The SDM-modified scenarios included:(1)stem-formed complementary sequences exchanging with each other;(2)loop transversion;(3)loop transition;and(4)point mutations.All cDNA clones were separately transfected into cells for rescuing viable viruses,whereas only four SVAs of interest could be recovered,and were genetically stable during 20 passages.One progeny grew significantly slower than the other three did.The dual-luciferase reporter assay showed that none of the SDM-modified IRESes significantly inhibited the IRES activity.Our previous study indicated that a single motif from any of the ten stem structures,if completely mutated,would cause the failure of virus recovery.Interestingly,our present study revealed three stem structures,whose individual complementary sequences could exchange with each other to rescue sequence-modifying SVAs.Moreover,one apical loop was demonstrated to have the ability to tolerate its own full-length transition,also having no impact on the recovery of sequence-modifying SVA.The present study suggested that not every stem-loop structure was strictly conserved in its conformation,while the full-length IRES itself was well conserved.This provides a new research direction on interaction between the IRES and many factors.展开更多
Wireless Power Transfer(WPT)technology can provide real-time power for many terminal devices in Internet of Things(IoT)through millimeterWave(mmWave)to support applications with large capacity and low latency.Although...Wireless Power Transfer(WPT)technology can provide real-time power for many terminal devices in Internet of Things(IoT)through millimeterWave(mmWave)to support applications with large capacity and low latency.Although the intelligent reflecting surface(IRS)can be adopted to create effective virtual links to address the mmWave blockage problem,the conventional solutions only adopt IRS in the downlink from the Base Station(BS)to the users to enhance the received signal strength.In practice,the reflection of IRS is also applicable to the uplink to improve the spectral efficiency.It is a challenging to jointly optimize IRS beamforming and system resource allocation for wireless energy acquisition and information transmission.In this paper,we first design a Low-Energy Adaptive Clustering Hierarchy(LEACH)clustering protocol for clustering and data collection.Then,the problem of maximizing the minimum system spectral efficiency is constructed by jointly optimizing the transmit power of sensor devices,the uplink and downlink transmission times,the active beamforming at the BS,and the IRS dynamic beamforming.To solve this non-convex optimization problem,we propose an alternating optimization(AO)-based joint solution algorithm.Simulation results show that the use of IRS dynamic beamforming can significantly improve the spectral efficiency of the system,and ensure the reliability of equipment communication and the sustainability of energy supply under NLOS link.展开更多
Exploring effective iridium(Ir)-based electrocatalysts with stable iridium centers is highly desirable for oxygen evolution reaction(OER).Herein,we regulated the incorporation manner of Ir in Co_(3)O_(4)support to sta...Exploring effective iridium(Ir)-based electrocatalysts with stable iridium centers is highly desirable for oxygen evolution reaction(OER).Herein,we regulated the incorporation manner of Ir in Co_(3)O_(4)support to stabilize the Ir sites for effective OER.When anchored on the surface of Co_(3)O_(4)in the form of Ir(OH)_6 species,the created Ir-OH-Co interface leads to a limited stability and poor acidic OER due to Ir leaching.When doped into Co_(3)O_(4)lattice,the analyses of X-ray absorption spectroscopy,in-situ Raman,and OER measurements show that the partially replacement of Co in Co_(3)O_(4)by Ir atoms inclines to cause strong electronic effect and activate lattice oxygen in the presence of Ir-O-Co interface,and simultaneously master the reconstruction effect to mitigate Ir dissolution,realizing the improved OER activity and stability in alkaline and acidic environments.As a result,Ir_(lat)@Co_(3)O_(4)with Ir loading of 3.67 wt%requires 294±4 mV/285±3 mV and 326±2 mV to deliver 10 mA cm^(-2)in alkaline(0.1 M KOH/1.0 M KOH)and acidic(0.5 M H_(2)SO_(4))solution,respectively,with good stability.展开更多
Organic light-emitting diodes(OLEDs)have important applications in the field of next-generation displays and lighting,and phosphorescent iridium complexes are an important class of electroluminescent phosphorescent ma...Organic light-emitting diodes(OLEDs)have important applications in the field of next-generation displays and lighting,and phosphorescent iridium complexes are an important class of electroluminescent phosphorescent materials.In this paper,Ir(bmppy)_(3),tris(4-methyl-2,5-diphenylpyridine)iridium,was synthesized and elvaluted for photo-physical characteristics.Single crystals suitale for X-ray diffraction(XRD)were grown from a mixture solvent of dichloromethane and absolute ethanol.The composition and structur of Ir(bmppy)_(3)were determined by element analysis,NMR spectra and XRD.The complex crystallizes in the monoclinic symmetry with the space group P21/c with a slightly distorted octahedral configuration.As measured by UV-Visible and photoluminescence spectra,Ir(bmppy)_(3) displays a maximum emission at at 527 nm at ambient temperature,a typical green-emitting profile.The complex has potential for application in the OLED industry.展开更多
基金This work was supported by the National Natural Science Found ation of China(32273000)the Qingdao Demonstration Project for People-benefit from Science and Techniques,China(23-2-8-xdny-14nsh and 24-2-8-xdny-4-nsh)+1 种基金the National Program of Undergraduate Innovation and Entrepreneurship,China(202310435039)the Open Project Fund of State Key Laboratory of Microbial Technology,China(M2023-03)。
文摘Senecavirus A(SVA)has a positive-sense,single-stranded RNA genome.Its 5´untranslated region harbors an internal ribosome entry site(IRES),comprising 10 larger or smaller stem-loop structures(including a pseudoknot)that have been demonstrated to be well conserved.However,it is still unclear whether each stem-loop subdomain,such as a single stem or loop,is also highly conserved.To clarify this issue in the present study,a set of 29 SVA cDNA clones were constructed by site-directed mutagenesis(SDM)on the IRES.The SDM-modified scenarios included:(1)stem-formed complementary sequences exchanging with each other;(2)loop transversion;(3)loop transition;and(4)point mutations.All cDNA clones were separately transfected into cells for rescuing viable viruses,whereas only four SVAs of interest could be recovered,and were genetically stable during 20 passages.One progeny grew significantly slower than the other three did.The dual-luciferase reporter assay showed that none of the SDM-modified IRESes significantly inhibited the IRES activity.Our previous study indicated that a single motif from any of the ten stem structures,if completely mutated,would cause the failure of virus recovery.Interestingly,our present study revealed three stem structures,whose individual complementary sequences could exchange with each other to rescue sequence-modifying SVAs.Moreover,one apical loop was demonstrated to have the ability to tolerate its own full-length transition,also having no impact on the recovery of sequence-modifying SVA.The present study suggested that not every stem-loop structure was strictly conserved in its conformation,while the full-length IRES itself was well conserved.This provides a new research direction on interaction between the IRES and many factors.
基金supported by the National Natural Science Foundation of China 62001051.
文摘Wireless Power Transfer(WPT)technology can provide real-time power for many terminal devices in Internet of Things(IoT)through millimeterWave(mmWave)to support applications with large capacity and low latency.Although the intelligent reflecting surface(IRS)can be adopted to create effective virtual links to address the mmWave blockage problem,the conventional solutions only adopt IRS in the downlink from the Base Station(BS)to the users to enhance the received signal strength.In practice,the reflection of IRS is also applicable to the uplink to improve the spectral efficiency.It is a challenging to jointly optimize IRS beamforming and system resource allocation for wireless energy acquisition and information transmission.In this paper,we first design a Low-Energy Adaptive Clustering Hierarchy(LEACH)clustering protocol for clustering and data collection.Then,the problem of maximizing the minimum system spectral efficiency is constructed by jointly optimizing the transmit power of sensor devices,the uplink and downlink transmission times,the active beamforming at the BS,and the IRS dynamic beamforming.To solve this non-convex optimization problem,we propose an alternating optimization(AO)-based joint solution algorithm.Simulation results show that the use of IRS dynamic beamforming can significantly improve the spectral efficiency of the system,and ensure the reliability of equipment communication and the sustainability of energy supply under NLOS link.
基金supported by the National Natural Science Foundation of China(52150410409).
文摘Exploring effective iridium(Ir)-based electrocatalysts with stable iridium centers is highly desirable for oxygen evolution reaction(OER).Herein,we regulated the incorporation manner of Ir in Co_(3)O_(4)support to stabilize the Ir sites for effective OER.When anchored on the surface of Co_(3)O_(4)in the form of Ir(OH)_6 species,the created Ir-OH-Co interface leads to a limited stability and poor acidic OER due to Ir leaching.When doped into Co_(3)O_(4)lattice,the analyses of X-ray absorption spectroscopy,in-situ Raman,and OER measurements show that the partially replacement of Co in Co_(3)O_(4)by Ir atoms inclines to cause strong electronic effect and activate lattice oxygen in the presence of Ir-O-Co interface,and simultaneously master the reconstruction effect to mitigate Ir dissolution,realizing the improved OER activity and stability in alkaline and acidic environments.As a result,Ir_(lat)@Co_(3)O_(4)with Ir loading of 3.67 wt%requires 294±4 mV/285±3 mV and 326±2 mV to deliver 10 mA cm^(-2)in alkaline(0.1 M KOH/1.0 M KOH)and acidic(0.5 M H_(2)SO_(4))solution,respectively,with good stability.
文摘Organic light-emitting diodes(OLEDs)have important applications in the field of next-generation displays and lighting,and phosphorescent iridium complexes are an important class of electroluminescent phosphorescent materials.In this paper,Ir(bmppy)_(3),tris(4-methyl-2,5-diphenylpyridine)iridium,was synthesized and elvaluted for photo-physical characteristics.Single crystals suitale for X-ray diffraction(XRD)were grown from a mixture solvent of dichloromethane and absolute ethanol.The composition and structur of Ir(bmppy)_(3)were determined by element analysis,NMR spectra and XRD.The complex crystallizes in the monoclinic symmetry with the space group P21/c with a slightly distorted octahedral configuration.As measured by UV-Visible and photoluminescence spectra,Ir(bmppy)_(3) displays a maximum emission at at 527 nm at ambient temperature,a typical green-emitting profile.The complex has potential for application in the OLED industry.